	Project: Former	Clitheroe Hospital		Lo	cation Deta	ils		S	Status	Pit N	umber
wa.	Location: Clithero	2	Level:		North Depth	ing: i: 3.10	Dm		λ	т тр	102
	Client: NHS Pro	nerty Services I td	Logger:	NS	Type:	TP			VI		
										Sheet	t 1 of 1
	Pit Dimensions	Orientation: 90°	Strike	(m)	Rose To (m)	Afte	vater er (mins)	R	emarks	Checked By:	1:25 SH
		Shoring: Not required	2.30)	2.30		20			Approved By:	RAJ
	0.97m	Stability: Stable								Start Date:	01/02/2017
	3.00m	Plant: Tracked Excavator								Finish Date:	01/02/2017
	Strata I	Description	Legend	Depth (m	Reduced 1) Level (mAOD)	Water Level (m)	Backfill	Depth (m)	Ref	Tests / Result	's
MADE GROUND: gravel of brick, c Firm orangish bro cobble content. S medium mudstor	Grass over dark brown eramic, timber and roo own slightly silty slightly Sand is fine to medium ne, limestone, coal and	slightly silty sandy gravelly CLAY with tlets. sandy slightly gravelly CLAY with low Gravel is angular to sub-rounded fine to shale.		0.39				0.20 0.20 0.50 0.55	D ES ES D	PID 0.20m, 0.0ppm PID 0.50m, 0.0ppm	
								0.90	D	PID 1.00m, 0.0ppm	1
- Below 2.20m by Brown clayey ver angular sandstor	gl - high cobble content of mu ry gravelly SAND. Grave ne.	<i>istone.</i> el is of fine to coarse angular to sub-		2.30				1.90 2.40	D		2
Grey slightly clay limestone, mudsl	rey sandy GRAVEL of a tone, quartzite, sandsto H at 3.10m - Terminated a	ngular to rounded fine to coarse one and shale. s possible bedrock encountered.		2.80				2.90	D		3-
]							5 -
Ubservations / Re	emarks page at 2.30m bgl. 2. On o	completion excavation was backfilled with arising	s.								
										Project Nur A0949	nber 39

	Project: F	ormer C	litheroe Ho	ospital		Loo	cation Deta	ails		5	tatus		Pit Nu	mber
wg.	Location: C	litheroe			Level:		North Depth	ing: 1: 2.60)m		RAF	т	TP1	.04
00	Client:	HS Pron	erty Servi	res I tri	Logger:	NS	Type:	ТР			VU	•		
													Sheet	1 of 1
	Pit Dimens	sions	Orientation:	90°	Strike (m)	Rose To (m)	Afte	vater er (mins)	R	emarks		Checked By:	1:25 SH
			Shoring:	Not required	2.60		2.37		20			,	Approved By:	RAJ
		1.00m	Stability:	below.								5	Start Date:	01/02/2017
	3.00m		Plant:	Tracked Excavator								Samples	and Testing	01/02/2017
		Strata De	escription		Legend	Depth (m)	Level (mAOD)	Water Level (m)	Backfill	Depth (m)	Ref		Tests / Results	
MADE GROUND: slightly gravelly (to sub-rounded b	Grass over sof CLAY. Sand is f prick, ceramic,	t to firm c ine to me sandstone	dark brown s dium. Grave e, mudstone	slightly sandy slightly silty I is fine to medium angular and shale.		0.44				0.20	ES D	PID 0.20m,	0.0ppm	
Soft orangish bro Sand is fine to m sandstone, limes	own slightly gra ledium. Gravel tone, shale, m	avelly very is fine to udstone a	/ sandy CLA` medium sub nd coal.	Y. with low cobble content. -angular to rounded						0.50 0.60 0.90 1.00	ES D D ES	PID 0.50m, PID 1.00m,	0.0ppm 0.0ppm	1-
Greyish brown si content. Cobbles	lty gravelly fine of sub-angula	e to coarso r to sub-ro	e SAND with	low cobble and boulder e, and limestone. Boulders		2.30				1.90	D			2-
EOF	a sub-rounded	ninated as	possible bedr	rock encountered.		2.60								3-
														- - - 4 -
										-				
Observations / Re	marks													-
1. Groundwater enco	ountered at 2.60	m bgl. 2. O	n completion	excavation was backfilled with aris	sings. 3. Tr	ial pit uns	table below	2.10m t	ogl.					
