

REMEDIATE

TECHNICAL REPORT

GROUND INVESTIGATION AT ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE FOR WILSON MASON LLP

REPORT NO. 5887A NOVEMBER 2014

SUB SURFACE NORTH WEST LIMITED

3 Peel Street
Preston
Lancashire
PR2 2QS
Tel: (01772) 561135 Fax: (01772) 204907
Email: preston@subsurface.co.uk

CONTENTS

1.	INTRODUCTION	1.1 1.2	Proposed Development and Purpose of the Ground Investigation
2.	INVESTIGATION	2.1 2.2	Investigation Details Sub Surface Detail
3.	SAMPLING, TESTING AND MONITORING	3.1 3.2 3.3 3.4	Sampling Field Testing Installations and Monitoring Laboratory Testing
4.	APPRAISAL AND RECOMMENDATIONS	4.4 4.5 4.6 4.7 4.8 4.9	
AF	PPENDICES	Labo Cont Bore	u Test results tratory Test results amination Analysis results hole Record sheets Pit Record sheets res

GROUND INVESTIGATION AT ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE

CLIENT: WILSON MASON LLP

ENGINEER: TRP CONSULTING

1. INTRODUCTION

This report has been prepared in accordance with emails, dated 29th May 2014 and 23rd June 2014 from the Engineer on behalf of the Client.

The brief was set out in our estimate, ref. E9686 and dated 22nd April 2014, with amendments as the investigation proceeded and includes:

- 6 No. cable percussive boreholes
- 6 No. trial pits
- 2 No. soakaway tests
- Geotechnical laboratory testing
- Contamination analysis
- Installation of standpipes followed by groundwater and ground gas monitoring
- Provision of an interpretative report on the above.

1.1 Site Location and Description

The site is located in the eastern end of the Samlesbury Aerodrome, near Preston, Lancashire as indicated on Figure 1. The approximate National Grid Reference of the centre of the site is SD633312.

The site comprises an irregular shaped grassed area measuring some 450m by 320m at the eastern end of the main runway. The site is bound to the north and east by the perimeter road, to the south east by an area of hardstanding and storage containers, to the south and north west by grassed areas, and to the south west by the runway.

1.2 Proposed Development and Purpose of the Ground Investigation

We understand that it is proposed to develop the site as an enterprise zone, as shown on Figure 3.

The purpose of the investigation was to obtain an indication of the ground conditions, at the positions of the boreholes and trial pits, to assess the likelihood of a general pattern of strata being present below the site and to establish the load bearing characteristics of the strata deriving if possible an assessment of the suitability of appropriate founding techniques.

In addition a contamination assessment was required in order to determine necessary precautions and/or remedial measures required for the proposed development and to ascertain the need for any further sampling and analysis.

Ground gas monitoring and assessment was also required to determine necessary precautions and/or remedial measures.

2. INVESTIGATION

2.1 Investigation Details

Six 150mm diameter boreholes were put down by cable percussive boring techniques at the positions determined and set out by Sub Surface North West Limited, as shown on Figure 2. The boreholes were put down to depths of between 10.00m and 15.50m, samples taken were logged in accordance with BS. EN. 14688 and 14689: 2002-2004 and the resulting Borehole Records are appended.

Six trial pits were taken out by a mechanical excavator at the positions determined and set out by Sub Surface North West Limited, as shown on Figure 2. The trial pits were excavated to depths of between 0.50m and 2.50, representative samples were taken and the materials were logged in accordance with BS. EN. 14688 and 14689: 2002-2004. The resulting Trial Pit Records are appended.

2.2 Sub Surface Detail

Details of the strata encountered in the ground investigation are given on the appended Borehole and Trial Pit Records. The exploratory holes found made ground and topsoil overlying natural cohesive strata. A general summary of the strata found is as follows:

2.2.1 Made Ground

Made ground was encountered in BH1, BH2, BH6, TP1, TP2, TP3 and TP6 to depths of between 0.25m and 1.60m and comprised mainly brown and dark greyish brown slightly gravelly, slightly sandy clay with localised low brick, stone, concrete and slag cobble content. The gravel sized fragments comprised mainly fine to coarse brick and stone with localised fragments of timber, concrete, clinker and slag. A localised zone of deeper made ground was encountered in TP1 to a depth of 1.60m

2.2.2 Drift Deposits

Drift deposits were encountered in all of the exploratory holes except TP3 which was terminated on a field drain, and comprised mainly firm medium strength locally high strength dark brown and brown slightly gravelly locally sandy silty clay. The gravel comprised mainly subrounded to rounded fine to coarse siltstone, sandstone and quartz. A localised zone of soft low strength clay, possibly made ground, was encountered in BH1 to a depth of some 2.50m.

2.2.3 Groundwater

No groundwater was encountered in any of the exploratory holes although it should be noted that they were only left open for a short period of time. Also groundwater levels and rates of inflow may be subject to seasonal and/ or climatic variations.

A perched water seepage was encountered in TP1 at 1.30m.

Monitoring of standpipes installed in BH1, BH4 and BH6 between found groundwater levels to be between 0.05m and 5.30m.

3. SAMPLING, TESTING AND MONITORING

3.1 Sampling

Thirty 100mm diameter undisturbed samples were taken at appropriate intervals in cohesive strata, for testing in the laboratory.

Small disturbed and bulk disturbed samples were obtained for the strata encountered and were subjected to careful examination and hand penetrometer tests, where appropriate.

The samples will be retained for a period of one month after the issue of this report, for reference purposes, and then disposed of unless otherwise instructed.

3.2 Field Testing

Nineteen hand shear vane tests were undertaken in the trial pits and the results are given on the appended Trial Pit Records.

Thirty Standard Penetration Tests (SPTs) were performed in the natural clay strata, the results of which are recorded on the appended Standard Penetration Test Results Sheet with 'N' values and indicative states of compaction and consistency, where appropriate, given on the appended Borehole Records.

On completion of TP4 and TP5 soakaway tests were undertaken in the natural clay strata. Water was added to the pits from a bowser and water levels were subsequently monitored over a period of 300 minutes. Water levels were found to have fallen insufficiently to determine the Soil Infiltration Rate and hence soakaways are not feasible on this site. Details of the soakaway tests are appended.

3.3 Installations and Monitoring

On completion of BH1, BH4 and BH6 hdpe standpipes were installed to a depth of 6.0m. The standpipes are slotted from 1.0m depth, have an internal diameter of 50mm and have removable quick release gas valves to enable both ground gas and groundwater monitoring and sampling to be undertaken. Details of the installations are given on the appended Borehole Records.

Monitoring of the standpipes for ground gas and groundwater has been undertaken on six occasions using portable equipment. A Gas Data GFM 435 was used for monitoring methane, carbon dioxide, oxygen, gas flows and atmospheric pressure. The results of the monitoring are given on the appended Ground Gas and Groundwater Monitoring Results sheet.

3.4 Laboratory Testing

The following laboratory tests were carried out in accordance with BS.1377: 1990, where applicable, and the results are appended.

- Moisture content, plastic limit and liquid limit tests
- Quick undrained triaxial tests
- Oedometer consolidation tests
- California bearing ratio tests on samples remoulded at natural moisture content
- Soluble sulphate content and pH value tests

Contamination analyses have been performed on nineteen soil samples to determine: pH and concentrations of sulphate, sulphide, cyanide, arsenic, boron (soluble), cadmium, chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, zinc, speciated total petroleum hydrocarbons (TPHs), the speciated polynuclear aromatic hydrocarbons (PAHs) suite, the benzene/ ethylbenzene/ toluene/ xylene (BTEX) suite and phenols. In addition eleven soil samples were subjected to an asbestos screen.

Contamination analyses have been performed on three water samples to determine: pH and concentrations of sulphate, sulphide, cyanide, arsenic, boron (soluble), cadmium, chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, zinc, speciated total petroleum hydrocarbons (TPHs), the speciated polynuclear aromatic hydrocarbons (PAHs) suite, the benzene/ ethylbenzene/ toluene/ xylene (BTEX) suite and phenols.

The results of the above analyses are appended.

4. APPRAISAL AND RECOMMENDATIONS

4.1 Comments on the Profile

At the outset it should be appreciated that only a small proportion of the area to be developed has been sampled and consequently the recommendations made and opinions expressed in this report can only be applied to such conditions as were encountered in the exploratory holes.

In our opinion the exploratory holes indicate a nature and degree of similarity to the extent that we consider them likely to be representative of the natural ground conditions, although clearly no guarantee can be given.

Due to the nature of made ground localised variations in thickness and composition should be anticipated and hence interpolation or extrapolation from the exploratory holes to adjoining areas should only be undertaken with caution.

Details of the findings of the investigation are given on the appended Borehole and Trial Pit Records and a summary of the ground conditions is given in Section 2.2.

4.2 Foundations

We understand that it is proposed to construct a two storey training facility with associated car parking and landscaping as depicted in Figure 3. However, at the time of writing this report no specific details regarding the design loadings were available and consequently the recommendations given are in general terms only.

The ground investigation generally found made ground and topsoil to depths of up to 1.60m overlying natural firm medium and high strength clay.

We would not recommend founding in the made ground in its present condition because of its inherent variability in consistency and compaction, and in parts the nature of its constituents. Providing there is sufficient load bearing capability we recommend that the proposed building is founded on strip footings for wall loads and pad foundations for column loads in the natural firm medium and high strength clay strata.

Atterberg limit tests on the cohesive strata indicate clays of intermediate plasticity which are considered to have a medium susceptibility to shrinkage and swelling with varying moisture content. Consequently we recommend that any foundations are placed at a minimum depth of 0.90m below finished ground level to avoid the zone which is subject to seasonal moisture content variation and frost action. If buildings are to be constructed adjacent to existing trees, trees are to be removed and/or trees are to be planted then the guidelines given in the National House Building Council (NHBC) Standards Chapter 4.2, 'Building Near Trees', should be followed for clays of medium shrinkage and swelling potential.

It should be noted that in parts of the site the natural strata is at a depth of in excess of 0.90m and in these areas foundations should be taken down to a minimum 0.10m below the base of the made ground unless the NHBC guidelines indicate a greater depth.

In view of the depth of foundations required it is anticipated that trench fill will be used in places to bring levels back up to the surface. We would anticipate that trench fill would normally be economically viable providing foundation depths do not exceed about 2.50 to 3.00m.

Taking the results of the field and laboratory tests we have determined the safe bearing capacity of the natural strata, as follows:

TABLE 1

SAFE BEARING CAPACITY

Expl Hole	Depth	SPT 'N'	Shear Strength	Safe Bearing Pressure (kN/m²)		Minimum Foundation
No.	(m)	Value	(kN/m²)	Strip Footing	Square Pad	Depth (m)
BH1	1.20	-	23#	40*	50*	2.50
	2.15	3	12	20	25	
	3.00	-	79	150	180	
	4.00	14	56	105	125	
BH2	1.30	14	56	105	125	0.90
	2.00	-	159	300*	360*	
	3.15	11	44	80	100	
ВН3	1.20	-	111	210*	250*	0.90
	2.15	19	76	140	170	
	3.00	-	83	155	185	
BH4	1.35	9	36	65	80	2.00
	2.00	-	82	155*	185*	
	3.15	11	44	80	100	
BH5	1.20	-	77	145*	175*	0.90
	2.15	12	48	90	90 105	
	3.00	-	69	130	155	
BH6	1.20	-	96#	180*	215*	0.90
	2.15	12	48	90	105	
	3.00	-	161	305	365	

[#] Shear strength determined by hand shear vane test probably less accurate than determination by triaxial tests or SPTs.

Appreciable variations in safe bearing capacity are indicated in Table 1 and as a consequence of this and the need to utilise a generally applicable safe bearing pressure to enable designs to be reasonably formulated we recommend that values of $90kN/m^2$ for strip footings and $105kN/m^2$ for square pads should not be exceeded for the minimum foundation depth given. The presence of low strength clays in BH4 should be noted and we recommend that where similar strata are present the foundations should be taken down to the medium strength clays. If the footprint of the proposed building extends into the zone of low and very low strength ground encountered in BH1 then we recommend the foundations are taken down to a minimum depth of 2.50m in this area.

All formation levels should be carefully inspected by an experienced and qualified engineer to confirm the appropriateness of the design figures used with any softer zones removed and replaced with lean mix concrete. The formation should then be blinded with lean mix concrete as soon as possible after exposure, if there is to be a delay before construction, to prevent water softening or disturbance.

Consideration must be given to weaker underlying strata which might be overstressed if loading is not reduced.

It should be noted that the safe bearing pressures given for the cohesive strata do not take into consideration settlement. Settlement is dependent upon loading intensity, the width of footings/pads and the coefficient of volume compressibility (Mv) of the compressible strata. Mv values are given on the appended oedometer consolidation test results sheets. When details of the foundations are formulated we recommend that total and differential settlements should be calculated to ensure that they are within acceptable limits.

In strata similar to that found in BH4 the oedometer consolidation tests indicate that, for a strip footing 1.0m wide at a depth of 2.00m and exerting a ground bearing pressure of 90kN/m², consolidation settlement in the order of 10mm might be expected. Similarly oedometer consolidation tests indicate that, for a pad foundation 1.5m square at a depth of 2.00m exerting a ground bearing pressure of 105kN/m², consolidation settlement in the order of 15mm might be expected. We recommend that detailed settlement calculations are carried out for the final design scheme.

In view of the nature of the proposed development the safe bearing pressures determined above may not be sufficient and shallow foundations in natural ground may not feasible, in which case alternative foundations will need to be considered. These might include ground improvement by vibroflotation with shallow reinforced foundations or piled foundations.

The most common form of the vibroflotation treatment technique is vibro replacement whereby dense stone columns are formed through the full depth of any made ground that is present and variable near surface strata, utilising the passive resistance of cohesive soils and compacting granular soils to improve the bearing capacity and minimise differential settlements of the composite mass of near surface materials and compacted stone columns.

Due to the varying types, sizes and power of vibroflotation machines currently in use, the advice of a Specialist Contractor should be sought to ascertain the feasibility of applying the particular technique, the allowable bearing capacity and expected differential settlements each machine will achieve and in formulating the most economic scheme.

With the use of a vibroflotation ground treatment programme great care must be taken to prevent the transmission of vibrations to adjacent/ nearby buildings, structures or services that may be founded at shallow depth and already be in a highly stressed condition. Such vibrations could lead to structural damage. In this respect any Specialist Contractor tendering for the work should be asked to confirm that the vibrations set up by the ground treatment process will not give rise to structural damage to adjacent/ nearby buildings, structures or services.

With regard to the choice of pile type, consideration could be given to driven piles, continuous flight auger (CFA) piles or cast in-situ bored piles with the driven pile option probably being the most economical. However, in considering piles driven to a predetermined set in the more competent strata at depth, it is essential to ensure that any vibrations set up during the driving process are not transmitted to nearby buildings, structures or services. This is because nearby buildings, structures or services could well be founded at shallow depth and already be in a highly stressed state and susceptible to structural damage as a direct result of such induced vibration. Consequently, we recommend that any Specialist Piling Contractor tendering in respect of driven piles should be asked to confirm that the process to be adopted will not affect or cause damage to nearby buildings, structures or services. If such confirmation cannot be given then we would recommend using either CFA or cast insitu bored piles.

Care must be taken to space the piles in any group to ensure the adequate utilisation of skin friction where this has been assumed in the calculation of the load bearing capacity of an individual pile. Checks must also be undertaken to confirm that the underlying ground supporting the pile group is not overstressed.

To provide assistance for estimating purposes only, we have undertaken a preliminary pile design calculation for a 15.5m long pile taking into consideration the ground conditions at BH4, as follows:

Preliminary Pile Design based on strata in BH4

Bored Cast In-situ or CFA Pile	Factor of Safety: 2.5 (shaft), 3.0 (end)
Dia. = 0.30 m, Perimeter = 0.94 m,	Cross Section Area = 0.07m ² , Length = 15.5m

0.00 to 0.20m	TOPSOIL	- Ignore
0.20 to 1.50m	Low strength CLAY	-ignore, shallow depth
1.50 to 2.00m	Low strength brown slightly gravelly silty CLAY Allowable Shaft Friction Allowable Shaft Friction Load	$c = 36kN/m^2$ = 11.5kN/m ² = 5kN
2.00 to 15.50m	Medium strength locally high strength brown slightly gravelly silty CLAY Allowable Shaft Friction Allowable Shaft Friction Load	\bar{c} = 70kN/m ² = 22.4kN/m ² = <u>284kN</u>
15.50m	High strength brown slightly gravelly silty CLAY Allowable End Bearing Allowable End Bearing Load	$c = 75 \text{ kN/m}^2$ = 225kN/m ² = 15kN

Total Allowable Working Load = 5 + 284 + 15 = 304kN

In order to use the load carrying capacity attributable to both shaft friction and end bearing, the final design figures should be checked to ensure that the ultimate shaft friction is greater than or equal to the allowable working load, otherwise end bearing only should be used.

To formulate the most satisfactory and economic scheme we suggest that competitive tenders and designs from Specialist Piling Contractors should be sought using the borehole information obtained.

4.3 Floor Slab Construction

With regard to the design and construction of floor slabs we would recommend the removal of any topsoil and/or made ground and the level brought up as required using a graded granular hardcore placed and compacted in layers of not greater than 150mm followed by the construction of a concrete ground bearing floor slab.

In the area of the deeper made ground encountered in TP1, in order to obviate any significant damaging settlements we would recommend using a suspended floor slab with intermediate support designed on the same basis as the main foundations where the spans are too large for economical single suspended slab design.

Should vibroflotation ground treatment be proposed for the main foundations consideration could be given to extending the ground treatment in a grid pattern beneath the whole of the building followed by the construction of a suitably reinforced concrete ground bearing floor slab cast on a granular base layer.

4.4 Excavations and Groundwater

In our opinion, there should be no particular difficulties in excavating the strata indicated in the exploratory holes utilising an appropriate and suitably sized mechanical excavator. However, it should be noted that old brick foundations were encountered in TP2 at 0.30m which may need to be broken out prior to excavation.

The trial pit sides were found to remain vertical and stable for the relatively short period that they were left open and unsupported.

It is recommended that all excavations to greater than 1.20m depth, or for shallower excavations where groundwater is encountered above this level, are closely supported, especially where man entry is required. Alternatively, where space permits, the excavations might be battered back to an appropriate angle.

No groundwater was encountered in any of the exploratory holes although it should be noted that they were only left open for a short period of time. Also groundwater levels and rates of inflow may be subject to seasonal and/ or climatic variations.

A perched water seepage was encountered in TP1 at 1.30m. Monitoring of standpipes installed in BH1, BH4 and BH6 between found groundwater levels to be between 0.05m and 5.30m, but these are likely to be due to accumulation in the standpipes not being able to soakaway.

Should groundwater seepages occur and water accumulate in the excavation it should be able to be removed by pumping from a filtered sump.

4.5 Buried Concrete

For the design of buried concrete the recommendations given in Building Research Establishment (BRE) Special Digest 1 (September 2005 revision), "Concrete in Aggressive Ground", should be followed.

Determination of pH on the soil and groundwater samples gave values in the range of 7.3 to 8.8.

Soluble sulphate concentrations were also determined for the soil and groundwater samples and the results ranged from 0.01 to 0.11 g/l and 0.31 to 0.64 g/l respectively.

The results indicate that the Design Sulphate Class for the site should be DS-2.

Our knowledge of the site and ground conditions indicates that the site is "brownfield" with potentially mobile groundwater.

Consequently, in accordance with the Design Sulphate Class for the site together with the site and groundwater conditions an Aggressive Chemical Environment for Concrete (ACEC) classification of AC-2 should be used as detailed on the appended extract.

4.6 Roads, Hardstandings and Car Parks

Laboratory California Bearing Ratio (CBR) tests have been undertaken on six samples of natural clay recompacted at their natural moisture content and the results of the tests are appended. A summary of the laboratory CBR test results is as follows:

TABLE 2 CBR RESULTS

Expl. Hole No.	Depth (m)	Dry Density (Mg/m³)	Moisture Content (%)	CBR Value (%)	Sample
TP1	0.40 - 0.60	1.64	22	3.6	Dark brown and grey slightly gravelly silty CLAY with occasional rootlets.
TP2	0.40 - 0.60	1.74	19	4.3	Brown and occasional greyish brown slightly gravelly silty CLAY with occasional rootlets.
TP3	0.40 - 0.60	1.73	19	2.0	Dark brown and occasional grey silty CLAY.
TP4	0.30 – 0.50	1.63	23	3.2	Brown and occasional grey slightly gravelly silty CLAY with occasional rootlets.
TP5	0.30 – 0.50	1.77	19	1.9	Brown and occasional grey slightly gravelly silty CLAY with occasional rootlets.
TP6	0.40 - 0.60	1.79	17	2.3	Brown and occasional grey slightly gravelly slightly sandy silty CLAY.

It should be noted that the above values are moisture dependent and it is possible that the CBR values would reduce with increased moisture content; this being particularly so for cohesive strata.

Given the above it would be advisable to design on a CBR value of 1.9% for the proposed car park. If there is to be a delay before construction, to prevent water softening, loosening and disturbance, the formation strata should not be exposed.

4.7 Contamination Considerations

At the outset it should be noted that this contamination investigation is an initial survey in order to provide a preliminary risk assessment on the level of contamination present. Based upon the findings of this investigation additional sampling, analysis and assessment may be required.

It should be appreciated that the suite of determinants consist of a range of common contaminants and the analysis is restricted to these in the absence of historical evidence of the source of the made ground. However, the absence of other specific contaminants cannot be guaranteed.

4.7.1 Assessment (Soil)

In order to provide an assessment of the presence of contamination nineteen soil samples have been analysed for a suite of determinants and the results are appended.

The Department for Environment, Food and Rural Affairs (DEFRA) and the Environment Agency (EA) withdrew the soil guideline values (SGVs) and replaced the old CLR 10 document covering derivation of soil guideline values in 2008. This had the effect that any values derived using the old CLR 10 assumptions and parameters were no longer valid. DEFRA and EA published new soil guideline values (SGVs) for mercury, selenium, benzene, toluene, ethylbenzene and xylene on 31 March 2009, arsenic and nickel on 12 May 2009 and cadmium and phenols in June 2009.

In July 2009 a substantial number of Generic Assessment Criteria (GACs) were published by Land Quality Management (LQM), in conjunction with the Chartered Institute of Environmental Health. Contaminated Land: Applications in Real Environments (CL:AIRE) guideline values were also published in December 2009 to supplement the above. The guideline values (SGVs, GACs and CL:AIRE) vary dependent upon the land use; allotment and residential use being the most sensitive and commercial/ industrial use being the least sensitive.

For the purposes of assessment, as the proposed development is a training facility, contamination analyses have been compared with the guideline values for a standard land use of commercial and industrial.

The contamination analysis determined no elevated levels of contaminants when compared with the guideline values for a standard land use of commercial and industrial. Guideline values for the assessment can be supplied directly to the Regulator, if requested. No asbestos fibres were found in any of the samples tested.

In addition to the above, an assessment of risk to personnel who will come into contact with on-site materials throughout the site has been undertaken.

4.7.3 <u>Assessment (Groundwater)</u>

Three samples of groundwater have been analysed for a suite of determinants and the results are appended.

None of the levels of contamination exceeded the Environment Agency's Environmental Quality Standards (EA EQS) or the United Kingdom Drinking Water Standards (UK DWS).

4.7.4 Conclusions and Recommendations

Section 78a(2) of the Environmental Protection Act: 1990 as amended by the Contaminated Land (England) (Amendment) regulations 2012, and Section 86 of the Water Act 2003, defines CONTAMINATED LAND for the purposes of Part IIA as:

"any land which appears to the LOCAL AUTHORITY in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that:

- (a) SIGNIFICANT HARM is being caused or there is a SIGNIFICANT POSSIBILITY of such harm being caused; or
- (b) SIGNIFICANT POLLUTION OF CONTROLLED WATERS is being, or is likely to be, caused"

Before a LOCAL AUTHORITY can make the judgement that land appears to be CONTAMINATED LAND on the basis that SIGNIFICANT HARM is being caused, or that there is a SIGNIFICANT POSSIBILITY of such harm being caused, the LOCAL AUTHORITY must identify a SIGNIFICANT POLLUTANT LINKAGE. This means that each of the following has to be identified:

- (a) a CONTAMINANT;
- (b) a relevant RECEPTOR (defined as living organisms, ecological systems, controlled waters or property); and
- (c) a PATHWAY by means of which either:
 - (i) the CONTAMINANT is causing SIGNIFICANT HARM to that RECEPTOR, or
 - (ii) there is a SIGNIFICANT POSSIBILITY of such harm being caused by that CONTAMINANT to that RECEPTOR

It should be noted that the above words in capitals have a legal definition within the legislation.

Without a clear identification of all three elements of the pollutant linkage, land cannot be identified as contaminated under the regime.

The National Planning Policy Framework states that, "after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990". Therefore, the general principles detailed above apply to this assessment.

Our assessment, based on the results of the soil and water samples only, indicates that there are no contaminants requiring remediation and/or precautions to be taken for the proposed development.

Should it be necessary to remove on-site materials from the site, classification of the waste should be undertaken before submitting analysis to appropriate waste carriers and/ or waste disposal site operators to determine the most appropriate tip to use and the associated costs.

SGVs, GACs and CL:AIRE assume long term contact with contamination and assess chronic health risk. The risk of short term acute exposure to site personnel is dealt with in the remit of the Health and Safety Executive under the Health and Safety at Work Act: 1974 and Regulations made under the Act, including the Control of Substances Hazardous to Health (COSHH) Regulations. The levels of contamination and risk to site personnel should be considered under the Construction Design and Management (CDM) Regulations at the planning stage and in the development of the designers and contractors Health and Safety Plans and Method Statements. The risk of contact with on-site soils should be minimised.

4.8 Ground Gas Considerations

Ground gas monitoring has been undertaken on six occasions and the results of the monitoring visits are appended.

Ground gases: methane, carbon dioxide and oxygen and flow rate have been monitored and the ranges of ground gases and flow rate during the monitoring period are as follows:

TABLE 3 GROUND GAS CONCENTRATIONS AND FLOW RATE

Methane	Carbon Dioxide	Oxygen	Gas Flow Rate
(% vol. In air)	(% vol. in air)	(% vol. in air)	(litres/ hour)
0.0 – 1.3	0.1 – 6.5	13.1 – 19.1	

It can be seen from the monitoring that elevated levels of methane and carbon dioxide, and depleted levels of associated oxygen, have been detected.

Methane gas when present between 5% volume in air (Lower Explosive Limit - L.E.L.) and 15% volume in air (Upper Explosive Limit - U.E.L.) is potentially explosive and inflammable whilst carbon dioxide in conjunction with depleted oxygen is an asphyxiant. Both methane and carbon dioxide are a by-product of the anaerobic and aerobic decomposition of biodegradable materials.

The levels of gas have been assessed in accordance with British Standard BS8485, "Code of practice for the characterisation and remediation from ground gas in affected developments", published in October 2007 (BS8485:2007).

The characteristic hazardous gas flow rate (Q_{hgs}) is calculated by dividing the maximum gas (methane or carbon dioxide) concentration by 100 and multiplying by the maximum flow rate in litres per hour (minimum 0.1 l/hr for Sub Surface monitoring equipment). For this site $Q_{hgs} = 0.0065$ l/hr.

BS8485:2007, Table 1, indicates that the site falls into Characteristic Situation CS1 (very low). However, the carbon dioxide levels were >5% during the first two monitoring visits and subsequent readings may have been impaired by the shallow standing water level. Consequently the CS1 is increased by one to CS2 in accordance with the guidance given in BS8485:2007.

BS8485:2007 Table 3 indicates that the following protection and remedial measures will provide adequate protection:

 Reinforced concrete ground bearing foundation raft with limited service penetrations that are cast into the slab, in conjunction with a taped and sealed membrane to reasonable levels of workmanship in line with current good practice with validation.

Or

 Proprietary gas resistant membrane to reasonable levels of workmanship in line with current good practice under CQA with integrity testing and independent validation.

All excavations of greater than 1.20m depth should be routinely checked for air quality prior to man entry and appropriate precautions taken.

Any manholes, inspection chambers or other void spaces formed beneath the sites ground surface are potential ground gas traps. Precautions, as per the excavations above, should be taken.

4.9 Soakaways

On completion of TP4 and TP5 soakaway tests were undertaken in the natural clay strata. Water was added to the pits from a bowser and water levels were subsequently monitored over a period of 300 minutes. Water levels were found to have fallen insufficiently to determine the Soil Infiltration Rate and hence soakaways are not feasible on this site due to the relative impermeability of the strata. Details of the soakaway tests are appended.

4.10 General

We trust that this report fulfils your present requirements but if you have any queries or we can be of further assistance please contact the undersigned or Miss Anna Marsden at our Preston office.

SUB SURFACE NORTH WEST LIMITED REPORT No. 5887A NOVEMBER 2014

D. B. Jones BSc (Hons), Cert Nat Sci (Open), CEnv, MSEE, AIEMA, MIEnvSc. Senior Environmental Engineer For and on behalf of Sub Surface Consultants Limited

C. A. Marsden B.Sc.(Hons.), C.Eng., M.I.C.E. Director
For and on behalf of
Sub Surface Consultants Limited.

SUB SURFACE
SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS
3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Standard Penetration Test Results

: ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE Site

Job Number

5887

Client : WILSON MASON LLP

Sheet

Engineer: TRP CONSULTING					1/1
--------------------------	--	--	--	--	-----

Borehole Base of		End of	End of	of Test	Seating per 7	g Blows 5mm	Blows f	or each 7	5mm pen	etration		_
Number	Base of Borehole (m)	Seating Drive (m)	Test Drive (m)	Test Type	1	2	1	2	3	4	Result	Comments
H1	2.00	2.15	2.45	SPT	1	0	1	0	1	1	N=3	
H1	4.00	4.15	4.45	SPT	3	3	4	3	4	3	N=14	
BH1	6.00	6.15	6.45	SPT	3	2	5	4	3	5	N=17	
BH1	9.00	9.15	9.45	SPT	4	5	4	3	4	5	N=16	
3H2	1.20	1.35	1.65	SPT	2	3	3	4	3	4	N=14	
3H2	3.00	3.15	3.45	SPT	3	4	3	2	3	3	N=11	
3H2	5.00	5.15	5.45	SPT	3	4	3	4	4	5	N=16	
3H2	7.50	7.65	7.95	SPT	3	3	3	5	4	5	N=17	
3H2	10.50	10.65	10.95	SPT	4	4	5	4	4	5	N=18	
BH2	13.50	13.65	13.95	SPT	4	5	6	7	7	7	N=27	
3H3	2.00	2.15	2.45	SPT	4	4	5	4	5	5	N=19	
ЗН3	4.00	4.15	4.45	SPT	3	3	4	3	4	4	N=15	
3H3	6.00	6.15	6.45	SPT	4	4	3	4	5	4	N=16	
ЗН3	9.00	9.15	9.45	SPT	4	5	5	4	4	5	N=18	
BH4	1.20	1.35	1.65	SPT	1	1	1	2	3	3	N=9	
3H4	3.00	3.15	3.45	SPT	2	3	3	2	3	3	N=11	
3H4	5.00	5.15	5.45	SPT	3	4	4	3	4	3	N=14	
3H4	7.50	7.65	7.95	SPT	4	4	5	4	4	4	N=17	
3H4	10.50	10.65	10.95	SPT	3	4	4	5	4	4	N=17	
3H4	13.50	13.65	13.95	SPT	4	4	5	4	5	4	N=18	
BH5	2.00	2.15	2.45	SPT	3	3	2	3	4	3	N=12	
3H5	4.00	4.15	4.45	SPT	3	2	3	4	4	4	N=15	
3H5	6.00	6.15	6.45	SPT	4	4	3	4	4	4	N=15	
3H5	9.00	9.15	9.45	SPT	2	2	4	4	4	5	N=17	
3H6	2.00	2.15	2.45	SPT	2	3	3	3	3	3	N=12	
зн6	4.00	4.15	4.45	SPT	4	4	3	4	4	4	N=15	
зн6	6.00	6.15	6.45	SPT	3	3	3	4	4	3	N=14	
3H6	9.00	9.15	9.45	SPT	4	4	3	3	4	3	N=13	
3H6	12.00	12.15	12.45	SPT	4	4	4	3	4	4	N=15	
BH6	15.00	15.15	15.45	SPT	4	4	3	3	3	4	N=13	
					1		1	1		1	1	

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Insitu Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SAMLESBURY

Job Number 5887

Client: BAE SYSTEMS LIMITED

Sheet:

Engineer: TRP CONSULTING

1 / 1

		Ground Gas	and Ground	lwater Monit	oring Results	s Sheet	
Date	Hole No.			Oxygen (% Volume)	Gas Flow Rate (l/hr)	Atmospheric Pressure (m bars)	Depth to Groundwater (m)
18/07/2014	BH1	1.2	5.7	13.1	<0.1	1003	5.30
	BH4	0.0	2.2	17.0	<0.1	1003	3.60
	BH6	0.7	2.3	18.9	<0.1	1003	3.00
00/00/004	5114			4- 4			
06/08/2014	BH1	0.5	6.5	15.4	<0.1	996	1.45
	BH4	0.0	1.8	19.1	<0.1	996	0.95
	BH6	0.9	2.7	18.9	<0.1	996	1.55
22/08/2014	BH1*					998	0.20
	BH4*			_	_	998	0.10
	BH6	0.0	3.5	18.5	<0.1	998	1.25
10/00/2014	DIIA	0.5	4.0	40.4	.0.4	4044	
10/09/2014	BH1	0.5	4.8	12.1	<0.1	1011	_
	BH4	0.0	0.1	20.3	<0.1	1011	_
	BH6	0.0	1.8	19.5	<0.1	1011	_
13/10/2014	BH1	_	_	_	_	_	0.20
	BH4	0.0	0.8	17.7	<0.1	996	0.40
	BH6	1.3	0.9	20.1	<0.1	996	0.80
31/10/2014	BH1						0.10
01/10/2011	BH4			_	_		0.05
	BH6	0.0	0.1	20.2	- <0.1	999	0.50

Remarks: Elevated levels of methane and carbon dioxide and depleted levels of oxygen are shown in **bold/italics**.

^{*}No gas readings possible due to high water level.

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Insitu Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SYSTEMS, SAMLESBURY

Client: WILSON MASON LLP

Engineer: TRP CONSULTING

Job Number 5887

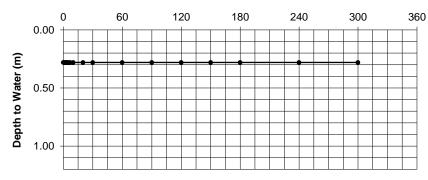
Sheet:

1/2

Soakaway Test

m

m


m m^2

Hole No: TP4

TEST NO: 1

DATE: 02/07/14

Length of pit: L= 1.40 Width of pit: W =0.50 Depth of pit D = 1.20 Base area of pit: 0.70 A =

100% effective depth D100 =0.28 m 75% effective depth D75 =0.51 m 50% effective depth D50 =0.74 m 25% effective depth D25 =0.97 m

> time to D75 T75 = sec time to D25 T25 =sec

time from D75 to D25 N/A $t_{p75-25} =$ sec (T25 - T75)

 m^3 volume between D75 & D25 0.32 $V_{p75-25} =$

((2x(D-D50)x(W+L)) + A)

(A x (D25 - D75)) ${\rm m}^{\rm 2}$ surface area to D50 inc. base $a_{p50} =$ 2.45

SOIL INFILTRATION RATE f = V_{n75-25}

> f = N/A* m/sec

 $a_{p50} x t_{p75-25}$

T	L D 1
Time	Depth
(min)	(m)
0	0.28 0.28
1	
2	0.28
3	0.28
4	0.28
5	0.28
7	0.28
10	0.28
20	0.28
30	0.28
60	0.28
90	0.28
120	0.28
150	0.28
180	0.28
240	0.28
300	0.28

Test Strata: 0.28 - 0.30m: Dark grey and orange brown mottled gravelly slightly sandy CLAY (Topsoil). (see Trial Pit) 0.30 - 1.20m: Brown, grey and occasional grey brown and green brown mottled slightly gravelly slightly sandy silty CLAY.

Remarks: *Soil infiltration rate unable to be determined due to relative impermeability of the test strata.

SUB SURFACE SITE INVESTIGATION AND

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Insitu Test Results

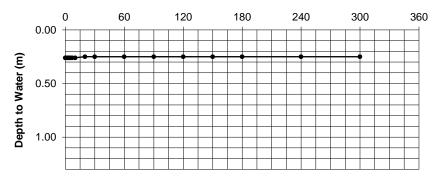
Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SYSTEMS, SAMLESBURY

Client: WILSON MASON LLP

Engineer: TRP CONSULTING

Job Number 5887

Sheet:


2/2

Soakaway Test

Hole No: TP5

TEST NO: 1 DATE: 02/07/14

Time (mins)

Length of pit: L= 1.40 m Width of pit: W =0.50 m Depth of pit D = 1.30 m m^2 Base area of pit: 0.70 A =

100% effective depth D100 =0.26 m 75% effective depth D75 =0.52 m 50% effective depth D50 =0.78 m 25% effective depth D25 = 1.04 m

> time to D75 T75 = _ sec time to D25 T25 = _ sec

time from D75 to D25 $t_{p75-25} = N/A$ sec (T25 - T75)

volume between D75 & D25 $V_{p75-25} = 0.36 m^3$

(A x (D25 - D75)) surface area to D50 inc. base $a_{p50} = 2.68 \, \text{m}^2$

((2x(D-D50)x(W+L)) + A)

SOIL INFILTRATION RATE $f = \underbrace{V_{p75-25}}_{a_{p50} \ x \ t_{p75-25}}$

f = N/A* m/sec

Time	Donth
Time	Depth
(min)	(m)
0	0.26 0.26
1	0.26
2	0.26
3	0.26
4	0.26
5	0.26
7	0.26
10	0.26
20	0.25
30	0.25
60	0.25
90	0.25
120	0.25
150	0.25
180	0.25
240	0.25
300	0.25

Test Strata:

(see Trial Pit) 0.25 - 1.40m: Brown, light grey and occasional green grey mottled gravelly slightly sandy silty CLAY.

Remarks: *Soil infiltration rate unable to be determined due to relative impermeability of the test strata.

SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site : ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE Job Number

5887

1/1

: WILSON MASON LLP Client

Sheet

Engineer: TRP CONSULTING

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

				AND	JEKIVA	I ION OI	r PLAS	HCHY	AND LI	וטוטו	I Y INDEX
Dovebale/	Danth		Natural	Sample 425µm	Passing Sieve	Liquid	Plastic	Plasticity	Limulalia	C	
Borehole/ Trial Pit	Depth (m)	Sample	Moisture Content %	Percentage %	Moisture Content %	Limit %	Limit %	Index %	Liquidity Index	Group Symbol	Laboratory Description
BH1	3.00	U	19	91	21	39	17	22	0.18	CI	Brown slightly gravely silty CLAY.
BH2	2.00	U	17	98	17	46	18	28	-0.04	CI	Brown slightly gravelly silty CLAY.
ВН3	1.20	U	18	100	18	41	17	24	0.04	CI	Brown slightly gravelly silty CLAY.
BH4	0.50	В	19	91	21	38	14	24	0.29	CI	Brown and occasionally grey mottled slightly gravelly silty CLAY.
BH5	1.20	U	19	95	20	39	17	22	0.14	CI	Brown slightly gravelly silty CLAY.
ВН6	1.20	U	19	73	26	42	17	25	0.36	CI	Brown slightly gravelly silty CLAY.