													Project Num	ber
													A09493	9

	Project: F	ormer Cl	itheroe Ho	spital		Lo	cation Deta	ails		S	tatus		Pit Nu	Imber
wg.	Location: C	litheroe			Level:		North Depth	ing: 1: 2.9	Om		RAF	т	TP1	L 05
	Client: N	IHS Pron	orty Sorvig	oos I td	Logger:	NS	Type:	TP			vu	•		
													Sheet	1 of 1
	Pit Dimens	sions	Orientation:	90°	Strike (m)	Rose To (m)	Srounav Afte	vater er (mins)	R	emarks		Scale: Checked By:	1:25 SH
		-	Shoring:	Not required	2.85		2.85		20				Approved By:	RAJ
		0.90m	Stability:	Stable									Start Date:	01/02/2017
	3.00m		Plant:	Tracked Excavator								Sample	Finish Date:	01/02/2017
		Strata De	scription		Legend	Depth (m	i) Reduced Level (mAOD)	Water Level (m)	Backfill	Depth (m)	Ref	Gampi	Tests / Results	
MADE GROUND: fine to medium. ceramic, sandsto Firm orangish bricontent. Sand is coarse coal, shal to sub-rounded r	Soft to firm da Gravel is fine to ne, coal and m own sightly silty fine to medium e, mudstone, si mudstone and li <u>IMESTONE (pos</u> 1 at 2.90m - Term	Strata De rk brown o medium udstone. I sightly o . Gravel is andstone imestone.	escription slightly grav sub-angular Frequent roo gravelly sam s sub-angula and limesto	relly sandy CLAY. Sand is r to sub-rounded glass, otlets. dy CLAY with low cobble ar to sub-rounded fine to ne. Cobbles of sub-angular		Depth (m	Reduced Level (mAOD)	Water Level (m)	Backfill	Depth (m)	Ref D ES D D	PID 0.20m	s and Testing Tests / Results	2-
Observations / Re	emarks				1	I		1	I	1	I	-		
1. Groundwater see	page at 2.85m bg	gl. 2. On co	ompletion exc	avation was backfilled with arising	s.									
													Project Num A09493	ber 9

	Project: Form	ner Clitheroe H	lospital		Lo	ocation Deta	ails		9	Status		Pit Nu	mber
wa.	Location: Clith	eroe		Easting:		North Denth	ing: n: 2.1(0m	וח		т	TP1	06
00		Bronorty Som	icos I td	Logger:	NS	Type:	ТР			V	•		
		Property Serv										Sheet 1	1 of 1
	Pit Dimensions	Hole Infor	mation 90°	Strike ((m)	Rose To (m)	Sroundv	vater er (mins)	R	emarks		Scale: Checked By:	1:25 SH
		Shoring:	Not required	2.10)	2.10		20				Approved By:	RAJ
	0	.95m Stability:	Stable									Start Date:	01/02/2017
	3.00m	Plant:	Tracked Excavator								Sampler	Finish Date:	01/02/2017
	Str	ata Description		Legend	Depth (r	n) Reduced Level (mAOD)	Water Level (m)	Backfill	Depth (m)	Ref	Jampies	Tests / Results	
MADE GROUND: CLAY. Sand is fin rounded limestor	Grass over soft to e to medium. Grav ne, mudstone, brick	firm dark brown el is fine to med <, coal and shale	slightly gravelly silty sandy ium sub-angular to sub- . Frequent rootlets.		0.38				0.20 0.20	DES	PID 0.20m,	0.0ppm	
Sand is fine to m sandstone, muds	edium. Gravel is si tone, shale and lin	ub-angular to su hestone.	b-rounded fine to medium		- - - - - - - - - - - - - - - - - - -				0.50 0.70	ES D	PID 0.50m,	0.0ppm	
					- - - - - - - - - - - - - - - - - - -				1.00	ES	PID 1.00m,	0.0ppm	1
- Below 1.50m b <u>v</u>	gl - Limestone boulders				- - - - - - - - - - - - - - - - - - -				1.50	D			
							_		2.00	D			2 -
													3-
													4
													-
													-
					1								5 —
Observations / Re 1. Groundwater seep	e <mark>marks</mark> page at 2.10m bgl. 2	. On completion ex	cavation was backfilled with arising	IS.									