Method of Preparation: BS 1377:PART 1:1990:7.4 Preparation of samples for classification tests BS 1377:PART 2:1990:4.2 & 5.2 Sample preparations

: BS 1377:PART 2:1990:3 Determination of moisture content 1990:4 Determination of the liquid limit BS 1377:PART 2:1990:5 Determination of the plastic limit and plasticity index **Method of Test**

Remarks

SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site : ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE Job Number

5887

1/2

: WILSON MASON LLP Client

Sheet

Engineer: TRP CONSULTING DETERMINATION OF DENSITY, MOISTURE CONTENT AND UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Trial Pit	Depth									
	Depth (m)	Sample	Moisture Content %	Bulk Density (Mg/m³)	Dry Density (Mg/m³)	Cell Pressure (kN/m²)	Deviator Stress (kN/m²)	Apparent Cohesion (kN/m²)	Angle of Shearing Resistance (degrees)	Laboratory Description
BH1	1.20	U*						23		Dark greyish brown slightly gravelly silty CLAY.
BH1	3.00	U	19	2.13	1.79	25 125 175	157 159 160	79	0.0	Brown slightly gravely silty CLAY.
BH1	5.00	U	17	2.18	1.87	100 150 200	150 155 157	77	0.0	Brown slightly gravelly silty CLAY.
BH1	7.50	U	17	2.29	1.96	150 200 250	121 129 134	64	0.0	Brown gravelly silty CLAY.
BH2	2.00	U	17	2.22	1.89	50 100 150	309 320 323	159	0.0	Brown slightly gravelly silty CLAY.
BH2	4.00	U	17	2.16	1.84	100 150 200	178 180 188	91	0.0	Dark brown slightly gravelly silty CLAY.
BH2	6.00	U	15	2.19	1.90	125 175 225	208 215 222	108	0.0	Brown gravelly silty CLAY.
BH2	9.00	U	21	2.02	1.66	200 250 300	137 142 145	71	0.0	Brown slightly gravelly silty CLAY.
BH2	12.00	U	15	2.18	1.90	250 300 350	204 209 0	103	0.0	Brown slightly gravelly silty CLAY.
BH2	15.00	U	19	2.07	1.75	300 350 400	319 0 0	110	0.0	Brown gravelly silty CLAY.
ВН3	1.20	U	18	2.12	1.80	25 75 125	217 221 227	111	0.0	Brown slightly gravelly silty CLAY.
ВН3	3.00	U	17	2.13	1.81	75 125 175	161 167 170	83	0.0	Brown slightly gravelly silty CLAY.
ВН3	5.00	U	15	2.16	1.88	100 150 200	145 148 148	74	0.0	Brown slightly gravelly silty CLAY.
ВН3	7.50	U	15	2.17	1.88	150 200 250	210 213 217	107	0.0	Greyish brown slightly gravelly silty CLAY.
BH4	2.00	U	18	2.18	1.84	50 100 150	158 164 170	82	0.0	Greyish brown slightly gravelly silty CLAY.
BH4	4.00	U	18	2.14	1.81	100 150 200	135 139 142	69	0.0	Brown slightly gravelly silty CLAY.
BH4	6.00	U	17	2.10	1.79	125 175 225	112 115 115	57	0.0	Brown slightly gravelly silty CLAY.
BH4	9.00	U	16	2.17	1.88	200 250 300	187 195 204	98	0.0	Brown slightly gravelly silty CLAY.

Method of Preparation: BS 1377:PART 1:1990:7.4.2 Moisture content 1990: Preparation of undisturbed samples for testing BS 1377:PART 2:1990:7.2

: BS 1377:PART 2:1990:3 Determination of moisture content 1990:7 Determination of density BS 1377:PART 7:1990:8 Undrained shear strength 1990:9 Multistage loading Method of Test

Remarks : *No test possible, poor recovery. Hand Shear Vane only

SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site : ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE Job Number

5887

Sheet

2/2

: WILSON MASON LLP Client

Engineer: TRP CONSULTING

DETERMINATION OF DENSITY, MOISTURE CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Trial Pit	Depth (m)	Sample	Moisture Content %	Bulk Density (Mg/m³)	Dry Density (Mg/m³)	Cell Pressure (kN/m²)	Deviator Stress (kN/m²)	Apparent Cohesion (kN/m²)	Angle of Shearing Resistance (degrees)	Laboratory Description
BH4	12.00	U	16	2.21	1.90	250 300 350	151 159 162	79	0.0	Brown slightly gravelly silty CLAY.
BH4	15.00	U	17	2.27	1.94	300 350 400	146 150 151	75	0.0	Brown slightly gravelly silty CLAY.
BH5	1.20	U	19	2.17	1.82	25 75 125	153 0 0	77	0.0	Brown slightly gravelly silty CLAY.
BH5	3.00	U	20	2.10	1.75	75 125 175	134 137 141	69	0.0	Brown slightly gravelly silty CLAY.
BH5	5.00	U	18	2.12	1.80	100 150 200	149 155 156	77	0.0	Brown slightly gravelly silty CLAY.
BH5	7.50	U	19	2.16	1.81	150 200 250	103 104 105	52	0.0	Brown slightly gravelly silty CLAY.
вн6	1.20	U*	19	2.17	1.83			96		Brown slightly gravelly silty CLAY.
BH6	3.00	U	18	2.15	1.83	75 125 175	318 322 324	161	0.0	Brown slightly gravelly silty CLAY.
BH6	5.00	U	18	2.23	1.88	100 150 200	140 144 147	72	0.0	Brown slightly gravelly silty CLAY.
BH6	7.50	U	16	2.17	1.87	150 200 250	181 184 186	92	0.0	Brown slightly gravelly silty CLAY.
BH6	10.50	U	18	2.19	1.85	225 275 325	197 204 205	101	0.0	Brown slightly gravelly silty CLAY.
BH6	13.50	U	15	2.23	1.94	275 325 375	222 227 233	114	0.0	Brown slightly gravelly silty CLAY.

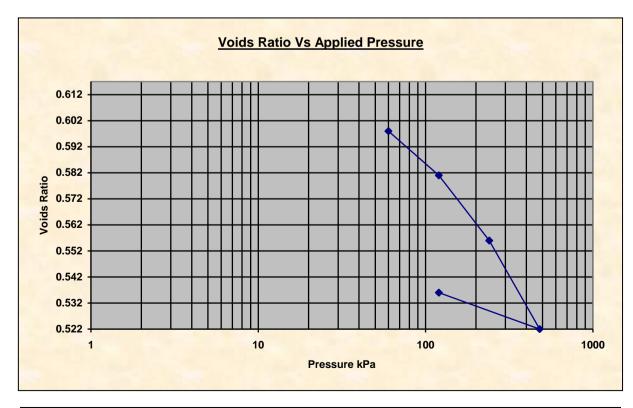
Method of Preparation: BS 1377:PART 1:1990:7.4.2 Moisture content 1990: Preparation of undisturbed samples for testing BS 1377:PART 2:1990:7.2

: BS 1377:PART 2:1990:3 Determination of moisture content 1990:7 Determination of density BS 1377:PART 7:1990:8 Undrained shear strength 1990:9 Multistage loading **Method of Test**

Remarks : *No test possible, poor recovery. Hand Shear Vane only

SUB SURFACE GEOTECHNICAL & GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS 3 Peel Street, Preston, Lancashire, PR2 2QS Tel. 01772 561135 Fax. 01772 204907 info@subsurface.co.uk

Laboratory Test Results


One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason LLP	Lab Ref	223 (WAC)
Project	Enterprise Zone Training Facility, BAE systems Samlesbury, Lancashire	Job	5887
Borehole	BH 1	Sample	223

Test Details				
Standard	BS 1377: Part 5 : 1990 : Clause 3	Particle Density	2.65 Mg/m3	
Sample Type	Undisturbed sample - open drive	Lab Temperature	21.0 deg.C	
Sample Depth	3.00 m			
Sample Description	Dark brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium quartz.			
Variations from Procedure	None			

Specimen Details					
Specimen Reference	Α	Description	As Above		
Depth within Sample	0.00mm	Orientation within Sample	None		
Specimen Mass	172.29 g	Condition	Natural Moisture		
Specimen Height	20.00 mm	Preparation	Natural Undisturbed		
Comments		_			

Test Apparatus					
Ring Number	1	Ring Diameter	75.00 mm		
Ring Height	20.00 mm	Ring Weight	113.15 g		
Lever Ratio	9.00 : 1				

Height of Solid Particles	12.37 mm	Swelling Pressure	0.0 kPa		
				-	_

Sub Surface Laboratories Limited Page 1 of 2

Laboratory Test Results

One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason LLP	Lab Ref	223 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 1	Sample	223

Initial Moisture Content*	19.0 %	Final Moisture Content	17.3 %
Initial Bulk Density	1.95 Mg/m3	Final Bulk Density	2.02 Mg/m3
Initial Dry Density	1.64 Mg/m3	Final Dry Density	1.73 Mg/m3
Initial Void Ratio	0.6169	Final Void Ratio	0.5360
Initial Degree of Saturation	81.51%	Final Degree of Saturation	85.60 %

• Calculated from initial and dry weights of whole specimen

Pressure (Loading Stages)	Coefficient of Volume Compressibility (m _v)	Coefficient of Consolidation (c _v)
0.00		
60.0 kPa	0.19 m2/MN	2.12 m2/yr
120.0 kPa	0.18 m2/MN	1.49 m2/yr
240.0 kPa	0.13 m2/MN	1.75 m2/yr
480.0 kPa	0.09 m2/MN	1.23 m2/yr
120.0 kPa	0.02 m2/MN	

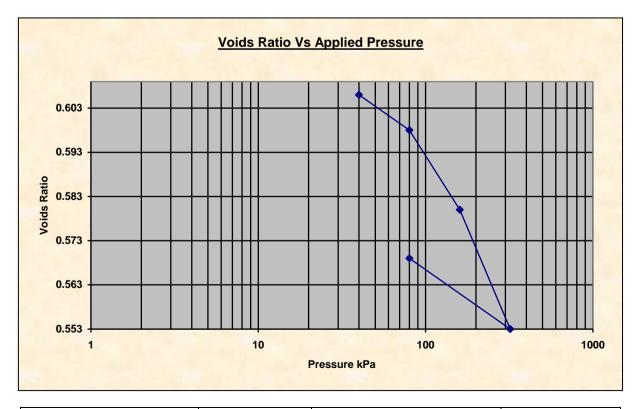
Method of Time Fitting Used	Square Root Time
	- q

Tested By and Date:	WAC	29 Aug 14
Checked By and Date:		
Approved By and Date:		

Sub Surface Laboratories Limited Page 2 of 2

SUB SURFACE GEOTECHNICAL & GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS 3 Peel Street, Preston, Lancashire, PR2 2QS Tel. 01772 561135 Fax. 01772 204907 info@subsurface.co.uk

Laboratory Test Results


One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason LLP	Lab Ref	243 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 2	Sample	243

Test Details				
Standard	BS 1377: Part 5 : 1990 : Clause 3	Particle Density	2.65 Mg/m3	
Sample Type	Undisturbed sample - open drive	Lab Temperature	21.0 deg.C	
Sample Depth	2.00 m			
Sample Description	Dark brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium quartz.			
Variations from Procedure	None	_	_	

Specimen Details				
Specimen Reference A Description As Above				
Depth within Sample	0.00mm	Orientation within Sample	None	
Specimen Mass	172.88 g	Condition	Natural Moisture	
Specimen Height	20.00 mm	Preparation	Natural Undisturbed	
Comments				

Test Apparatus				
Ring Number 2 Ring Diameter 75.00 mm				
Ring Height	20.00 mm	Ring Weight	112.81 g	
Lever Ratio	9.00 : 1			

Height of Solid Particles	12.43 mm	Swelling Pressure	0.0 kPa	
			_	_

Sub Surface Laboratories Limited Page 1 of 2

Laboratory Test Results

One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason LLP	Lab Ref	243 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 2	Sample	243

Initial Moisture Content*	18.8 %	Final Moisture Content	18.6 %
Initial Bulk Density	1.96 Mg/m3	Final Bulk Density	2.00 Mg/m3
Initial Dry Density	1.65 Mg/m3	Final Dry Density	1.69 Mg/m3
Initial Void Ratio	0.6086	Final Void Ratio	0.5686
Initial Degree of Saturation	81.73%	Final Degree of Saturation	86.87 %

• Calculated from initial and dry weights of whole specimen

Pressure (Loading Stages)	Coefficient of Volume Compressibility (m _v)	Coefficient of Consolidation (c _v)
0.00		
40.0 kPa	0.04 m2/MN	
80.0 kPa	0.13 m2/MN	3.27 m2/yr
160.0 kPa	0.13 m2/MN	2.32 m2/yr
320.0 kPa	0.11 m2/MN	1.17 m2/yr
80.0 kPa	0.04 m2/MN	

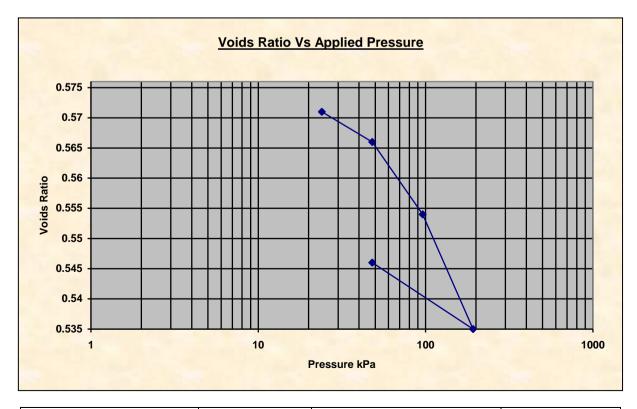
Method of Time Fitting Used	Square Root Time
-----------------------------	------------------

Tested By and Date:	WAC	29 Aug 14
Checked By and Date:		
Approved By and Date:		

Sub Surface Laboratories Limited Page 2 of 2

SUB SURFACE GEOTECHNICAL & GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS 3 Peel Street, Preston, Lancashire, PR2 2QS Tel. 01772 561135 Fax. 01772 204907 info@subsurface.co.uk

Laboratory Test Results


One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason	Lab Ref	275 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 3	Sample	275

Test Details				
Standard	BS 1377: Part 5 : 1990 : Clause 3	Particle Density	2.65 Mg/m3	
Sample Type	Undisturbed sample - open drive	Lab Temperature	21.0 deg.C	
Sample Depth	1.20 m			
Sample Description	Dark brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium quartz and siltstone.			
Variations from Procedure	None			

Specimen Details				
Specimen Reference	Α	Description	As Above	
Depth within Sample	0.00mm	Orientation within Sample	None	
Specimen Mass	175.05 g	Condition	Natural Moisture	
Specimen Height	20.00 mm	Preparation	Natural Undisturbed	
Comments				

Test Apparatus				
Ring Number	3	Ring Diameter	75.00 mm	
Ring Height	20.00 mm	Ring Weight	112.96 g	
Lever Ratio	9.00 : 1			

Height of Solid Particles	12.69 mm	Swelling Pressure	0.0 kPa		
				 _	

Sub Surface Laboratories Limited Page 1 of 2

Laboratory Test Results

One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason	Lab Ref	275 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 3	Sample	275

Initial Moisture Content*	17.8 %	Final Moisture Content	17.8 %
Initial Bulk Density	1.98 Mg/m3	Final Bulk Density	2.02 Mg/m3
Initial Dry Density	1.68 Mg/m3	Final Dry Density	1.71 Mg/m3
Initial Void Ratio	0.5758	Final Void Ratio	0.5459
Initial Degree of Saturation	81.96%	Final Degree of Saturation	86.58 %

• Calculated from initial and dry weights of whole specimen

Pressure (Loading Stages)	Coefficient of Volume Compressibility (m _v)	Coefficient of Consolidation (c _v)
0.00		
24.0 kPa	0.13 m2/MN	
48.0 kPa	0.14 m2/MN	2.58 m2/yr
96.0 kPa	0.15 m2/MN	2.39 m2/yr
192.0 kPa	0.13 m2/MN	1.20 m2/yr
48.0 kPa	0.05 m2/MN	

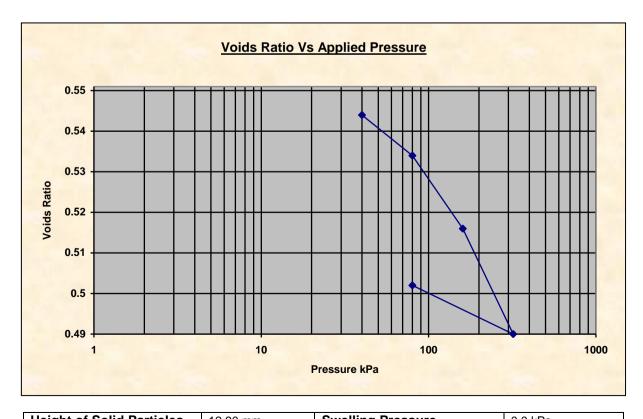
Method of Time Fitting Used	Square Root Time
-----------------------------	------------------

Tested By and Date:	WAC	29 Aug 14
Checked By and Date:		
Approved By and Date:		

Sub Surface Laboratories Limited Page 2 of 2

SUB SURFACE GEOTECHNICAL & GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS 3 Peel Street, Preston, Lancashire, PR2 2QS Tel. 01772 561135 Fax. 01772 204907 info@subsurface.co.uk

Laboratory Test Results


One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason	Lab Ref	300 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 4	Sample	300

Test Details				
Standard	BS 1377: Part 5 : 1990 : Clause 3	Particle Density	2.65 Mg/m3	
Sample Type	Undisturbed sample - open drive	Lab Temperature	21.0 deg.C	
Sample Depth	2.00 m			
Sample Description	Dark brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium quartz.			
Variations from Procedure	None			

Specimen Details				
Specimen Reference	Α	Description	As Above	
Depth within Sample	0.00mm	Orientation within Sample	None	
Specimen Mass	177.62 g	Condition	Natural Moisture	
Specimen Height	20.00 mm	Preparation	Natural Undisturbed	
Comments		_		

Test Apparatus				
Ring Number	4	Ring Diameter	75.00 mm	
Ring Height	20.00 mm	Ring Weight	114.91 g	
Lever Ratio	9.00 : 1			

Height of Solid Particles	12.90 mm	Swelling Pressure	0.0 kPa	
Surface Laboratories Limited				Page 1 of

Sub Surface Laboratories Limited Page 1 of 2

Laboratory Test Results

One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason	Lab Ref	300 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 4	Sample	300

Initial Moisture Content*	17.7 %	Final Moisture Content	17.0 %
Initial Bulk Density	2.01 Mg/m3	Final Bulk Density	2.06 Mg/m3
Initial Dry Density	1.71 Mg/m3	Final Dry Density	1.76 Mg/m3
Initial Void Ratio	0.5509	Final Void Ratio	0.5020
Initial Degree of Saturation	84.91%	Final Degree of Saturation	89.65 %

• Calculated from initial and dry weights of whole specimen

Pressure (Loading Stages)	Coefficient of Volume Compressibility (m _v)	Coefficient of Consolidation (c _v)
0.00		
40.0 kPa	0.11 m2/MN	1.94 m2/yr
80.0 kPa	0.16 m2/MN	2.60 m2/yr
160.0 kPa	0.15 m2/MN	1.93 m2/yr
320.0 kPa	0.11 m2/MN	1.44 m2/yr
80.0 kPa	0.03 m2/MN	

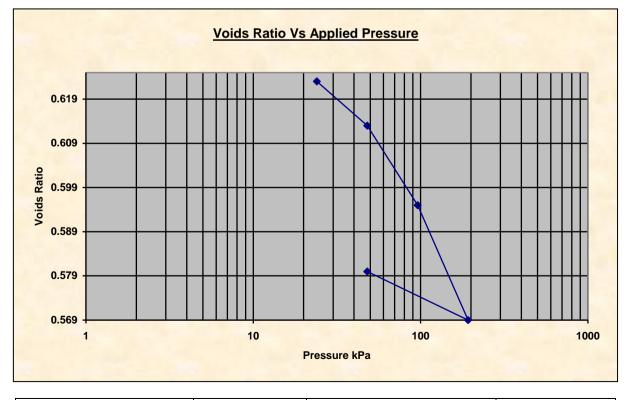
Method of Time Fitting Used	Square Root Time
-----------------------------	------------------

Tested By and Date:	WAC	29 Aug 14
Checked By and Date:		
Approved By and Date:		

Sub Surface Laboratories Limited Page 2 of 2

SUB SURFACE GEOTECHNICAL & GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS 3 Peel Street, Preston, Lancashire, PR2 2QS Tel. 01772 561135 Fax. 01772 204907 info@subsurface.co.uk

Laboratory Test Results


One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason	Lab Ref	366 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 5	Sample	366

Test Details				
Standard	BS 1377: Part 5 : 1990 : Clause 3	Particle Density	2.65 Mg/m3	
Sample Type	Undisturbed sample - open drive	Lab Temperature	21.0 deg.C	
Sample Depth	1.20 m			
Sample Description	Dark brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium quartz.			
Variations from Procedure	None			

Specimen Details			
Specimen Reference	Α	Description	As Above
Depth within Sample	0.00mm	Orientation within Sample	None
Specimen Mass	172.44 g	Condition	Natural Moisture
Specimen Height	20.00 mm	Preparation	Natural Undisturbed
Comments			

Test Apparatus				
Ring Number 5 Ring Diameter 75.00 mm				
Ring Height	20.00 mm	Ring Weight	112.52 g	
Lever Ratio	9.00 : 1			

Height of Solid Particles	12.31 mm	Swelling Pressure	0.0 kPa	
			_	

Laboratory Test Results

One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason	Lab Ref	366 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH 5	Sample	366

Initial Moisture Content*	19.7 %	Final Moisture Content	18.8 %
Initial Bulk Density	1.95 Mg/m3	Final Bulk Density	1.99 Mg/m3
Initial Dry Density	1.63 Mg/m3	Final Dry Density	1.68 Mg/m3
Initial Void Ratio	0.6251	Final Void Ratio	0.5797
Initial Degree of Saturation	83.44%	Final Degree of Saturation	86.15 %

• Calculated from initial and dry weights of whole specimen

Pressure (Loading Stages)	Coefficient of Volume Compressibility (m _v)	Coefficient of Consolidation (c _v)
0.00		
24.0 kPa	0.05 m2/MN	0.60 m2/yr
48.0 kPa	0.26 m2/MN	1.13 m2/yr
96.0 kPa	0.23 m2/MN	1.27 m2/yr
192.0 kPa	0.17 m2/MN	1.18 m2/yr
48.0 kPa	0.05 m2/MN	

Method of Time Fitting Used	Square Root Time

Tested By and Date:	WAC	29 Aug 14
Checked By and Date:		
Approved By and Date:		

Sub Surface Laboratories Limited Page 2 of 2

SUB SURFACE GEOTECHNICAL & GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS 3 Peel Street, Preston, Lancashire, PR2 2QS Tel. 01772 561135 Fax. 01772 204907 info@subsurface.co.uk

Laboratory Test Results


One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason LLP	Lab Ref	332 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH6	Sample	332

Test Details				
Standard	BS 1377: Part 5 : 1990 : Clause 3			
Sample Type	Undisturbed sample - open drive Lab Temperature 21.0 deg.C			
Sample Depth	1.20 m			
Sample Description	Dark brown and occasional grey slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium quartz and siltstone.			
Variations from Procedure	None			

Specimen Details			
Specimen Reference	Α	Description	As Above
Depth within Sample	0.00mm	Orientation within Sample	None
Specimen Mass	174.52 g	Condition	Natural Moisture
Specimen Height	20.00 mm	Preparation	Natural Undisturbed
Comments		_	

Test Apparatus				
Ring Number 3 Ring Diameter 75.00 mm				
Ring Height	20.00 mm	Ring Weight	112.79 g	
Lever Ratio	9.00 : 1			

Height of Solid Particles	12.48 mm	Swelling Pressure	0.0 kPa

Sub Surface Laboratories Limited Page 1 of 2

Laboratory Test Results

One Dimensional Consolidation Properties (Oedometer)

Client	Wilson Mason LLP	Lab Ref	332 (WAC)
Project	Enterprise Zone Training Facility, BAE Systems, Samlesbury, Lancashire	Job	5887
Borehole	BH6	Sample	332

Initial Moisture Content*	19.5 %	Final Moisture Content	19.8 %
Initial Bulk Density	1.98 Mg/m3	Final Bulk Density	2.02 Mg/m3
Initial Dry Density	1.65 Mg/m3	Final Dry Density	1.69 Mg/m3
Initial Void Ratio	0.6030	Final Void Ratio	0.5705
Initial Degree of Saturation	85.60%	Final Degree of Saturation	91.97 %

• Calculated from initial and dry weights of whole specimen

Pressure (Loading Stages)	Coefficient of Volume Compressibility (m _v)	Coefficient of Consolidation (c _v)
0.00		
24.0 kPa	0.17 m2/MN	
48.0 kPa	0.18 m2/MN	1.47 m2/yr
96.0 kPa	0.16 m2/MN	2.69 m2/yr
192.0 kPa	0.13 m2/MN	1.79 m2/yr
48.0 kPa	0.05 m2/MN	

Method of Time Fitting Used	Square Root Time
-----------------------------	------------------

Tested By and Date:	WAC	29 Aug 14
Checked By and Date:		
Approved By and Date:		

Sub Surface Laboratories Limited Page 2 of 2

Client:

SUB SURFACE

WILSON MASON LLP

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE

Job Number 5887

1/6

Sheet:

Engineer: TRP CONSULTING

neet:

CALIFORNIA BEARING RATIO

Position: TP 1 Sample No: 123 Depth: 0.40-0.60 m

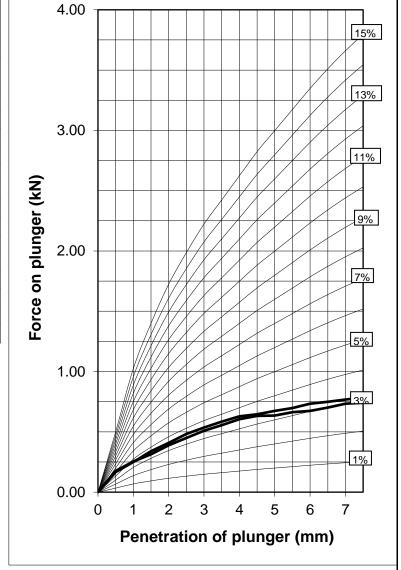
Description:

Dark brown and grey slightly gravelly silty CLAY with occasional rootlets. Gravel is subrounded to rounded fine to medium quartz.

Preparation of sample:

4.5 Kg Rammer Method

Penetratio n of Plunger mm	Force on Plunger			Force on Plunger	
Pe F	Тор	kN Top	Bottom	kN Bottom	
0.0	0.0	0.00	0.0	0.00	
0.5	44.0	0.18	41.5	0.17	
1.0	63.5	0.25	62.5	0.25	
1.5	78.5	0.31	84.5	0.34	
2.0	97.0	0.39	102.0	0.41	
2.5	112.0	0.45	120.5	0.48	
3.0	127.0	0.51	133.5	0.53	
3.5	138.5	0.55	146.0	0.59	
4.0	151.0	0.61	157.0	0.63	
4.5	158.0	0.63	161.0	0.65	
5.0	158.5	0.64	168.0	0.67	
5.5	165.5	0.66	174.0	0.70	
6.0	168.0	0.67	183.0	0.73	
6.5	175.0	0.70	187.0	0.75	
7.0	183.0	0.73	191.5	0.77	
7.5	185.0	0.74	196.0	0.79	


	CBR % Value at:		
_	2.5mm 5.0mm		
Тор	3.4% 3.2%		
Bottom	3.7%	3.4%	

Passing 20mm Sieve = 93 %

Moisture Content = 22 %

Bulk Density = 1.99 Mg/m³

Dry Density = 1.64 Mg/m^3

Comments:	Operator	Checked	Approved
	GDR & WAC		

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE

Job Number 5887

Sheet:

Client: WILSON MASON LLP
Engineer: TRP CONSULTING

2/6

CALIFORNIA BEARING RATIO

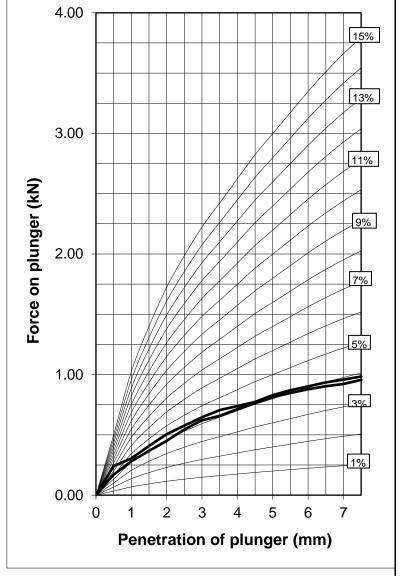
Position: TP 2 Sample No: 113 Depth: 0.40-0.60 m

Description:

Brown and occasional greyish brown slightly gravelly silty CLAY with occasional rootlets. Gravel is subrounded to rounded fine to medium quartz and siltstone.

Preparation of sample: 4.5 Kg Rammer Method

Penetratio n of Plunger mm	Force on Plunger			
Д	Тор	kN Top	Bottom	kN Bottom
0.0	0.0	0.00	0.0	0.00
0.5	42.5	0.17	60.0	0.24
1.0	70.0	0.28	76.0	0.30
1.5	91.5	0.37	102.0	0.41
2.0	112.0	0.45	126.0	0.50
2.5	136.0	0.54	144.0	0.58
3.0	155.0	0.62	161.0	0.65
3.5	164.0	0.66	176.0	0.71
4.0	178.0	0.71	184.5	0.74
4.5	191.0	0.77	193.0	0.77
5.0	203.0	0.81	207.0	0.83
5.5	211.5	0.85	217.0	0.87
6.0	219.0	0.88	225.0	0.90
6.5	225.5	0.90	233.5	0.94
7.0	230.0	0.92	239.0	0.96
7.5	238.5	0.96	245.5	0.98


	CBR % Value at:		
	2.5mm 5.0mm		
Тор	4.1%	4.1%	
Bottom	4.4%	4.1%	

Passing 20mm Sieve = 97 %

Moisture Content = 19 %

Bulk Density = 2.07 Mg/m³

Dry Density = 1.74 Mg/m³

Comments:	Operator	Checked	Approved
	GDR & SJG		

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE

Job Number 5887

Sheet:

3/6

Client: WILSON MASON LLP
Engineer: TRP CONSULTING

CALIFORNIA BEARING RATIO

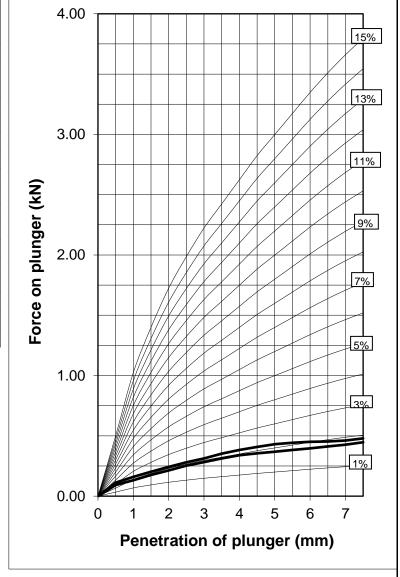
Position: TP 3 Sample No: 99 Depth: 0.40-0.60 m

Description:

Dark brown and occasional grey silty CLAY.

Preparation of sample: 4.5 Kg Rammer Method

Penetratio	Plunger mm	Force on Plunger			
Эď	ш	Тор	kN Top	Bottom	kN Bottom
	0.0	0.0	0.00	0.0	0.00
	0.5	28.0	0.11	23.0	0.09
	1.0	40.0	0.16	33.0	0.13
	1.5	50.5	0.20	44.0	0.18
	2.0	60.5	0.24	53.0	0.21
	2.5	70.0	0.28	63.0	0.25
	3.0	78.0	0.31	70.5	0.28
	3.5	88.0	0.35	78.0	0.31
	4.0	95.5	0.38	84.5	0.34
	4.5	102.0	0.41	88.5	0.35
	5.0	107.5	0.43	92.0	0.37
	5.5	110.5	0.44	95.5	0.38
	6.0	112.5	0.45	99.0	0.40
	6.5	113.0	0.45	103.0	0.41
	7.0	115.0	0.46	106.5	0.43
	7.5	119.5	0.48	111.5	0.45


	CBR % Value at:		
_	2.5mm 5.0mm		
Тор	2.1%	2.2%	
Bottom	1.9%	1.8%	

Passing 20mm Sieve = 99 %

Moisture Content = 19 %

Bulk Density = 2.07 Mg/m³

Dry Density = 1.73 Mg/m³

Comments:	Operator	Checked	Approved
	GDR & WAC		

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE

Job Number 5887

Sheet:

Client: WILSON MASON LLP
Engineer: TRP CONSULTING

4/6

CALIFORNIA BEARING RATIO

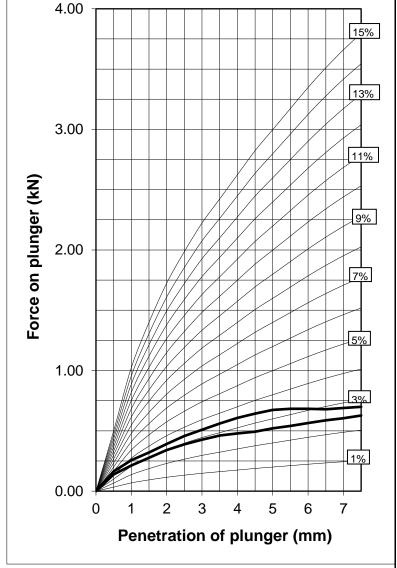
Position: TP 4 Sample No: 82 Depth: 0.30-0.50 m

Description:

Brown and occasional grey slightly gravelly silty CLAY with occasional rootlets. Gravel is subrounded to rounded fine to medium quartz and siltstone.

Preparation of sample: 4.5 Kg Rammer Method

Penetratio n of Plunger mm	Force on Plunger			
	Тор	kN Top	Bottom	kN Bottom
0.0	0.0	0.00	0.0	0.00
0.5	41.0	0.16	34.5	0.14
1.0	64.0	0.26	53.0	0.21
1.5	80.0	0.32	69.0	0.28
2.0	97.5	0.39	85.0	0.34
2.5	114.0	0.46	97.0	0.39
3.0	127.0	0.51	106.5	0.43
3.5	140.0	0.56	115.0	0.46
4.0	151.5	0.61	119.5	0.48
4.5	160.5	0.64	123.0	0.49
5.0	168.0	0.67	130.0	0.52
5.5	170.5	0.68	135.0	0.54
6.0	170.5	0.68	141.0	0.57
6.5	169.5	0.68	146.5	0.59
7.0	172.0	0.69	151.0	0.61
7.5	174.5	0.70	156.5	0.63


	CBR % Value at:		
	2.5mm 5.0mm		
Тор	3.5%	3.4%	
Bottom	2.9%	2.6%	

Passing 20mm Sieve = 100 %

Moisture Content = 23 %

Bulk Density = 2.00 Mg/m³

Dry Density = 1.63 Mg/m^3

Comments:	Operator	Checked	Approved
	GDR & WAC		

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE

Job Number 5887

Sheet:

5/6

Client: WILSON MASON LLP
Engineer: TRP CONSULTING

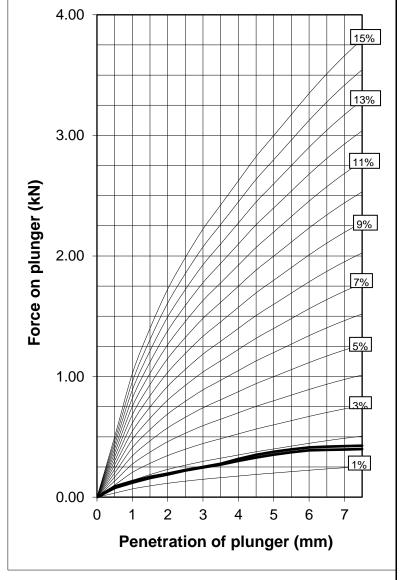
CALIFORNIA BEARING RATIO

Position: TP 5 Sample No: 90 Depth: 0.30-0.50 m

Description:

Brown and occasional grey slightly gravelly silty CLAY with occasional rootlets. Gravel is subrounded to rounded fine to medium quartz and siltstone.

Preparation of sample: 4.5 Kg Rammer Method


Penetratio n of Plunger mm	Force on Plunger			
<u> </u>	Top	kN Top	Bottom	kN Bottom
0.0	0.0	0.00	0.0	0.00
0.5	19.0	0.08	22.0	0.09
1.0	30.0	0.12	33.0	0.13
1.5	39.5	0.16	42.0	0.17
2.0	47.0	0.19	48.5	0.19
2.5	55.0	0.22	56.0	0.22
3.0	61.5	0.25	62.5	0.25
3.5	67.5	0.27	69.0	0.28
4.0	75.0	0.30	79.0	0.32
4.5	82.0	0.33	87.5	0.35
5.0	88.0	0.35	94.0	0.38
5.5	93.0	0.37	99.0	0.40
6.0	97.0	0.39	103.0	0.41
6.5	98.0	0.39	104.5	0.42
7.0	98.5	0.39	105.5	0.42
7.5	99.5	0.40	106.5	0.43

	CBR % Value at:		
	2.5mm 5.0mm		
Тор	1.7%	1.8%	
Bottom	1.7%	1.9%	

Passing 20mm Sieve = 99 %
Moisture Content = 19 %

Bulk Density = 2.10 Mg/m³

Dry Density = 1.77 Mg/m³

Comments:	Operator	Checked	Approved
	GDR & SJG		

SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site: ENTERPRISE ZONE TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE

Job Number 5887

Sheet:

6/6

Client: WILSON MASON LLP
Engineer: TRP CONSULTING

CALIFORNIA BEARING RATIO

Position: TP 6 Sample No: 104 Depth: 0.40-0.60 m

Description:

Brown and occasional grey slightly gravelly slightly sandy silty CLAY. Gravel is subrounded to rounded fine to coarse quartz and siltstone.

Preparation of sample: 4.5 Kg Rammer Method

Penetratio n of Plunger mm			n Plunger	
	Тор	kN Top	Bottom	kN Bottom
0.0	0.0	0.00	0.0	0.00
0.5	19.5	0.08	18.0	0.07
1.0	32.5	0.13	32.0	0.13
1.5	43.0	0.17	43.0	0.17
2.0	55.0	0.22	52.0	0.21
2.5	64.5	0.26	66.0	0.26
3.0	74.0	0.30	77.0	0.31
3.5	84.0	0.34	89.0	0.36
4.0	93.5	0.37	99.5	0.40
4.5	102.0	0.41	109.0	0.44
5.0	113.0	0.45	117.0	0.47
5.5	121.0	0.48	121.5	0.49
6.0	131.0	0.52	130.0	0.52
6.5	136.5	0.55	136.0	0.54
7.0	138.0	0.55	142.5	0.57
7.5	139.0	0.56	149.5	0.60

	CBR %	√alue at:		
_	2.5mm	5.0mm		
Тор	2.0%	2.3%		
Bottom	2.0%	2.3%		

Passing 20mm Sieve = 98 %

Moisture Content = 17 %

Bulk Density = 2.10 Mg/m³

Dry Density = 1.79 Mg/m³

	4.00							15%
	3.00 -							13%
Force on plunger (kN)	2.00 -							9%
Force	1.00 -							5%
	0.00 -	0 1 Pend	2 etrati	3 ion o	4 f plu	5 nger	6 (mm	7

Comments:	Operator	Checked	Approved
	GDR & SJG		

SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907

Laboratory Test Results

Site : ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE Job Number

5887

1/1

Sheet

Client : WILSON MASON LLP

Engineer: TRP CONSULTING

DETERMINATION OF THE pH VALUE AND THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

00 D 70 D 30 W 50 B 70 D 50 B	D W B D	S Total S03 %	oil S04 in 2:1 water:soil g /l 0.11 0.02 0.01	Groundwater g /l	Percentage of sample passing 2mm Sieve %	рН 8.0 8.4	Classification DS-1	Laboratory Description Brown and occasional greyish brown slightly gravelly silty CLAY with occasional roots.
70 D 30 W 50 B 70 D 50 B	D W B D		0.11 0.02 0.01	0.64			DS-1	Brown and occasional greyish brown slightly gravelly silty CLAY with occasional roots.
30 W 50 B 70 D 50 B 50 D	W B D		0.01	0.64		8.4		
50 B 70 D 50 B 50 D	B D B			0.64			DS-1	Brown slightly gravelly silty CLAY.
70 D 50 B 50 D	D B					7.5	DS-2	GROUNDWATER.
50 B 50 D	В		0.02			8.2	DS-1	Brown and occasional grey mottled slightly gravelly silty CLAY.
50 D						8.7	DS-1	Brown slightly gravelly silty CLAY.
	D		0.01			8.7	DS-1	Brown and dark brown silty CLAY.
			0.02			8.8	DS-1	Brown slightly gravelly silty CLAY.
50 B	В		0.01			8.5	DS-1	Brown and occasionally grey mottled slightly gravelly silty CLAY.
00 D	D		0.04			8.5	DS-1	Brown slightly gravelly silty CLAY.
60 W	w			0.47		7.6	DS-2	GROUNDWATER
00 D	D		0.01			8.6	DS-1	Brown and occasional grey mottled silty CLAY.
50 D	D		0.02			8.6	DS-1	Brown slightly gravelly silty CLAY.
50 B	В		0.01			8.1	DS-1	Brown and grey mottled slightly gravelly silty CLAY.
70 D	D		0.01			8.6	DS-1	Brown and occasional grey mottled silty CLAY.
00 w	w			0.31		7.3	DS-1	GROUNDWATER
60 00 50 50 70		W D D B	W D B D	W D 0.01 D 0.02 B 0.01 D 0.01	W 0.47 D 0.01 D 0.02 B 0.01 D 0.01	W 0.47 D 0.01 D 0.02 B 0.01 D 0.01	W 0.47 7.6 D 0.01 8.6 D 0.02 8.6 B 0.01 8.1 D 0.01 8.6	W 0.47 7.6 DS-2 D 0.01 8.6 DS-1 D 0.02 8.6 DS-1 B 0.01 8.1 DS-1 D 0.01 8.6 DS-1

Method of Preparation: BS 1377:PART 1:1990:7.5 Preparation of soil for chemical tests BS 1377:PART 3:1990:5.2, 5.3, 5.4 & 9.4

Method of Test : Laboratory in-house methods based on BS1377: Part 3 for contents of water soluble sulphate, total sulphate and pH.