												Project Numb	per
												A09493	9
L											1		

		Project:	Fo	ormer Clitheroe	Hospital					Locatio	on D	etails	;			Status		Borehole N	lumber
ω	yg.	Location:	Cl	itheroe				Easting: Level:			No De	rthing: pth:	3.72m	1		DRAFT		WS1	01
	00	Client	NI	HS Property Se	nvices I td			Logger:	LD		Тур	pe:	WLS			DIVIT		1101	<u> </u>
		Client:		ns Property Se							Inc	clinatior	1: °					Sheet 1	of 1
From (m)	To (m)	Metho Type	od, Pla	Plant Used	Crew	Diai Depth (m	Diam	Ca: Depth(m)	Diam	Strike	Casing	Sealed	G I Rose To		ter	Remarks	Sca	le: ecked Bv:	1:25 SH
0.00 1.20	1.20 3.72	Inspection Pit Window Sampler		Insulated hand tools Dynamic Sampling Rig	DS UK DS UK	1.20 2.00	200 97		(mm)	2.20	-	- (m)	2.20	20			Ар	proved By:	RAJ
						3.00 3.72	87 77										Sta	rt Date:	02/02/2017
																Com	Fin	sh Date:	02/02/2017
			S	Strata Description	ı			Legend	Depth (m)	Reduced Level	d v	Vater vel (m)	Inst / Backfill	Dopth (m	Dof	Sain	Torte	/ Results	
MADE	GROUND:	Soft dark brow	n slig	htly sandy slightly	gravelly CLAY with ro	otlets. S	Sand is			(<u></u>			Depar (iii	,		1000	, results	
fine to	coarse. G	ravel is fine to o	coars	e mudstone.															
																			-
														0.40	ES	PID 0.40m, 0).0ppm		-
Firm b	rown sligh	tly gravelly san	dy CL	AY. Gravel is fine t	o coarse angular to s	ub-roun	ded		0.50			•							-
muusu	one. Sanu		е.									•							-
												•		1					-
												•	8						-
																			1-
														1.20	D	SPT(S) 1.20r	n, N=11 (2,2/	2,3,3,3)	-
											•								
												•		1.40	ES	PID 1.40m, 0).0ppm		-
																			-
																			-
- 1	Between 1.8	0m and 2.00m bg	l - Sof	t															-
												•		2.00	D	SPT(S) 2.00r	n. N=12 (2.3/	2,3,3,4)	- - 2 -
														2.00		51 1(5) 21001	., (2,5)		-
														}					-
												•							-
												•							-
																			-
												•							-
- 1	Below 2.80n	n bgl - slightly san	dy									•							
-,	At 3.0m bgl	- Stiff												3.00	D	SPT(S) 3.00n	n, N=20 (2,3/	5,4,5,6)	3 -
	5																		-
																			-
												٠	÷ – ÷						-
									3 70							CDT(C) 2 70-	- 50 (25 /50	,	-
Brown	ish grey M EC	UDSTONE (pos DH at 3.72m - T	sible ērmii	bedrock). nated as possible t	pedrock encountered	J.	/		3.72							SP1(S) 3.70	n, 50 (25,/50,)	-
																			-
																			4 -
																			-