: Classification relates to Design Sulphate Class of BRE Special Digest 1 (2005) Remarks

AGGRESSIVE CHEMICAL ENVIRONMENT FOR CONCRETE (ACEC) SITE CLASSIFICATION

Sulfate				Groundwater		
Design Sulfate Class for Location	2:1 water/soil extract ^b	Groundwater	Total potential sulfate ^c	Static water	Mobile water	ACEC Class for location
1	2 (SO ₄ mg/l)	3 (SO ₄ mg/l)	4 (SO ₄ %)	5 (pH)	6 (pH)	7
DS-1	<500	<400	<0.24	≥2.5		AC-1s
					>5.5d	AC-1d
					2.5 - 5.5	AC-2z
DS-2	500 - 1500	400 - 1400	0.24 - 0.6	>3.5		AC-1s
					>5.5	AC-2z
				2.5-3.5		AC-2s
					2.5 - 5.5	AC-3z
DS-3	1600-3000	1500-3000	0.7 - 1.2	>3.5		AC-2s
					>5.5	AC-3
				2.5 - 3.5		AC-3s
					2.5 - 5.5	AC-4
DS-4	3100 - 6000	3100 - 6000	1.3 - 2.4	>3.5		AC-3s
					>5.5	AC-4
				2.5 - 3.5		AC-4s
					2.5 - 5.5	AC-5
DS-5	>6000	>6000	>2.4	>3.5		AC-4s
				2.5 - 3.5	≥2.5	AC-5

Notes

- a Applies to locations on sites that comprise either undisturbed ground that is in its natural state (ie not brownfield Table C2) or clean fill derived from such ground
- **b** The limits of Design Sulfate Classes based on 2:1 water/soil extracts have been lowered relative to previous Digests (Box C7).
- c Applies only to locations where concrete will be exposed to sulfate ions (SO4) which may result from the oxidation of sulfides (eg pyrite) following ground disturbance (Appendix A1 and Box C8).
- d For flowing water that is potentially aggressive to concrete owing to high purity or an aggressive carbon dioxide level greater than 15mg/l (Section C2.2.3), increase the ACEC Class to AC-2z.

Explanation of suffix symbols to ACEC Class


- Suffix 's' indicates that the water has been classified as static
- Concrete placed in ACEC Classes that included the suffix 'z' primarily have to resist acid conditions and may be made with any of the cements or combinations listed in Table D2 on page 42.

Sulfate						Groundwater		
Design Sulfate Class for Location	2:1 water/soil	extract ^b	Groundwater		Total potential sulfate ^c	Static water	Mobile water	ACEC Class fo location
1	2 (SO ₄ mg/l)	3 (Mg mg/l)	4 (SO ₄ mg/l)	5 (Mg mg/l)	6 (SO ₄ %)	7 (pH) ^d	8 (pH) ^d	9
DS-1	<500		<400		<0.24	≥2.5		AC-1s
							>6.5 ^d	AC-1
							5.5 - 6.5	AC-2z
							4.5 - 5.5	AC-3z
							2.5 - 4.5	AC-4z
DS-2	500 - 1500		400 - 1400		0.24 - 0.6	>5.5		AC-1s
							>6.5	AC-2
						2.5 - 5.5		AC-2s
							5.5 - 6.5	AC-3z
							4.5 - 5.5	AC-4z
							2.5 - 5.5	AC-5z
DS-3	1600 - 3000		1500 - 3000		0.7 - 1.2	>5.5		AC-2s
							>6.5	AC-3
						2.5 - 5.5		AC-3s
							5.5 - 6.5	AC-4
							2.5 - 5.5	AC-5
DS-4	3100 - 6000	≤1200	3100 - 6000	≤1000	1.3 - 2.4	>5.5		AC-3s
							>6.5	AC-4
						2.5 - 5.5		AC-4s
							2.5 - 6.5	AC-5
DS-4m	3100 - 6000	>1200 ^e	3100 - 6000	>1000 ^e	1.3 - 2.4	>5.5		AC-3s
							>6.5	AC-4m
						2.5 - 5.5		AC-4ms
							2.5 - 6.5	AC-5m
DS-5	>6000	≤1200	>6000	≤1000	>2.4	>5.5		AC-4s
						2.5 - 5.5	≤1000	AC-5
DS-5m	>6000	>1200 ^e	>6000	>1000 ^e	>2.4	>5.5		AC-4ms
						2.5 - 5.5	≥2.5	AC-5m

- a Brownfield sites are those sites, or parts of sites, that might contain chemical residues produced by or associated with industrial production (Section C5.1.3).
- **b** The limits of Design Sulfate Classes based on 2:1 water/soil extracts have been lowered relative to previous Digests (Box C7).
- c Applies only to locations where concrete will be exposed to sulfate ions (SO4) which may result from the oxidation of sulfides (eg pyrite) following ground disturbance (Appendix A1 and Box C8).
- d An additional account is taken of hydrochloric and nitric acids by adjustment to sulfate content (Section C5.1.3).
- e The limit on water-soluble magnesium does not apply to brackish groundwater (chloride content between 12 000mg/l and 17000 mg/l). This allows 'm' to be omitted from the relevant ACEC Classification. Seawater (chloride content about 18 000 mg/l) and stronger brines are not covered by this table

Explanation of suffix symbols to ACEC Class

- Suffix 's' indicates that the water has been classified as static.
- Concrete placed in ACEC Classes that included the suffix '2' primarily have to resist acid conditions and may be made with any of the cements or combinations listed in Table D2 on page 42.
- Suffix 'm' relates to the higher levels of magnesium in Design Sulfate Classes 4 and 5.

Chemtest The right chemistry to deliver results

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report Number: 14-05914 Issue-1

Initial Date of Issue: 23-Jul-14

Client: Sub Surface

Client Address: 3 Peel Street

Preston Lancashire PR2 2QS

Contact(s): Simon Gabbatt

Client Reference: 5887 Enterprise Zone Training Facility

Quotation No.: Date Received: 15-Jul-14

Order No.: 5887 Date Instructed: 15-Jul-14

No. of Samples: 10 Results Due: 23-Jul-14

Turnaround: (Weekdays)

Date Approved: 23-Jul-14

Approved By:

Details: Keith Jones, Technical Manager

Results Summary - Soil

Report No.: 14-05914 Issue-1

Client: Sub Surface	(Chemte	est Sam	ple ID.:	29992	29993	29994	29995	29996	29997	29998	29999	30000
Quote:		Clie	nt Samp	le Ref.:	120 121 122	125 126 127	105 106 107	109 110 111	091 092 093	095 096 097	078 079 080	082	084 085 086
Order No.: 5887		Clie	nt Sam	ple ID.:	TP1	TP1	TP2	TP2	TP3	TP3	TP4	TP4	TP4
			Sample		SOIL								
			Top Dep	oth (m):	0.40	0.80	0.05	0.15	0.05	0.20	0.10	0.30	0.05
		Вс	ttom De	pth(m):									
			Date Sa	ampled:	02-Jul-14								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192			=	-	-	-	-	-	-	-	=
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected								
Moisture	N	2030	%	0.02	17	23	18	15	24	16	32	87	25
pН	М	2010			8.4	8.0	6.6	7.0	6.0	7.9	5.6	7.0	6.7
Boron (Hot Water Soluble)	М	2120	mg/kg	0.4	0.40	0.62	0.76	0.43	0.83	< 0.40	< 0.40	0.42	< 0.40
Cyanide (Total)	М	2300	mg/kg	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	М	2325	mg/kg	0.5	1.7	6.0	1.4	2.6	1.5	1.5	1.4	1.4	1.3
Sulphate (Total)	М	2430	%	0.01	0.050	0.090	0.077	0.048	0.093	0.036	0.15	0.078	0.10
Arsenic	М	2450	mg/kg	2	13	15	15	8.9	17	14	19	24	15
Cadmium	М	2450	mg/kg	0.1	0.13	0.13	0.29	0.12	0.26	0.13	0.28	0.11	0.27
Chromium	М	2450	mg/kg	5	36	39	29	25	33	38	36	44	27
Copper	М	2450	mg/kg	5	22	25	29	16	27	22	27	18	26
Mercury	М	2450	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.15	< 0.10	< 0.10
Nickel	М	2450	mg/kg	5	36	41	29	21	25	43	22	42	21
Lead	М	2450	mg/kg	5	33	33	73	26	66	20	90	21	71
Selenium	М	2450	mg/kg	0.2	< 0.20	< 0.20	< 0.20	0.39	0.42	< 0.20	0.80	< 0.20	0.23
Zinc	М	2450	mg/kg	5	43	50	72	27	64	47	68	34	57
Chromium (Hexavalent)	N	2490	mg/kg	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
TPH >C6-C10	N	2670	mg/kg	1	< 1.0	< 1.0	< 1.0	2.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C10-C21	N	2670	mg/kg	1	19	< 1.0	15	14	4.0	< 1.0	11	< 1.0	7.4
TPH >C21-C40	N	2670	mg/kg	1	54	< 1.0	6.3	32	18	< 1.0	41	< 1.0	20
Total TPH >C6-C40	М	2670	mg/kg	10	72	< 10	22	48	22	< 10	51	< 10	28
Naphthalene	M	2700	mg/kg	0.1	< 0.10	0.30	0.22	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.22
Acenaphthylene	M	2700	mg/kg	0.1	< 0.10	0.89	0.20	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.25
Acenaphthene	M	2700	mg/kg	0.1	< 0.10	0.71	0.11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.23
Fluorene	М	2700	mg/kg	0.1	< 0.10	0.78	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.23
Phenanthrene	М	2700	mg/kg	0.1	0.52	6.8	0.69	< 0.10	0.83	< 0.10	1.1	< 0.10	1.5
Anthracene	М	2700	mg/kg	0.1	0.29	4.4	0.17	< 0.10	0.20	< 0.10	0.62	< 0.10	0.48
Fluoranthene	M	2700	mg/kg	0.1	1.7	12	1.8	0.47	2.0	< 0.10	2.2	0.26	3.4
Pyrene	M	2700	mg/kg	0.1	1.7	12	2.0	0.35	2.0	0.13	1.7	0.24	3.6
Benzo[a]anthracene	М	2700	mg/kg	0.1	1.4	6.0	2.0	< 0.10	1.5	< 0.10	2.5	< 0.10	2.2
Chrysene	M	2700	mg/kg	0.1	1.3	7.0	1.9	< 0.10	0.17	< 0.10	0.40	< 0.10	1.4

Results Summary - Soil

Report No.: 14-05914 Issue-1

Client: Sub Surface	(Chemte	est Sam	ple ID.:	29992	29993	29994	29995	29996	29997	29998	29999	30000
Quote:		Clie	nt Samp	le Ref.:	120 121 122	125 126 127	105 106 107	109 110 111	091 092 093	095 096 097	078 079 080	082	084 085 086
Order No.: 5887		Clie	nt Sam	ple ID.:	TP1	TP1	TP2	TP2	TP3	TP3	TP4	TP4	TP4
		Sample Type: Top Depth (m):			SOIL	SOIL	SOIL						
					0.40	0.80	0.05	0.15	0.05	0.20	0.10	0.30	0.05
		Вс	ttom De	pth(m):									
			Date Sa	ampled:	02-Jul-14	02-Jul-14	02-Jul-14						
Determinand	Accred.	SOP	Units	LOD									
Benzo[b]fluoranthene	M	2700	mg/kg	0.1	1.8	7.0	2.1	< 0.10	< 0.10	< 0.10	3.4	< 0.10	3.1
Benzo[k]fluoranthene	М	2700	mg/kg	0.1	0.94	3.0	0.74	< 0.10	< 0.10	< 0.10	0.73	< 0.10	0.92
Benzo[a]pyrene	М	2700	mg/kg	0.1	1.1	4.8	0.73	< 0.10	< 0.10	< 0.10	0.96	< 0.10	1.1
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.1	0.98	3.6	0.98	< 0.10	< 0.10	< 0.10	1.9	< 0.10	1.3
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.1	0.19	0.86	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.1	0.73	2.6	0.64	< 0.10	< 0.10	< 0.10	0.73	< 0.10	0.88
Total Of 16 PAH's	М	2700	mg/kg	2	13	73	14	< 2.0	6.7	< 2.0	16	< 2.0	21
Benzene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols	M	2920	mg/kg	0.3	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Report No.: 14-05914 Issue-1

Client: Sub Surface	(Chemte	st Sam	ple ID.:	30001			
Quote:			nt Samp		101 102 103			
Order No.: 5887		Clie	nt Sam	ple ID.:	TP6			
				e Type:	SOIL			
			Top De	oth (m):	GL			
		Во	ttom De	pth(m):				
		Date Sampled:						
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192			-			
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected			
Moisture	N	2030	%	0.02	30			
рН	М	2010			6.9			
Boron (Hot Water Soluble)	М	2120	mg/kg	0.4	0.54			
Cyanide (Total)	М	2300	mg/kg	0.5	< 0.50			
Sulphide (Easily Liberatable)	М	2325	mg/kg	0.5	1.2			
Sulphate (Total)	М	2430	%	0.01	0.12			
Arsenic	М	2450	mg/kg	2	13			
Cadmium	М	2450	mg/kg	0.1	0.19			
Chromium	М	2450	mg/kg	5	20			
Copper	М	2450	mg/kg	5	22			
Mercury	М	2450	mg/kg	0.1	< 0.10			
Nickel	М	2450	mg/kg	5	19			
Lead	М	2450	mg/kg	5	68			
Selenium	М	2450	mg/kg	0.2	0.48			
Zinc	М	2450	mg/kg	5	48			
Chromium (Hexavalent)	N	2490	mg/kg	0.5	< 0.50			
TPH >C6-C10	N	2670	mg/kg	1	< 1.0			
TPH >C10-C21	N	2670	mg/kg	1	1.1			
TPH >C21-C40	N	2670	mg/kg	1	< 1.0			
Total TPH >C6-C40	М	2670	mg/kg	10	< 10			
Naphthalene	М	2700	mg/kg	0.1	0.35			
Acenaphthylene	М	2700	mg/kg	0.1	0.20			
Acenaphthene	М	2700	mg/kg	0.1	0.12			
Fluorene	М	2700	mg/kg	0.1	0.11			
Phenanthrene	М	2700	mg/kg	0.1	0.78			
Anthracene	М	2700	mg/kg	0.1	0.13			
Fluoranthene	М	2700	mg/kg	0.1	1.2			
Pyrene	М	2700	mg/kg	0.1	1.2			
Benzo[a]anthracene	М	2700	mg/kg	0.1	1.2			
Chrysene	М	2700	mg/kg	0.1	0.32			

Report No.: 14-05914 Issue-1

	1 1											
Client: Sub Surface			est Sam									
Quote:			nt Samp									
Order No.: 5887		Clie	nt Sam	ple ID.:	TP6							
			Sampl	е Туре:	SOIL							
		Top Depth (m):										
		Вс	ttom De	pth(m):								
			Date Sa	ampled:	02-Jul-14							
Determinand	Accred.	SOP	Units	LOD								
Benzo[b]fluoranthene	М	2700	mg/kg	0.1	< 0.10							
Benzo[k]fluoranthene	М	2700	mg/kg	0.1	< 0.10							
Benzo[a]pyrene	М	2700	mg/kg	0.1	< 0.10							
Indeno(1,2,3-c,d)Pyrene	M	2700	mg/kg	0.1	< 0.10							
Dibenz(a,h)Anthracene	M	2700	mg/kg	0.1	< 0.10							
Benzo[g,h,i]perylene	M	2700	mg/kg	0.1	< 0.10							
Total Of 16 PAH's	М	2700	mg/kg	2	5.6							
Benzene	М	2760	μg/kg	1	< 1.0							
Toluene	M	2760	μg/kg	1	< 1.0							
Ethylbenzene	M	2760	μg/kg	1	< 1.0							
m & p-Xylene	М	2760	μg/kg	1	< 1.0							
o-Xylene	М	2760	μg/kg	1	< 1.0							
Methyl Tert-Butyl Ether	М	2760	μg/kg	1	< 1.0							
Total Phenols	M	2920	mg/kg	0.3	< 0.30							

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample

I/S Insufficient Sample
U/S Unsuitable sample
N/E not evaluated

< "less than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers

Sample Retention and Disposal

All soil samples will be retained for a period of 1 month following the date of the test report All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

Chemtest The right chemistry to deliver results

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report Number: 14-06098 Issue-1

Initial Date of Issue: 25-Jul-14

Client: Sub Surface

Client Address: 3 Peel Street

Preston Lancashire PR2 2QS

Contact(s): Simon Gabbatt

Client Reference: 5887 - Enterprise Zone Training Facility, Samlesbury

Quotation No.: Date Received: 17-Jul-14

Order No.: 5887 Date Instructed: 17-Jul-14

No. of Samples: 9 Results Due: 25-Jul-14

Turnaround: (Weekdays)

Date Approved: 25-Jul-14

Approved By:

Details: Keith Jones, Technical Manager

Results Summary - Soil

Report No.: 14-06098 Issue-1

Project: 5887 - Enterprise Zone Training Facility, Samlesbury

Client: Sub Surface		Chemte	est Sam	ple ID.:	31007	31008	31009	31010	31011	31012	31013	31014	31015
Quote:		Client Sample Ref.:			385	216	386	239	387	388	363	389	330
Order No.: 5887		Client Sample ID.:			BH1	BH1	BH2	BH2	BH3	BH4	BH5	BH6	BH6
		Sample Type:			SOIL								
		Top Depth (m):			GL	0.50	GL	0.50	GL	GL	GL	GL	0.50
		Вс	ttom De	epth(m):									
			Date Sa	ampled:	07-Jul-14								
Determinand	Accred.	SOP	Units	LOD									
ACM Type	U	2192											-
Asbestos Identification	U	2192	%	0.001									No Asbestos Detected
Moisture	N	2030	%	0.02	37	19	30	14	19	36	28	9.3	12
рН	M	2010			6.3	7.7	5.6	8.2	7.8	5.6	7.0	8.1	8.1
Boron (Hot Water Soluble)	М	2120	mg/kg	0.4	1.2	0.42	0.64	< 0.40	0.78	1.2	0.97	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/L	0.01				< 0.010					< 0.010
Cyanide (Total)	М	2300	mg/kg	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	М	2325	mg/kg	0.5	0.86	7.2	0.92	3.9	1.1	0.81	1.5	12	1.8
Sulphate (Total)	М	2430	%	0.01	0.14	0.074	0.10	0.019	0.087	0.16	0.15	0.064	0.057
Arsenic	М	2450	mg/kg	2	6.2	6.1	8.4	8.4	14	7.2	9.6	8.0	11
Cadmium	М	2450	mg/kg	0.1	0.33	0.19	0.22	0.16	0.29	0.31	0.30	0.22	0.23
Chromium	М	2450	mg/kg	5	22	29	22	35	37	22	28	22	32
Copper	М	2450	mg/kg	5	22	25	19	21	26	19	37	18	41
Mercury	М	2450	mg/kg	0.1	0.75	0.48	0.79	0.18	0.77	0.72	0.89	0.29	0.43
Nickel	М	2450	mg/kg	5	20	33	17	42	31	19	26	25	39
Lead	М	2450	mg/kg	5	62	44	60	21	66	61	73	29	40
Selenium	М	2450	mg/kg	0.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.24	< 0.20	< 0.20
Zinc	М	2450	mg/kg	5	54	51	44	47	61	50	62	47	54
Chromium (Hexavalent)	N	2490	mg/kg	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
TPH >C6-C10	N	2670	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH >C10-C21	N	2670	mg/kg	1	2.7	< 1.0	3.2	< 1.0	1.7	6.0	1.9	< 1.0	1.2
TPH >C21-C40	N	2670	mg/kg	1	16	< 1.0	15	< 1.0	17	25	15	< 1.0	9.4
Total TPH >C6-C40	М	2670	mg/kg	10	19	< 10	18	< 10	19	31	17	< 10	11
Naphthalene	М	2700	mg/kg	0.1	1.6	0.98	1.4	< 0.10	0.81	5.3	0.80	0.44	0.83
Acenaphthylene	М	2700	mg/kg	0.1	0.72	2.5	< 0.10	< 0.10	0.62	0.70	0.46	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.1	0.33	0.65	< 0.10	< 0.10	0.16	1.0	0.24	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.1	0.29	1.5	< 0.10	< 0.10	0.32	1.1	0.31	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.1	1.3	3.7	< 0.10	< 0.10	1.0	6.1	1.2	< 0.10	< 0.10
Anthracene	М	2700	mg/kg	0.1	0.22	0.92	< 0.10	< 0.10	0.17	0.95	0.26	< 0.10	< 0.10
Fluoranthene	М	2700	mg/kg	0.1	1.2	6.0	1.0	< 0.10	1.0	6.6	1.6	0.81	0.85
Pyrene	М	2700	mg/kg	0.1	1.5	5.3	0.87	< 0.10	1.2	6.4	1.6	0.90	0.76
Benzo[a]anthracene	М	2700	mg/kg	0.1	2.0	2.9	< 0.10	< 0.10	< 0.10	1.3	< 0.10	< 0.10	< 0.10

Results Summary - Soil

Report No.: 14-06098 Issue-1

Project: 5887 - Enterprise Zone Training Facility, Samlesbury

Oli to Oo to Oo of		7h 1	-4 C	ula ID .	04007	04000	04000	04040	04044	04040	04040	04044	04045
Client: Sub Surface				31007	31008	31009	31010	31011	31012	31013	31014	31015	
Quote:	Client Sample Ref.:			385	216	386	239	387	388	363	389	330	
Order No.: 5887		Clie	ent Sam	ple ID.:	BH1	BH1	BH2	BH2	BH3	BH4	BH5	BH6	BH6
	Sample Type: Top Depth (m):		SOIL										
			GL	0.50	GL	0.50	GL	GL	GL	GL	0.50		
		Во	ottom De	pth(m):									
	Date Sampled:		07-Jul-14										
Determinand	Accred.	SOP	Units	LOD									
Chrysene	М	2700	mg/kg	0.1	1.3	4.2	< 0.10	< 0.10	< 0.10	3.8	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.1	1.3	3.7	< 0.10	< 0.10	< 0.10	3.1	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.1	1.1	2.2	< 0.10	< 0.10	< 0.10	2.1	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	М	2700	mg/kg	0.1	0.93	2.5	< 0.10	< 0.10	< 0.10	2.2	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.1	0.84	1.9	< 0.10	< 0.10	< 0.10	1.3	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.1	1.4	1.8	< 0.10	< 0.10	< 0.10	1.9	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2	16	41	3.3	< 2.0	5.3	44	6.5	2.2	2.4
Benzene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	М	2760		1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	М	2760	μg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols	М	2920		0.3	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable sample
N/E	not evaluated
<	"less than"
>	"greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers

Sample Retention and Disposal

All soil samples will be retained for a period of 1 month following the date of the test report All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report Number: 14-06317 Issue-1

Initial Date of Issue: 29-Jul-14

Client: Sub Surface

Client Address: 3 Peel Street

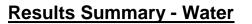
Preston Lancashire PR2 2QS

Contact(s): Simon Gabbatt

Client Reference: 5887 Enterprise Zone training Facility, BAE Systems

Quotation No.: Date Received: 22-Jul-14

Order No.: 5887 Date Instructed: 22-Jul-14


No. of Samples: 3 Results Due: 30-Jul-14

Turnaround: (Weekdays)

Date Approved: 29-Jul-14

Approved By:

Details: Phil Hellier, Project Director

Report Number: 14-06317 Issue-1

Client Reference: 5887 Enterprise Zone training Facility, BAE Systems

Client: Sub Surface	С	hemtes	t Samp	le ID.:	32020	32021	32022
Quotation No.:		Clien	t Sample	e Ref.:	620 621 622	617 618 619	614 615 616
Order No.: 5887		Clier	t Samp	le ID.:	BH1	BH4	BH6
			Sample	Type:	WATER	WATER	WATER
		Т	op Dept	th (m):	5.30	3.60	3.00
			tom Dep				
			Date Sar	npled:	18-Jul-14	18-Jul-14	18-Jul-14
Determinand	Accred. SOP Units LOD						
рН	U	1010			7.5	7.6	7.3
Sulphate	U	1220	mg/l	1	640	470	310
Cyanide (Total)	U	1300	mg/l	0.05	< 0.050	< 0.050	< 0.050
Sulphide	U	1325	mg/l	0.05	< 0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	μg/l	1	< 1.0	< 1.0	< 1.0
Boron (Dissolved)	U	1450	μg/l	20	51	< 20	31
Cadmium (Dissolved)	U	1450	μg/l	0.08	< 0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	μg/l	1	< 1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	μg/l	1	1.6	< 1.0	< 1.0
Mercury (Dissolved)	U	1450	μg/l	0.5	< 0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	μg/l	1	6.4	2.0	3.1
Lead (Dissolved)	U	1450	μg/l	1	< 1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450	μg/l	1	3.8	5.3	3.4
Zinc (Dissolved)	U	1450	μg/l	1	17	19	12
Chromium (Hexavalent)	U	1490	μg/l	20	< 20	< 20	< 20
TPH >C6-C10	N	1670	μg/l	0.1	< 0.10	< 0.10	< 0.10
TPH >C10-C21	N	1670	μg/l	0.1	< 0.10	< 0.10	< 0.10
TPH >C21-C40	N	1670	μg/l	0.1	< 0.10	< 0.10	< 0.10
Total TPH >C6-C40	N	1670	μg/l	10	< 10	< 10	< 10
Naphthalene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Chrysene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10

Results Summary - Water

Report Number: 14-06317 Issue-1

Client Reference: 5887 Enterprise Zone training Facility, BAE Systems

Client: Sub Surface	CI	hemtes	t Samp	le ID.:	32020	32021	32022
Quotation No.:		Clien	t Sample	e Ref.:	620 621 622	617 618 619	614 615 616
Order No.: 5887		Clier	t Samp	le ID.:	BH1	BH4	BH6
			Sample	Type:	WATER	WATER	WATER
		Т	op Dept	th (m):	5.30	3.60	3.00
		Bott	om Dep	th(m):			
			Date Sar	npled:	18-Jul-14	18-Jul-14	18-Jul-14
Determinand	Accred.	SOP	Units	LOD			
Dibenz(a,h)Anthracene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	μg/l	0.1	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1700	μg/l	2	< 2.0	< 2.0	< 2.0
Benzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Toluene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	N	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Total Phenols	U	1920	mg/l	0.03	< 0.030	< 0.030	< 0.030

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable sample
N/E	not evaluated
<	"less than"
>	"greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers

Sample Retention and Disposal

All soil samples will be retained for a period of 1 month following the date of the test report All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

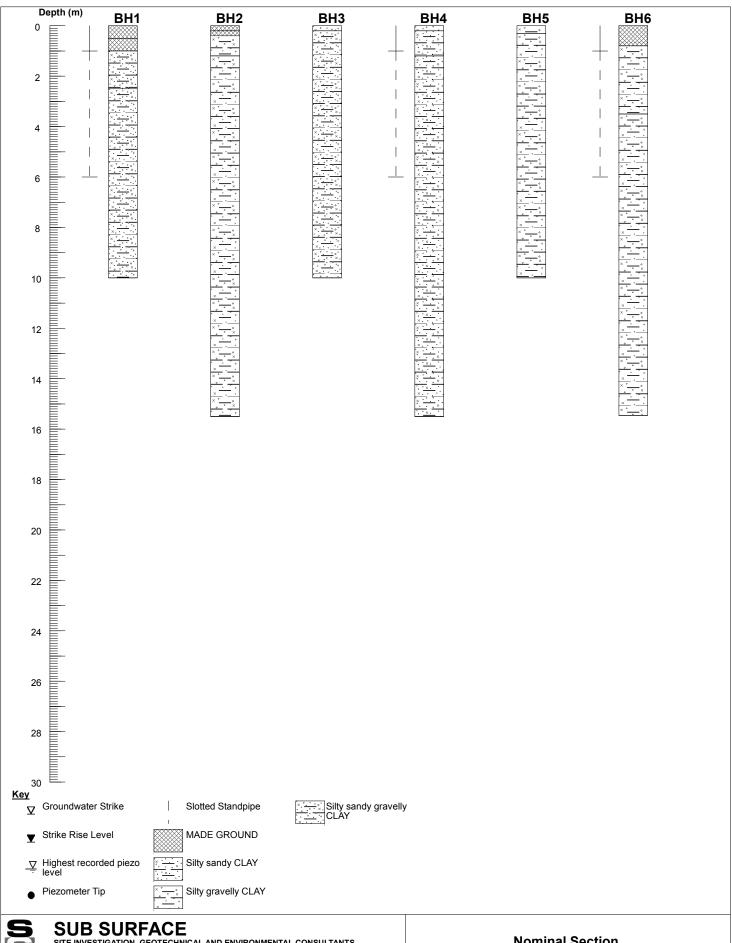
If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

S	SUB SUR SITE INVESTIGATION, 3 Peel Street, Preston, F	GEOTECHI	NICAL ANI		Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	ENTERPRISE ZONE, TRAINING FACILITY, BAE					
Boring Me	ethod BLE PERCUSSIVE	1	Diamete 0mm to 8		Ground	Level (mOD)	Client WILSON MASON LLP		N	ob umb 588	
		Locatio	n S PLAN		Dates 02	2/07/2014	Engineer TRP CONSULTING		S	heet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Water Depth (m) Field Records		Depth (m) (Thickness)	Description	Legeno	Water	In	str
0.00-0.20	В					(0.50)	MADE GROUND: grass over dark greyish brown slightly gravelly slightly sandy silty clay with many roots and rootlets. Gravel sized fragments are fin	e			
0.50-1.00	В					0.50	to coarse stone. MADE GROUND: brown and occasional grey mottled slightly gravelly silty clay. Gravel sized				
1.00	D					1.00	fragments are angular to subangular fine to medium brick and stone.	× ×		- 888 - 888	
1.20-1.65	U NTP			HV@1.20m, c=23kPa		(0.50)	Soft low strength brown and dark greyish brown mottled slightly gravelly slightly sandy silty CLAY with low cobble content and occasional lenses of	× · · · · · · · · · · · · · · · · · · ·			60000000000000000000000000000000000000
1.70	D					(1.50)	sand. Gravel is subangular to rounded fine to coarse quartz, sandstone and siltstone (possible	×			8 96 8 188 8
2.00-2.45	SPT N=3			1,0/1,0,1,1		=	made ground) at 2.00m : very low strength	× · · · ×			
2.00-2.45 2.00-2.45	B D					E		×			
2.70	D					2.50	Firm medium strength locally high strength brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to coarse siltstone and quartz.	X. 2. 7. 0.			2000 000 000 000 000 000 000 000 000 00
3.00-3.45	U c=79kPa					<u></u>		× × ×			
3.00-3.43	0 C-79KF4					Ē		×			8888
2.50	D					E		×			
3.50						Ē		×			
400 445	ODT N. 44			0.0/4.0.4.0		<u> </u>		××			888
4.00-4.45 4.00-4.45	SPT N=14 B			3,3/4,3,4,3		E		××			
4.00-4.45	D					Ē		×			
						E		× ×			
4.70	D					E		× × ×			
5.00-5.45	U c=77kPa					E		× * * *			8800
						E		×			
5.50	D							×			
						Ē		× - ×			
6.00-6.45	SPT N=17			3,2/5,4,3,5			at 6.00m : with low quartz cobble content	×			
6.00-6.45 6.00-6.45	B D					(7.50)		×			//
						E		×			
						E		× • •		/	
						<u> </u>		×		//	//
7.00						E		× ×			//
7.30	D					E		××			//
7.50-7.95	U c=64kPa					E		× - ×		/	//
						E		×		//	/,
8.00	D							×			//
						E		×			//
						-		×		/	/
8.70	D					E		×		//	/,
9.00-9.45	SPT N=16			4,5/4,3,4,5				× - ×			//
9.00-9.45 9.00-9.45	B D					E		× • •			//
								×			
				02/07/2014:DRY		(7.50)		× ×		/	/,
10.00 Remarks Hand dug	D inspection pit from GL	to 1.20m	to check	for services - 1hr	_	10.00		Scale	F.	ogge Y	<u></u> ed
On comple from 1.00r	etion backfilled with ari n to 0.20m and a cond	isinas and	installed	a 50mm hdpe gas m	nonitoring s from 0.20r	standpipe with n to GL.	a gravel surround to 6.00m, a Bentonite seal	(approx)		-	
	Test Possible d Shear Vane test							1:50		OM/S	iJ
								Figure I		⊔4	
I								588	87.BI	T L	

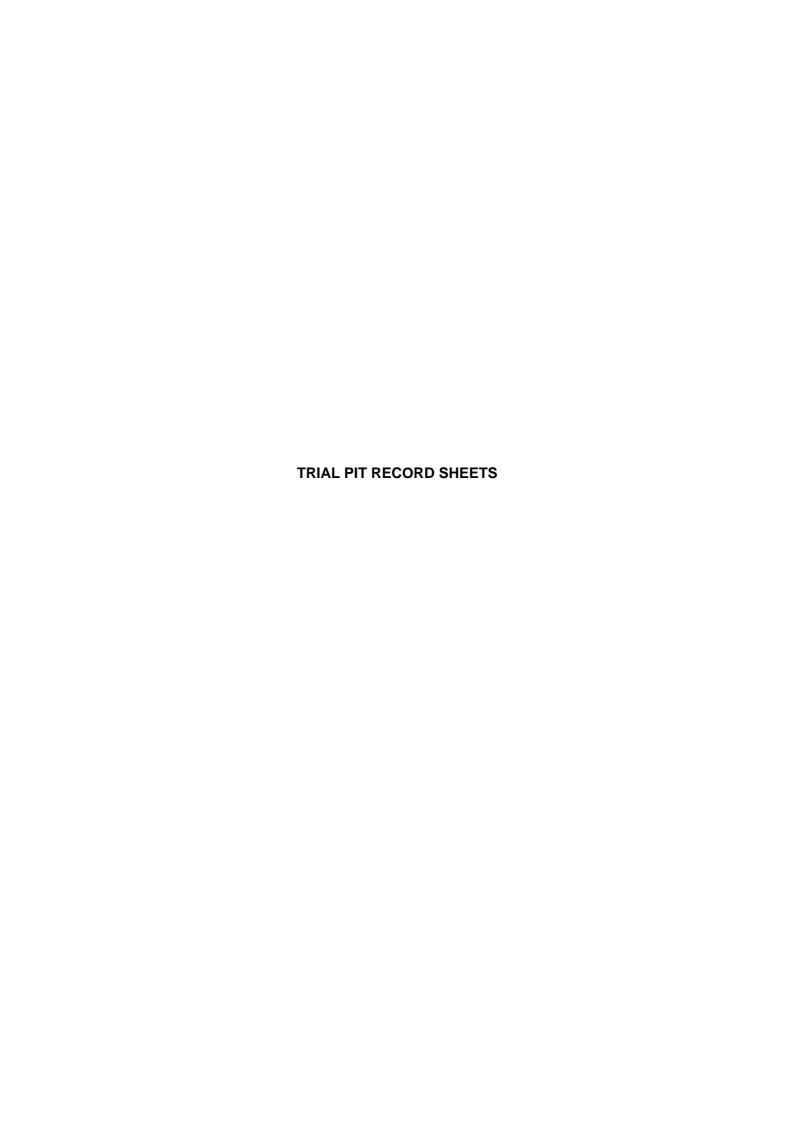
3	Peel Street, Preston, F	PR2 2QS. Te	el. (01772)	D ENVIRONMENTAL CO 561135 Fax (01772) 204	907			ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	BH2
Boring Meth	hod LE PERCUSSIVE	_	Diamete 0mm to 1		Ground	Level	(mOD)	Client WILSON MASON LLP	Job Number 5887
		Locatio AS	n S PLAN		02/07/2014- 03/07/2014			Engineer TRP CONSULTING	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (Thic	epth (m) kness)	Description	Legend
0.00-0.20	В						(0.20) 0.20 (0.20) 0.40	MADE GROUND: dark brown slightly sandy silty clay with many roots and rootlets.	
0.50-1.00	В							MADE GROUND: gravelly clay. Gravel sized fragments are brick (driller's description).	× • ×
1.00	D						1.20	Stiff brown and occasional grey mottled slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to coarse siltstone and quartz.	× × ×
1.20-1.65 1.20-1.65 1.20-1.65	SPT N=14 B D			2,3/3,4,3,4			1.20	Firm medium strength locally high strength dark brown slightly gravelly silty CLAY. Gravel is subangular to rounded fine to coarse quartz, siltstone and sandstone.	× · · × · · × · · × · · · × · · · · · ·
2.00-2.45	U c=159kPa								× · · · · · · · · · · · · · · · · · · ·
2.50	D								× × ×
3.00-3.45 3.00-3.45 3.00-3.45	SPT N=11 B D			3,4/3,2,3,3					× · · · · · · · · · · · · · · · · · · ·
3.70	D								×
1.00-4.45	U c=91kPa								× × ×
4.50	D								× · · ×
5.00-5.45 5.00-5.45 5.00-5.45	SPT N=16 B D			3,4/3,4,4,5		E			× · · · · · · · · · · · · · · · · · · ·
5.70 6.00-6.45	D U c=108kPa								× · · · · · · · · · · · · · · · · · · ·
3.50	D			02/07/2014:DRY 03/07/2014:DRY	-				× • • • • • • • • • • • • • • • • • • •
7.30 7.50-7.95 7.50-7.95	D SPT N=17 B			3,3/3,5,4,5					× · · · × · · × · · · × · · · · × ·
'.50-7.95	D						(14.30)		× · · · · · · · · · · · · · · · · · · ·
3.70	D								× • ×
9.00-9.45	U c=71kPa								× × × ×
9.50	D								× · · · · · · · · · · · · · · · · · · ·
Remarks land dug in:	spection pit from GL	to 1.20m	to check	for services - 1hr	1			Scale (approx)	Logged By
								1:50	DM/SJ
								Figure N 588	lo. 7.BH2

12.50 D 13.30 D 13.50-13.95 SPT N=27 13.50-13.95 D 14.70 D 15.00-15.45 U c=110kPa	ole er
150mm to 13.40m 150mm to 13.40m 2020772014 Engineer TRP CONSULTING Sheet 2020772014 Engineer TRP CONSULTING 2020772014 202077	2
AS PLAN	
10.30 D 10.50-10.95 I0.50-10.95 D 11.70 D 11.70 D 12.00-12.45 U c=103kPa 12.50 D 13.50-13.95 SPT N=27 I3.50-13.95 D 14.70 D 15.00-15.45 U c=110kPa	
10.50-10.95	Water
15.00-15.45 U C=110KPa	
15.00-15.45 U C=110KPa	
15.00-15.45 U C=110KPa	
15.50 D 03/07/2014:DRY = 15.50 Complete at 15.50m	
Complete at 18.50ml	
Remarks Scale (approx) By	d
1:50 DM/S	
Figure No. 5887.BH2	\exists

		GEOTECHI	NICAL ANI	D ENVIRONMENTAL COI 561135 Fax (01772) 2049	Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	Borehole Number BH3				
Boring Me	ethod BEL PERCUSSIVE		Diamete 0mm to 8		Ground	Level (mOD)	Client WILSON MASON LLP	Job Number 5887		
		Locatio	n S PLAN		Dates 03	3/07/2014	Engineer TRP CONSULTING	Sheet 1/1		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	
0.00-0.20	В					(0.20)	Grass over dark brown slightly gravelly slightly sandy silty CLAY with some rootlets and roots. Gravel is subangular to subrounded fine to medium quartz.	× · · · · · · · · · · · · · · · · · · ·		
0.50-1.00	В						Firm high strength dark brown slightly gravelly silty CLAY with low cobble content. Gravel is subangular to rounded fine to coarse siltstone, quartz and sandstone.	X		
1.00	D							×		
1.20-1.65	U c=111kPa							× · · · · · · · · · · · · · · · · · · ·		
1.70	D							x		
2.00-2.45 2.00-2.45 2.00-2.45	SPT N=19 B D			4,4/5,4,5,5				× · · · · · · · · · · · · · · · · · · ·		
2.70	D							x		
3.00-3.45	U c=83kPa					<u> </u>	between 3.00m and 7.50m : medium strength	× · · · · · · · · · · · · · · · · · · ·		
3.50	D							× ° · · · · · · · · · · · · · · · · · ·		
4.00-4.45 4.00-4.45 4.00-4.45	SPT N=15 B D			3,3/4,3,4,4				× · · · · · · · · · · · · · · · · · · ·		
4.70	D					=		× - ×		
5.00-5.45	U c=74kPa					(9.80)		×		
0.00 0.10						(9.00)		× -		
5.50	D					E		× · · · · · · · · · · · · · · · · · · ·		
6.00-6.45 6.00-6.45 6.00-6.45	SPT N=16 B D			4,4/3,4,5,4				X		
								× — ×		
7.30	D					_		× _ ×		
7.50-7.95	U c=107kPa							× - ×		
8.00	D							X		
8.70	D					E		× × ×		
9.00-9.45	SPT N=18			4,5/5,4,4,5				× ×		
9.00-9.45 9.00-9.45	B D			.,, ,, ,,,,				× · · · · · · · · · · · · · · · · · · ·		
10.00	D			03/07/2014:DRY		10.00		× · · · · ·		
Remarks Hand dug	inspection pit from GL	to 1.20m	to check	for services - 1hr			Scale (approx)			
							1:50	DM/S.	J	
							Figure I	No. 37.BH3		