																			-
																			-
																			-
																			-
																			-
																			-
												[1	5-
Ubserva 1. Inspe	ations / Re ection pit F	emarks nand excavated	to 1	.20m bal prior to dr	illing. 2. Groundwate	er seena	je enco	intered a	t 2.20m	bgl. 3	.Upo	n	From (m)	To (m)	Diam (mm)	g Kuns Recovery %	Remarks	Serial No.	Energy Ratio %
comple	tion explor	atory hole insta	alled v	with 50mm diameter	er standpipe to 3.50n	n bgl.				5 5.		ŀ	1.20	2.00 3.00 2.72	97 87 77	100 100 100	-	SM110.44	85
													5.00	3.72	//	100		Project	I Number
																			4020
																		A09	4939

		Project:	Fo	rmer Clitheroe	Hospital			I	Locatio	n D	Details	;			Status		Bore	hole N	umber	
ω	ya	Location:	Cli	itheroe				Easting:			No De	orthing:	4.45n	n			-	、	NS10	17
	00	Client	NIL	IC Drenarty Co	wiege I tel			Logger:	LD		Ту	pe:	WLS	-					1010	
		Client.									Inc	clinatior	n: °					Sł	eet 1 o	of 1
From (m)	To (m)	Type	od, Pla	Plant Used	Crew	Diar Depth (m)	Diam	Cas Depth(m)	Diam	Strike C	Casing	g Sealed	I Rose To	Time	ter	Remarks		Scale: Checked By	:	1:25 SH
0.00 1.20	1.20 4.45	Inspection Pit Window Sampler	r	Insultated hand tools Dynamic Sampling Rig	DS UK DS UK	1.20 2.00	200 97		(mm)	1.80	-	-	1.80	20				Approved B	y:	RAJ
						3.00 4.45	87 77											Start Date:		02/02/2017
																C.		Finish Date:		02/02/2017
			S	trata Description				Legend	Depth (m)	Reduced Level (mAOD)	V Lev	Vater vel (m)	Inst / Backfill	Denth (m) Ref	30	anipies and	Tests / Results		
MADE	GROUND	: Grass over soft	t dark	brown slightly san	dy slightly gravelly C	LAY. Gra	avel is			(Depar (ii	.,					
fine to	coarse ar	ngular to sub-an	ıgular	mudstone and glas	ss. Sand is fine to co	arse.								0.20	FS		n 0.800m			
														0.20		110 0.20	n, o.oppin			
Soft br	own sligh	itly gravelly sand	dy CL/	AY. Gravel is fine to	coarse sub-angular	to round	ded		0.40											
mudst	one. San	d is fine to coars	se.											0.50	ES	PID 0.50r	n, 0.2ppm			-
												4	•]							
																				1-
												1.20	D	SPT(S) 1.	20m, N=4 (2	2,1/1,1,1,1)				
														1.50	EC	BID 1 50r	n 4 4nnm			
													1.50		110 1.50	n, n. ippin				
											-									
														2.00	D	SPT(S) 2.	00m, N=10	(2,2/2,2,3,3)		- - 2 -
At	2.00m bgl	- Stiff										•						(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>د</u> .