S	SUB SURI SITE INVESTIGATION, O 3 Peel Street, Preston, P	GEOTECHI	NICAL ANI	D ENVIRONMENTAL CO 561135 Fax (01772) 204	Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	Borehole Number BH4						
Boring Me	ethod BLE PERCUSSIVE	-	Diamete 0mm to 1		Ground	Level	(mOD)	Client WILSON MASON LLP		1	ob umber 5887	
		Locatio	o n S PLAN		Dates 04	1/07/20	14	Engineer TRP CONSULTING	Sh	heet 1/2		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	De (I (Thicl	epth m) kness)	Description	Legend	Water	Instr	
0.00-0.20	В						(0.20) 0.20	Grass over dark brown slightly sandy silty CLAY with many roots and rootlets.	× · · · · ·	4		,
0.50-1.00	В						(1.00)	Firm brown and occasional grey mottled slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium siltstone.	× × × × × × × × × × × × × × × × × × ×			
1.00 1.20-1.65 1.20-1.65 1.20-1.65	D SPT N=9 B D			1,1/1,2,3,3			1.20	Firm low strength becoming medium strength, locally high strength brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to coarse siltstone, sandstone and quartz.	X	ייי אינו הייי אינו מיים מונים מיים מונים מיים מונים מיים מונים מיים מיים מונים מיים מיים מיים מיים מיים מיים מ		■ 00 a ab ab a a 0 00 ab ab a 0 a 0 00 00 ab
2.00-2.45	U c=82kPa							below 2.00m: medium locally high strength	x x x x x x x x x x x x x x x x x x x	00 50 0 =050 0 00 00 00 0 = 100 0 = 20		0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-3.45 3.00-3.45 3.00-3.45	SPT N=11 B D			2,3/3,2,3,3					x	0.000 0.000 0.000 0.000 0.000 0.000		~ ~ 0 00 A ~ 0 m 0 0 0 0 0 0 A , m 0 0
3.70 4.00-4.45	D U c=69kPa								× · · · · · · · · · · · · · · · · · · ·	0.00 0.000 0.000 0.000 0.000		.0 00 .00 .00 00 00 00 00 00 00 00 00 00
4.50	D								× × × × × × × × × × × × × × × × × × ×	0.0 2000 2000 2000		0 00 0 00 00 00 00 00
5.00-5.45 5.00-5.45 5.00-5.45	SPT N=14 B D			3,4/4,3,4,3					× × × × × × × × × × × × × × × × × × ×			00,000 00,000,000 00,000
5.70 6.00-6.45	D U c=57kPa								x x x x x x x x x x x x x x x x x x x	10000000000		/ \ \ 000 0v v ou ov o
6.50	D								× × × × × × × × × × × × × × × × × × ×			
7.30 7.50-7.95 7.50-7.95 7.50-7.95	D SPT N=17 B D			4,4/5,4,4,4			(14.30)		X			
8.70	D								× × ×			
9.00-9.45 9.50	U c=98kPa								x x x x x x x x x x x x x x x x x x x			
On comple	inspection pit from GL etion backfilled with ari	sinas and	installed	a 50mm hdpe gas me	onitoring s	standpir	pe with	a gravel surround to 6.00m, a Bentonite seal	Scale (approx)	Lo	ogged y	
1.00r	n to 0.20m and a conc	reted in lo	ckable st	eei protective cover f	rom 0.20n	n to GL			1:50		M/SJ	-
									Figure N	vo. 87.B⊦	14	

S	SUB SURI SITE INVESTIGATION, 0 3 Peel Street, Preston, P	GEOTECH	NICAL AND	D ENVIRONMENTAL COI 561135 Fax (01772) 2049	Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	N	Borehole Number BH4			
LIGHT CABLE PERCUSSIVE		Casing Diameter 150mm to 14.90m Location AS PLAN			,		Client WILSON MASON LLP	Job Number 5887		
							Engineer TRP CONSULTING	Sheet 2/2		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legeno	Water	Instr
10.30 10.50-10.99 10.50-10.99	5 B 5 D			3,4/4,5,4,4			Firm medium strength locally high strength brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to coarse siltstone, sandstone and quartz.			
11.70 12.00-12.4 12.50	D U c=79kPa D							X		
13.30 13.50-13.99 13.50-13.99 13.50-13.99	5 B			4,4/5,4,5,4						
14.70 15.00-15.4	D 5 U c=75kPa							X X X X X X X X X X X X X X X X X X X		
15.50	D			04/07/2014:DRY		15.50	Complete at 15.50m			
Remarks		1		I	I		I	Scale (approx)	L ₀	ogged y
								1:50 Figure I		DM/SJ


		GEOTECHI	NICAL ANI	D ENVIRONMENTAL COI 561135 Fax (01772) 2049	Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	Borehole Number BH5			
Boring Method LIGHT CABLE PERCUSSIVE		Casing Diameter 150mm to 8.90m			Ground Level (mOD)		Client WILSON MASON LLP	Job Number 5887	
		Locatio	n S PLAN		Dates 07	7/07/2014	Engineer TRP CONSULTING	Shee	et /1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leger	Water
0.00-0.30	В					(0.30)	Grass over brown and greyish brown slightly gravelly silty CLAY with many roots and rootlets. Gravel is subrounded fine to medium quartz.	× · · · · · · · · · · · · · · · · · · ·	-
0.50-1.00	В					<u>-</u> - - - - - - -	Firm medium strength locally high strength brown slightly gravelly silty CLAY. Gravel is subangular to rounded fine to coarse quartz, siltstone, sandstone and mudstone.	×	
1.00	D					_		× • ×]
1.20-1.65	U c=77kPa							× · · · · · · · · · · · · · · · · · · ·	-
1.70	D					E		× ×	-
2.00-2.45 2.00-2.45 2.00-2.45	SPT N=12 B D			3,3/2,3,4,3		(0.30) 0.30 0.30 0.30		× · · · × · · · × · · · · × · · · · · ·	
3.00-3.45	U c=69kPa					<u> </u>		× - ×	_
3.50	D					<u>E</u> <u>E</u> E		×	-
4.00-4.45 4.00-4.45 4.00-4.45	SPT N=15 B D			3,2/3,4,4,4		= = = = = =		× × × × × × × × × × × × × × × × × × ×	<u>-</u> - -
4.70	D					E		×	1
5.00-5.45	U c=77kPa					<u>-</u>		* * * * * * * * * * * * * * * * * * *	1
5.00-5.45	U C-//KFa					(9.70)		××]
5.50	D					E		× × ×	-
6.00-6.45 6.00-6.45 6.00-6.45	SPT N=15 B D			4,4/3,4,4,4				× · · · · · · · · · · · · · · · · · · ·	-
						<u> </u>		× ×	
7.30	D					<u> </u>		×	-
7.50-7.95	U c=52kPa							× -	1
8.00	D							× · · × × · · × · · × · · × · · × · · × · · × · · × · · × · · × · · · × · · · × · · · × · · · × · · · × · · · · × · · · · · · × ·	
9.00-9.45 9.00-9.45 9.00-9.45	SPT N=17 D			2,2/4,4,4,5				× · · · × · · · · · · · · · · · · · · ·	-
10.00	D			07/07/2014:DRY		10.00		× * · ·	-
Remarks Hand dug	inspection pit from GL	to 1.20m	to check	for services - 1hr			Scale (approx)		
							1:50	DM/	/SJ
							Figure I	No. 87.BH5	

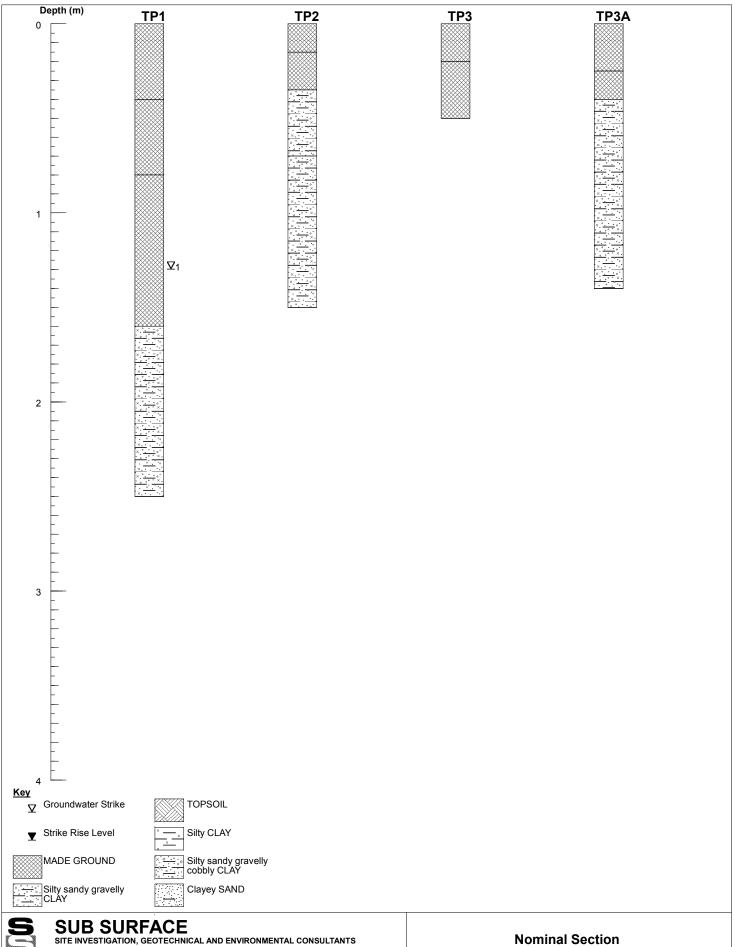
S	SUB SUR SITE INVESTIGATION, 3 Peel Street, Preston, F	GEOTECHI	NICAL AND			s	Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE		N	oreh umb	er
Boring Method LIGHT CABLE PERCUSSIVE		1	Diamete 0mm to 1		Ground Level (mOD)		Client WILSON MASON LLP			Job Numbe 5887	
		Location AS PLAN			Dates 04/07/2014- 07/07/2014		Engineer TRP CONSULTING			Sheet 1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.00-0.20	В					(0.80)	MADE GROUND: grass over brown slightly gravelly slightly sandy silty clay with some roots and rootlets. Gravel sized fragments are angular to subangular fine to coarse brick.				
0.50-1.00	В					0.80	Firm high strength locally medium and very high	*:;			
1.00	D						strength brown and grey mottled slightly gravelly silty CLAY with some plant remains. Gravel is subangular to rounded fine to medium sandstone,	×		- 68.0 - 68.0 - 68.0	
1.20-1.65	U NTP			HV@1.20m, c=96kPa		0.80	subangular to rounded fine to medium sandstone, mudstone, siltstone and quartz.	× × ×			
1.70	D							× :			
2.00-2.45	SPT N=12			2,3/3,3,3,3				*			
2.00-2.45 2.00-2.45	B D			2,670,0,0,0		(2.70)		×			
2.00-2.43								× • • ×			88888 88888 88888
						F		×			
2.70	D					<u> </u>		× ×			100 S
3.00-3.45	U c=161kPa					E	at 3.00m : very high strength	×			
						3.50		× - +			
3.50	D					3.50	Firm medium strength locally high strength dark	××			8 56 5
						E	brown slightly gravelly silty ĆLAY. Gravel is subrounded to rounded fine to medium siltstone, sandstone and quartz.	× * * *			
4.00-4.45	SPT N=15			4,4/3,4,4,4			sandstone and quartz.	×			
4.00-4.45 4.00-4.45	B D					Ē		× ×			
								× • • ×			
4.70	D							×			
5.00-5.45	U c=72kPa							× ×			
0.00 0.10	0 0 72111 4							××			
5.50	D			04/07/2014:DRY		<u></u>		× · ·			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5.50					-	E E		×			
				07/07/2014:DRY				×			8,500
6.00-6.45 6.00-6.45	SPT N=14 D			3,3/3,4,4,3				× ×		/,	7.
								×			/,
						E		×			//
						E		××			//
						<u>-</u>		× - ×	İ		
7.30	D							×			/,
7.50-7.95	U c=92kPa							× ×			//
								××			//
8.00	D							×	İ		//
						E		×		//	
								× - ×			/,
0.70						- - - - - - - - - - - - - - - - - - -		× * * *			//
8.70	D							×			//
9.00-9.45 9.00-9.45	SPT N=13 B			4,4/3,3,4,3		Ē		× ×			//
9.00-9.45	D					(11.95)		××		//	/,
						E (× * *			//
						<u>-</u> -		×			//
Remarks Hand dug i	inspection pit from GL	to 1.20m	to check	for services - 1hr	onitoria	<u> </u>	a group ourround to 6 00m a Dentanita and	Scale (approx)	L(B)	ogge y	<u>∕</u> ∌d
from 1.00m	n to 0.20m and a conc	reted in lo	ckable st	eel protective cover	from 0.20n	n to GL.	a gravel surround to 6.00m, a Bentonite seal	4:50	_	NA 4 4 C	
HV = No	Test Possible I Shear Vane test							1:50		DM/S	J
								Figure I	No. 37.BH	Н6	

S	SUB SURI	FACE			Site		orehole umber			
	3 Peel Street, Preston, P	R2 2QS. Te	el. (01772)	561135 Fax (01772) 2049	S 	ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	<u></u>	ВН6		
Boring Method LIGHT CABLE PERCUSSIVE		Casing Diameter 150mm to 14.90m			Ground Level (mOD)		Client WILSON MASON LLP	N	ob umber 5887	
		Locatio AS	n FPLAN			1/07/2014- 7/07/2014	Engineer TRP CONSULTING		SI	heet 2/2
Depth (m)	Sample / Tests	Casing Water Depth (m) Water Depth (m)		r h Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	Water	Instr
10.30 10.50-10.95 11.00 11.70 12.00-12.45 12.00-12.45 12.00-12.45 13.30 13.50-13.95 14.00 14.70 15.00-15.45	D D SPT N=15 B D U c=114kPa D D SFT N=13			4,4/4,3,4,4 4,4/3,3,3,4 07/07/2014:DRY		15.45	Firm medium strength locally high strength dark brown slightly gravelly silty CLAY. Gravel is subrounded to rounded fine to medium siltstone, sandstone and quartz. Complete at 15.45m			
Remarks								Scale (approx) 1:50 Figure	D	ogged y DM/SJ

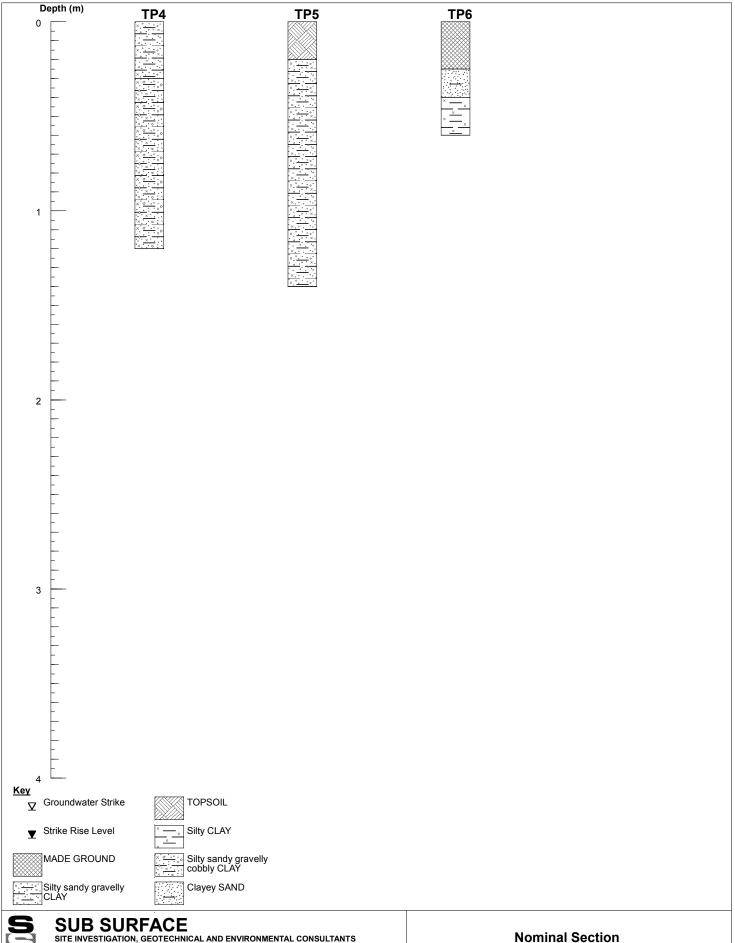
SUB SURFACE SITE INVESTIGATION, GEOTECHNICAL AND ENVIR 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135		Nominal Section					
Site		Date Drawn	Date Checked	Sheet	Job Number		
ENTERPRISE ZONE, TRAINING FACILITY, BAE SAML	ESBURY, LANCASHIRE	16/09/2014		1/1	5887		
Client		Drawn By	Checked By	Scale	Figure No.		
WILSON MASON LLP				1:150[V]	5887.1		

SITE INV	SUBSURFACE SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907						s	Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE			l Pit nber P1	
Excavation Method MECHANICAL EXC		Dimens 0.50m	sions x 1.50m x :	2.50m		Ground	Level (mOD)	Client WILSON MASON LLP			nber 387	
		Locatio	on S PLAN			Dates 03	3/07/2014	Engineer TRP CONSULTING			Sheet 1/1	
Depth (m) Sam	ple / Tests	Water Depth (m)	Fi	eld Recor	ds	Level (mOD)	Depth (m) (Thickness)		Description	Lege	nd §	
0.05-0.20 D* 0.20-0.40 B							(0.40)	orange brown mottled gra roots and rootlets. Gravel coarse stone and occasion	over dark grey brown and dark avelly slightly sandy clay with mai I sized fragments are fine to onal brick (topsoil to 0.15m) casional pieces of timber	ny		
0.40-0.50 D* 0.40-0.60 B							0.40	mottled slightly gravelly s	dark brown and dark grey brown lightly sandy clay with occasional tent of stone and concrete. Gravi to coarse stone, concrete, slag	el		
0.80-1.00 D*			Seepage	0m, c=19ki (1) at 1.30	m.		- 0.80 (0.80)	MADE GROUND: soft ve brown slightly gravelly sli remains and roots and a (organic odour). Gravel s stone, wood and brick	ry low strength dark grey and ghtly sandy clay with some plant large piece of decayed tree branized fragments are fine to coarse	ch .	∇	
1.90 D			HV@1.69	0m, c=44kf 0m, c=48kf 0m, c=87kf	Pa Pa		- 1.60 (0.90)	light grey mottled slightly some roots and plant rem	igh strength brown and occasion: gravelly slightly sandy CLAY with ains. Gravel sized fragments are ne to coarse quartz, sandstone an	× —		
2.50 D			03/07/20	0m, c=87kf			2.50	Complete at 2.50m		<u> </u>	=	
Plan						•		Remarks D* = 1 Plastic Jar Sample	1 Amber Glass Jar Sample, 1 Via	I Sample		
						•		D = 1 Plastic val Sample, taken for chemical testing. Pit sides remained stable a Seepage below 1.30m. HV = Hand Shear Vane tes	and vertical.	і башріе,	ı	
								Scale (approx)	Logged By Fig	ure No. 5887.TF		