												•								
												•								
													8							-
																				-
At	· 3 00m hal	- Firm										1	·• -].•	3.00	D	SPT(S) 3.	00m, N=14	(2,2/3,3,3,5)		3 -
7.0	Sieeni ogi																			
																				-
																				•
At	4.00m bgl	- Stiff												4.00	D	SPT(S) 4.	00m, N=27	(6,6/6,7,8,6)		4 -
								· · · · · · · · ·	1 45											-
	E	OH at 4.45m - T	Fermir	nated borehole as i	reached target depth	1.			5											-
							1											5 -		
Observa	ations / R	emarks hand excavated	to 1	20m bal prior to dr	illing, 2. Groundwate	Intered a	t 1.80m	bal. 3. I	Uno	n	From (m)	To (m)	Samplin	g Runs	Remark	ha الa	mmer I	nformation		
complet	tion explo	ratory hole insta	alled v	with 50mm diamete	r standpipe to 3.00n	i bgl.	,	cu a	1.00111	Jgi. J. (5 PU		1.20 2.00	2.00 3.00	97 87	70 70	Kendf	SM	110.44	85
													3.00	4.45	77	90		\vdash	Proiect	Number
																			A094	1939

		Project:	Fo	ormer Clitheroe	Hospital				I	Locatio	on D	etails	6			Status		Bor	ehole N	umber
ω	ya.	Location.	CI	itheroe	-			Easting:			No De	rthing: oth:	4.01m	,			-		WS10	זו
	00	Client	NIL		ndaaa l td			Logger:	LD		Ту	pe:	WLS							,5
		Client:		ns Property Se							Inc	linatio	n: °					S	heet 1	of 1
From (m)	To (m)	Metho	od, Pla	ant and Crew	Grow	Diar	neter Diam	Ca	sing Diam	Strike (Casing	Seale	d Rose To	Time	ter	Romarka		Scale:	h	1:25
0.00	1.20 4.02	Inspection Pit Window Sampler		Insulated hand tools	DS UK DS UK	1.20 2.00	(mm) 200 97	Depth(III)	(mm)	(m) 2.20	(m) -	(m) -	(m) 2.20	(mins) 20		Reliarks		Approved	by: By:	RAJ
				-,		3.00 4.02	87 77											Start Date	:	02/02/2017
											-							Finish Dat	e:	02/02/2017
			S	Strata Description	1			Legend	Depth (m)	Reduced Level	I V	Vater	Inst / Backfill			Sa	amples an	d Testing		
MADE		Grace over Sof	t darl	k brown cliabtly con	dy clightly grouply (avol ic			(mAOD)			buckin	Depth (m) Ref			Tests / Result	s	
MADE angula	GROUND: ar to sub-ro	Grass over Sof	t dark coarse	A brown slightly san	and pottery. Sand is t	fine to co	avel is barse.		0.40					0.20 0.25	ES D	PID 0.20n	n, 0.2ppm			-
mudst	one. Sand	is fine to coarse	e.			ub-iouii	ueu		1					0.50	ES	PID 0.50n	n, 0.2ppm			-
									1											:
									1			•								
												•								1 -
													8	1.20	D	SPT(S) 1.	20m, N=4 (1.1/1.1.1.1)		-
- /	Between 1.3	0m and 2.00m bo	ıl - Sot	9																
	500000000000000000000000000000000000000	om and 2100m by					· · · · · · · ·													
													1.50	ES	PID 1.50n	n, 0.0ppm			-	
																				-
													E.	2.00	D	SPT(S) 2.	00m, N=26	(3,5/6,6,7,7)		2 -
- 1	Below 2.10n	n bgl - Stiff and gr	avelly	of fine to coarse muds	stone.															
												•								-
									1			•		•						
									-			•								-
								· · · · · · · · · · · · · · · · · · ·	1			1								
												1								
									•			•								
														3.00	D	SPT(S) 3.	00m, N=18	(3,3/4,4,5,5)		3 -
												•								
													H							
																				-
														4.00	_	SPT(C) A	00m 50 (25	5 /50		
	EC)H at 4.01m - T	ermi	nated borehole as	reached target depth	ı.			4.02					4.00		SP1(5) 4.	uum, 50 (25	o,/50,,,)		4-
																				-
																				-
							-			ļ		4						5 -		
Ohsen	ations / Re	marks										L,	Samplin	A Rune		н	ammer T	nformation		
1. Insp	ection pit l	and excavated	to 1.	.20m bgl prior to dr	illing. 2. Groundwate	er encour	ntered at	2.2m b	gl. 3. Up	on com	pleti	ion	From (m)	To (m)	Diam (mm)	Recovery %	Remar	rks S	ierial No.	Energy Ratio %
explora	tory hole i	nstalled with 50)mm	diameter standpipe	to 3.50m bgl.								1.20 2.00 3.00	2.00 3.00 4.02	97 87 77	100 100 100		S	M110.44	85
																			Project	Number
																			A00-	1020
																			AU94	マフング

		Project:	Fo	rmer Clitheroe	Hospital					Locatio	n D	etails	;			Status		Boreho	le Number
a	Va	Location:	Clif	theroe	·			Easting:			Nor	rthing: nth	4 45m				-	w/	5104
	00	Clienty		IC Drowents Co				Logger:	LD		Тур	pe:	WLS						5104
		Client:	NH	IS Property Se	rvices Ltd					r	Inc	linatior	1: °					Shee	t 1 of 1
From (m)	To (m)	Metho	od, Pla	Int and Crew	Crow	Dia	Diam	Ca:	sing Diam	Strike	Casing	Sealed	G I Rose To	Time	er	Pemarks		Scale:	1:25
0.00	1.20 4.45	Inspection Pit Window Sampler		Insulated hand tools Dynamic Sampling Rig	DS UK DS UK	1.20 2.00	(mm) 200 87	Depth(III)	(mm)	(m) 2.20	(m) -	(m) -	(m) 2.20	(mins) 20		Kemarka		Approved By:	RAJ
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3.00 4.45	77 67											Start Date:	02/02/2017
											-							Finish Date:	02/02/2017
			S	trata Descriptior	1			Legend	Depth (m)	Reduced	W Lev	Vater vel (m)	Inst / Backfill			Si	amples and	Testing	
Grass	over TOP	SOIL: Dark brow	n slia	htly sandy Clay wit	th roots and rootlets.	Sand is	fine to			(MAOD)	-			Deptn (m)	Ker		I	ests / Results	
coarse	2.					ound is													
									0.30					0.20	ES	PID 0.20r	n, 0.0ppm		
Soft b to coa	rown sligh rse muds	ntly gravelly sligh tone. Sand is fine	ntly sa e to co	ndy CLAY with gra parse.	vel of angular to sub	-angula	r fine		0.50										
														0.50	ES	PID 0.50r	n, 0.0ppm		-
												1	· .]					
												•							1 -
													8	1.20	D	SPT(S) 1.	20m, N=8 (2	,2/2,2,2,2)	
	Between 1.	20m and 3.00m bg	i - Firm	1															
														1.50	ES	PID 1.50r	n, 0.0ppm		-
														2.00		CDT(C) 2	00 N 12 (1 1 /2 4 2 2	
														2.00		SP1(S) 2.	00m, N=12 (1,1/2,4,3,3)	2-
												•		}					
																			-
4	t 3 00m ha	l - Stiff												3.00	D	SPT(S) 3.	00m, N=19 (3,4/4,5,4,6)	3 -
A.	. S.OOM Dyi	- 3011										•							
																			-
												•		1					
												•		1					
A	t 4.00m bgi	l - Very stiff										4		4.00	D	SPT(S) 4.	00m, N=34 (5,6/6,5,13,10)	4 -
		011-01-1-1-		ated brock 1	an all and the set of the set				4.45										
	E	он at 4.45m - T	ermin	aleu porenole as	reached target depti	ι.													-
														4					5 -
Observ	ations / R	emarks												c	 Samplin	a Runs		Hamn	Jer Information
1. Insp	ection pit	hand excavated	to 1.2	20m bgl prior to dr	illing. 2. Groundwate	er encou	ntered a	t 2.2m b	gl. 3. Up	on com	pleti	on	From (m)	To (m)	Diam (mm)	Recovery %	Remark	s Serial I	No. Energy Ratio %
explora	llory hole	installed with 50	umm d	nameter standpipe	το 4.00m bgl.								1.20 2.00 3.00	2.00 3.00 4.45	87 77 67	100 80 80		SM110	.44 85