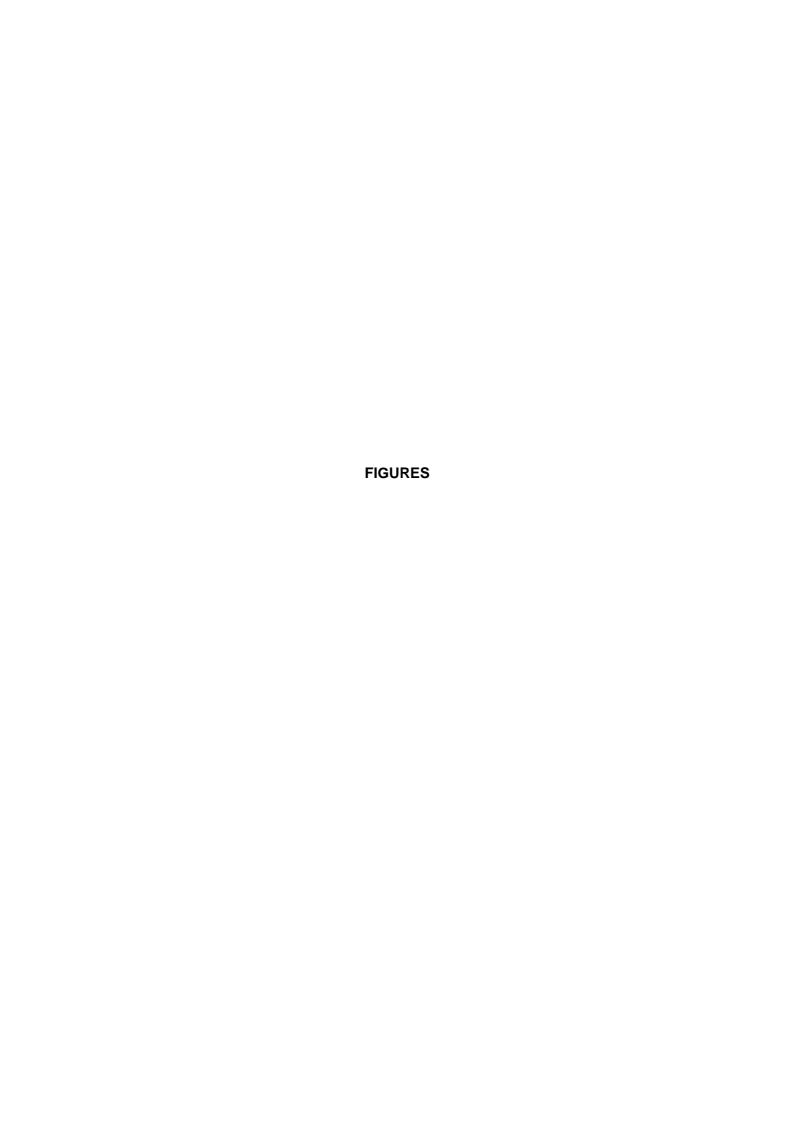
		GEOTECH	NICAL AND ENVIRONMEN el. (01772) 561135 Fax (017	Site ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	Trial Pit Numbe			
Excavation MECHANIC	Method AL EXCAVATOR	Dimens 0.5m x	sions 1.50m x 1.50m	Ground	d Level (mOD	Client WILSON MASON LLP	Job Numbe 5887	
		Locatio	on S PLAN	Dates	3/07/2014	Engineer TRP CONSULTING	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend	
.05-0.15 .05-0.15 .15-0.30	B D* D*					MADE GROUND: grass over dark brown and orange brown mottled gravelly slightly sandy silty clay with many rootlets and roots with low cobble content of quartz. Gravel sized fragments are fine to coarse stone and occasional brick and clinker (topsoil) at 0.30m: possible old brick foundation		
.40-0.60	Б		HV@0.70m, c=105kPa	a	(0.35)	MADE GROUND: dark grey brown, dark brown and orange brown mottled slightly gravelly slightly sandy clay with many rootlets and low cobble content of brick and slag. Gravel sized fragments are fine to coarse stone and occasional brick and clinker	× · · · · · · · · · · · · · · · · · · ·	
.00	D		HV@0.80m, c=98kPa		(0.80)	Firm brown grey brown orange brown and grey gravelly slightly sandy CLAY with occasional roots and lenses of fine to medium sand and with low cobble content of quartz. Gravel is subangular to subrounded fine to coarse quartz, sandstone and siltstone	× · · · · · · · · · · · · · · · · · · ·	
.50	D		HV@1.10m, c=130kPa			Stiff high strength brown and light grey mottled slightly gravelly slightly sandy CLAY with occasional lenses of fine sand and with some relic rootlets. Gravel is subangular to rounded fine to coarse ash, sandstone, siltstone and with low cobble content of quartz. below 1.00m: occasional plant remains	X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	
Plan						Remarks		
•						D* = 1 Plastic Jar Sample, 1 Amber Glass Jar Sample, 1 Vial S taken for chemical testing. Pit sides remained stable and vertical. Trial Pit remained dry.	ample,	
	•					HV = Hand Shear Vane test. Possible old brick foundation encountered between 0.30m and		
						Possible old blick foundation encountered between 0.50m and	1.00m	
						Possible oid blick foundation encountered between 0.50m and	1.00m	
							1.00m	

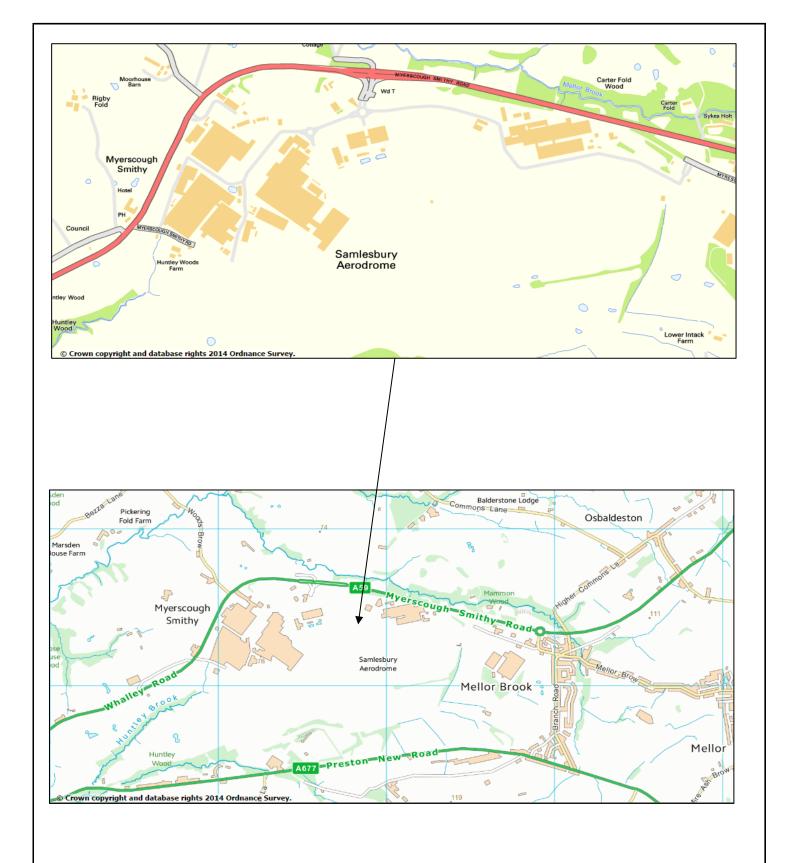

S	SUB SUF		NICAL AND ENVIRONMENTAL	_ CONSULTAN1	rs	Site ENTERPRISE ZONE, TRA	Trial Pit Number	
Excavation MECHANIC		Dimens	el. (01772) 561135 Fax (01772) Sions 1.90m x 1.40m		l Level (mOD)	SAMLESBURY, LANČASH Client WILSON MASON LLP	HIRE	Job Number 5887
		Locatio	on S PLAN	Dates 0	3/07/2014	Engineer TRP CONSULTING		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend kate
0.05-0.20 0.05-0.20 0.20-0.40 0.20-0.40	B		03/07/2014:DRY		- (0.20) - (0.30) - (0.50) - (sandy silty clay with many fragments are fine to coars	mottled slightly gravelly sligh roots and rootlets. Gravel si se stone (topsoil) ey brown and brown mottled ndy silty clay with many root ments are fine to coarse stor	ized
Plan .		•				Remarks D* = 1 Plastic Jar Sample, 1 taken for chemical testing.	Amber Glass Jar Sample, 1	l Vial Sample,
				•		Pit sides remained stable ar Trial Pit remained dry.	nd vertical.	
				•				
						Scale (approx)	Logged By	Figure No.
						1:25	DM/DK	5887.TP3

S	SUB SUR	FACE	•			Site			rial Pit umber
	SITE INVESTIGATION,	GEOTECHI	NICAL AND ENVIRONMENTAL C el. (01772) 561135 Fax (01772) 2		rs .	ENTERPRISE ZONE, TRA SAMLESBURY, LANCASH	AINING FACILITY, BAE HIRE		P3A
Excavatio MECHANI	n Method CAL EXCAVATOR	Dimens 0.5m x	sions 1.90m x 1.40m	Ground	Level (mOD)	Client WILSON MASON LLP		N	ob umber 5887
		Locatio	on S PLAN	Dates 03	3/07/2014	Engineer TRP CONSULTING		SI	heet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leç	Mater Mag
0.40-0.60	В		HV@0.50m, c=129kPa HV@0.75m, c=130kPa		- (0.25) - (0.25) - (0.15) - (0.40) 	sandy silty clay with many fragments are fine to coar. MADE GROUND: dark greating slightly gravelly slightly sa rootlets. Gravel sized fraguand brick Stiff high strength brown of mottled slightly gravelly slightly gravelly slightly sand lenses and occase.	mottled slightly gravelly sligh roots and rootlets. Gravel si se stone (topsoil) ey brown and brown mottled ndy silty clay with many root- ments are fine to coarse stor range brown and occasiona ghtly sandy silty CLAY with s	s and ne I grey some	
1.00	D*				- (1.30)	below 0.60m: brown a	asional plant/root remains a	nd (***)	+ × . - × . - × . - × . - × . - × . - × . - × .
Die			03/07/2014:DRY			Complete at 1.40m			
Plan .		•		•		Remarks D* = 1 Plastic Jar Sample, 1	Amber Glass Jar Sample, 1	Vial Samp	le,
		•				taken for chemical testing. Pit sides remained stable ar Trial Pit remained dry. HV = Hand Shear Vane test			
		•							
						Neder Communication	115	P 1	
						Scale (approx) 1:25	Logged By DM/DK	Figure No.	

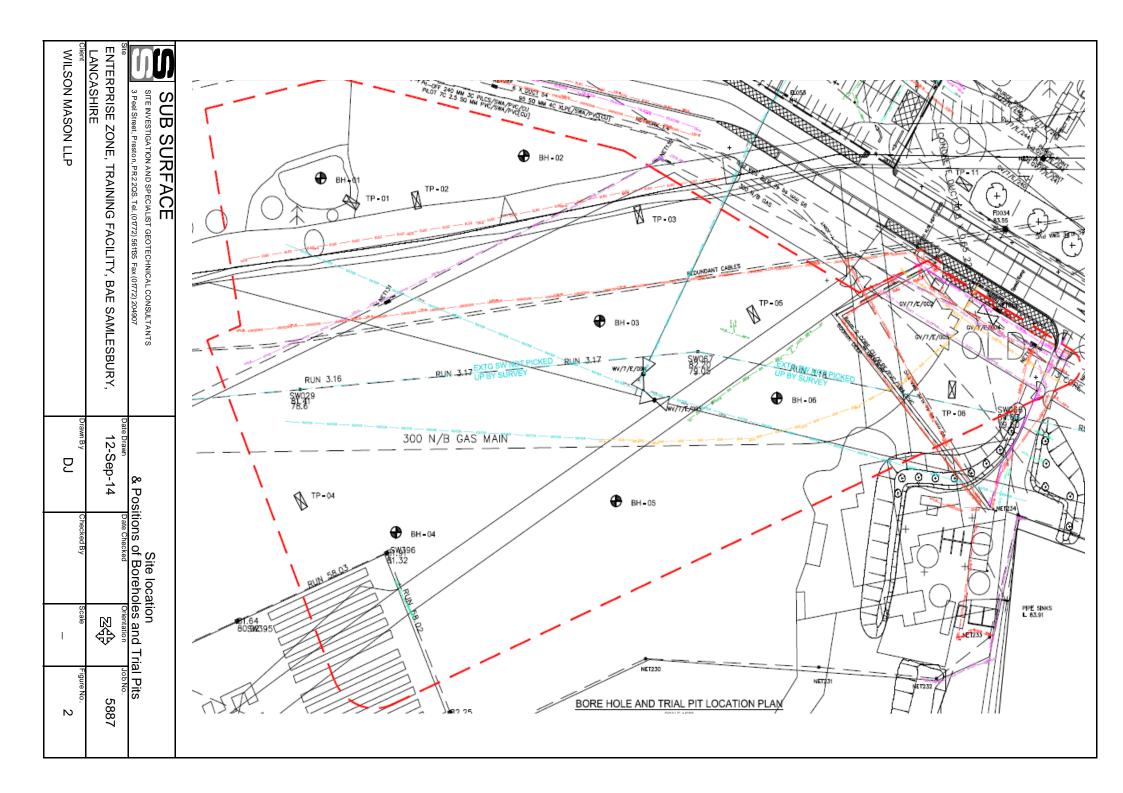

		GEOTECHI	NICAL AND ENVIRONMENTAL el. (01772) 561135 Fax (01772)		·s	Site ENTERPRISE ZONE, TRA SAMLESBURY, LANCASE	AINING FACILITY, BAE HIRE	Trial Num TF	ber	
Excavation MECHANIC	Method AL EXCAVATOR	Dimens 0.50m	sions x 1.40m x 1.20m	Ground	Level (mOD)	Client WILSON MASON LLP		Job Number 5887		
		Locatio	on S PLAN	Dates 02	2/07/2014	Engineer TRP CONSULTING			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Leger	W pi	
0.10-0.30 0.10-0.30 0.30-0.50	B D* B DD D		HV@0.30m, c=105kPa HV@0.60m, c=115kPa HV@0.80m, c=89kPa HV@1.00m, c=117kPa 02/07/2014:DRY		- (0.30) - (0.90) - (0.90) - 1.20	(topsoil). Gravel is subang quartz	rey and orange brown mottled AY with medium roots and rootlets gular to rounded fine to coarse and grey and occasional grey nottled slightly gravelly slightly lole content of quartz. Gravel is e to coarse quartz, sandstone an and light grey mottled with depth	×		
Plan .		•		•		D* = 1 Plastic Jar Sample, 1 taken for chemical testing.	l Amber Glass Jar Sample, 1 Vial	Sample,		
		•		•		Pit sides remained stable ar Trial Pit remained dry. HV = Hand Shear Vane test Soakaway tests undertaken	.			
		•								
						Scale (approx)		ıre No.		
						1:25	DM/DK	5887.TP	4	

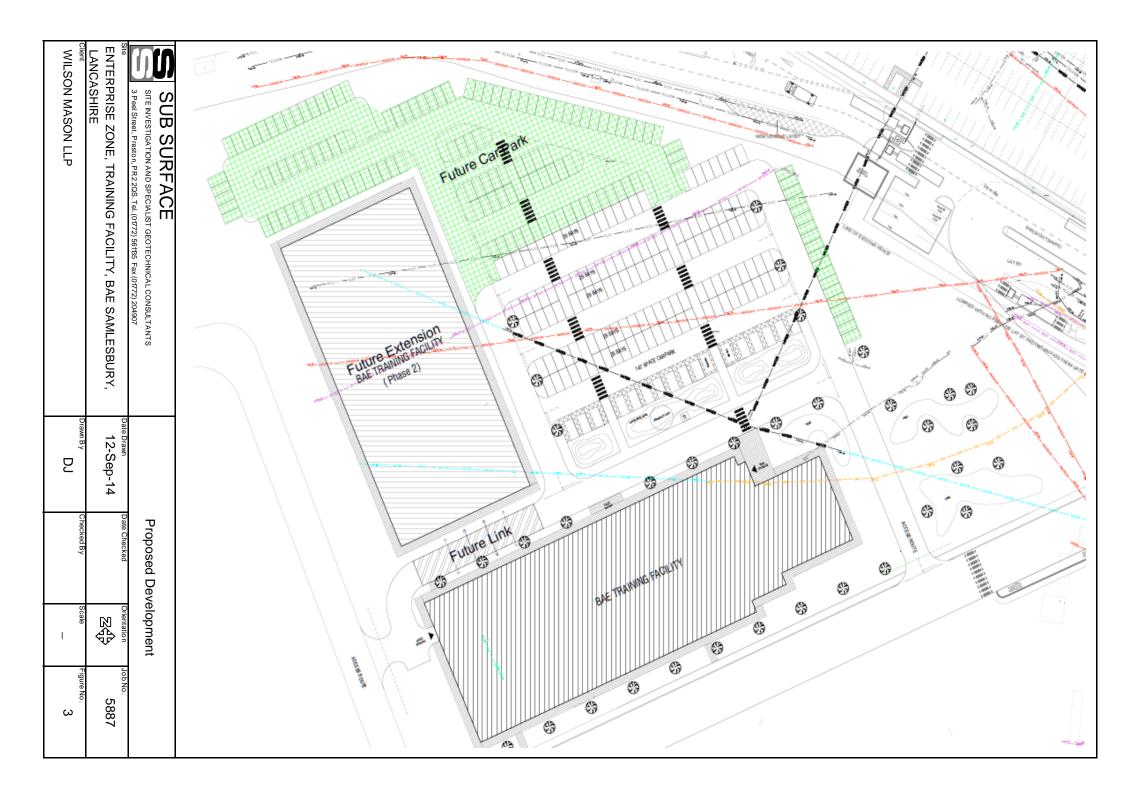
	SUB SUR SITE INVESTIGATION, 3 Peel Street, Preston,	GEOTECH	NICAL AND EN			s	Site ENTERPRISE ZONE, TF SAMLESBURY, LANCAS	RAINING FACILITY, BAE SHIRE	Trial Pit Numbe TP5	
Excavation MECHANIC	Method AL EXCAVATOR		mensions .50m x 1.30m x 1.40m Ground Level (mOD) Client WILSON MASON LLP			Job Number 5887				
		Locatio	on S PLAN		Dates 02	2/07/2014	Engineer TRP CONSULTING		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field	d Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend	
).05-0.20).05-0.20	B D*					(0.20)	TOPSOIL: grass over da mottled slightly gravelly s rootlets. Gravel is suban stone	ork grey brown and orange brow slightly sandy clay with roots an gular to rounded fine to coarse	vn d	
.30-0.50	В		HV@0.40m	ı, c=130kPa			Stiff high strength brown arev mottled gravelly slig	light grey and occasional gree phtly sandy CLAY with low cobb I is subangular to rounded fine e and siltstone	le 🗀 🗀	
			HV@0.70m	ı, c=121kPa		(1.20)	below 0.70m: occasi	ional lenses of green silty sand	X 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
.00	D		HV@1.00m	ı, c=130kPa			at 1.00m: large quar	tz boulder	X	
1.40	D		HV@1.40m 02/07/2014:			1.40			×	
Plan							Remarks			
		•	•		•			1 Amber Glass Jar Sample, 1	Vial Sample	
							Pirastic val Sample, taken for chemical testing. Pit sides remained stable a Trial Pit remained dry. HV = Hand Shear Vane tes Soakway test undertaken of the stable value of the stable va	and vertical.	cample,	
							,			
						<u> </u>	Scale (approx)	Logged By	Figure No.	


S	SUB SUF		NICAL AND ENVIRONMEN	TAL CONSUL	TANTS	S	Site Ti N ENTERPRISE ZONE, TRAINING FACILITY, BAE			
Excavatio HAND EX	3 Peel Street, Preston n Method	PR2 2QS. Te	el. (01772) 561135 Fax (017	772) 204907		Level (mOD)	SAMLESBURY, LANCASH	IIRE		Job Number 5887
		Locatio	n S PLAN	Dat	t es 02/	/07/2014	Engineer TRP CONSULTING		\$	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Le (me	evel OD)	Depth (m) (Thickness)	D	escription	Le	Mater Nage
0.00-0.20	D*					(0.25) - 0.25	slightly sandy silty clay with sized fragments are fine to	ver dark brown slightly graven many roots and rootlets. Go coarse stone and brick (top	ravel soil)	
0.40-0.60	В					(0.15) - 0.40	medium SAND	d grey mottled very clayey fi		
						(0.20) - 0.60	Firm brown, grey and occa with some sand bands and Complete at 0.60m	sional orange brown silty Cl d occasional rootlet remains	LAY × :	
Plan							Remarks			
Plan .		•			•		D* = 1 Plastic Jar Sample. 1	Amber Glass Jar Sample, 1	Vial Sam	ıple,
		٠					taken for chemical testing. Pit sides remained stable an Trial Pit remained dry. Hand excavated due to poss	d vertical.		
		•								
		٠								
		•			•					
						.	Scale (approx)	Logged By	Figure N	lo.
							1:25	DM/DK	5887	7.TP6



SUB SURFACE SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907		Nominal Sec	tion	
Site	Date Drawn	Date Checked	Sheet	Job Number
ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	16/09/2014		1/2	5887
Client	Drawn By	Checked By	Scale	Figure No.
WILSON MASON LLP			1:20[V]	5887.1




SUB SURFACE SITE INVESTIGATION, GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907		Nominal Se	ection	
Site	Date Drawn	Date Checked	Sheet	Job Number
ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	16/09/2014		2/2	5887
Client	Drawn By	Checked By	Scale	Figure No.
WILSON MASON LLP			1:20[V]	5887.1

SUB SURFACE SITE INVESTIGATION AND SPECIALIST GEOTECHNICAL CONSULTANTS 3 Peel Street, Preston, PR2 2QS. Tel. (01772) 561135 Fax (01772) 204907		General Site	Location	
ENTERPRISE ZONE, TRAINING FACILITY, BAE SAMLESBURY, LANCASHIRE	12/09/2014	Date Checked	Orientation	Job No. 5887
WILSON MASON LLP	Drawn By DJ	Checked By	Scale —	Figure No.