																		Pro	ject Number
																		Δ	094939
1																		1	

		Project:	Fo	rmer Clitheroe	Hospital					Locatio	n D	etails	S			Status		Bore	ehole N	umber
a	UQ.	Location:	CI	itheroe	•			Easting:			Nor	rthing:	2 82m				F		WS10	15
	00	Cliente						Logger:	LD		Тур	pei:	WLS	1			l		WSI(5
		Client:	N	IS Property Se	rvices Ltd						Incl	linatio	n: °					S	heet 1	of 1
		Metho	d, Pla	ant and Crew	<u> </u>	Diar	neter Diam	Ca	sing Diam	Strike (Casing	Sealer	G d Rose To	roundwa	ter			Scale:		1:25
0.00	1.20 2.82	Inspection Pit Window Sampler		Insulated hand tools	DS UK	1.20 2.00	(mm) 200 97	Deptn(m)	(mm)	(m)	(m)	(m)	(m)	(mins)		Remarks		Approved E	y: By:	RAJ
1.20	2.02	Window Sampler		Dynamic Sampling Rig	55 61	2.82	87											Start Date:	;	02/02/2017
											-							Finish Date	e:	02/02/2017
			S	Strata Description				Legend	Depth (m)	Reduced Level	W	/ater	Inst /			Sa	amples an	d Testing		
6	TOP					1. 6		- 		(mAOD)	Levi	er (III)	Dackilli	Depth (m	i) Ref			Tests / Results	5	
Grass coarse	over TOPS 2. prown sligt e mudstond etween 2.00	OIL: Firm dark tly sandy slightl Sand is fine to Sand is fine to m and 2.82m bgl	brow y gra o coa	vn slightly sandy Cl velly CLAY. Gravel rse. <i>stiff</i>	ay with rootlets. San	d is fine gular fine	to e to		0.30					0.20	ES D ES D	PID 0.20n SPT(S) 1 PID 1.50n SPT(S) 2.1	n, 0.0ppm 20m, N=8 (n, 0.0ppm 00m, N=33 80m, 50 (2!	(5,6/5,6,10,12 5,/50,,,)	2)	2-
Observ 1. Insp explora	ations / Re ection pit itory hole	emarks hand excavated nstalled with 50	to 1.	20m bgl prior to dr diameter standpipe	illing. 2. Groundwate to 2.50m bgl.	r was no	ot observ	ved. 3. U	pon corr	pletion		-	From (m) 1.00 2.00	To (m) 2.82	Samplin Diam (mm) 97 87	g Runs Recovery % 100 90	Rema	rks St St	ammer I erial No. M110.44 Project A09 4	4 – 5 – nformation Energy Ratio % 85 Number 4939

		Proiect:	Fo	ormer Clitheroe	Hospital					Locatio	n D	Details	6			Status		Bor	ehole N	umber
	ua	Location		itheree				Easting:			No	orthing:	4 45m				-		W610	16
	00	Location		itherbe				Logger:	LD		Ту	pe:	WLS	'		DRAF			WSI	0
		Client:	Ν	HS Property Se	rvices Ltd						Inc	clinatio	n: °				-	S	heet 1	of 1
		Meth	nod, Pl	ant and Crew	1	Diar	neter	Ca	sing	Chrilton	Casiaa	- Coolo	G	roundwat	ter			Scale:		1:25
From (m) 0.00	To (m) 1.20	Type Inspection Pi	t	Plant Used Insulated hand tools	Crew DS UK	Depth (m) 1.20	(mm) 200	Depth(m)	(mm)	(m)	(m)	y Seale (m)	(m)	(mins)		Remarks		Checked E	iy:	SH
1.20	4.45	Window Samp	ler	Dynamic Sampling Rig	DS UK	2.00 3.00 4.45	97 87 77											Start Date	ву: :	RAJ 02/02/2017
																		Finish Dat	e:	02/02/2017
					1					Reduced	ı v	Nator	Inst /			Si	amples and	d Testing		
				Strata Description				Legend	Depth (m)	(mAOD)	Lev	vel (m)	Backfill	Depth (m) Ref		1	Tests / Result	s	
MADE	GROUND	Asphalt																		
MADE	GROUND	Greyish black	sandy	angular LIMESTON	IE. Sand is fine to co	arse.			0.15					0.20	ES	PID 0.20r	n, 0.3ppm			
																				-
Firm b	rown sligł	tly gravelly sa	ndy Cl	AY. Gravel is angul	ar to sub-angular fin	e to coa	rse		0.40											-
mudst	one. Sand	is fine to coar	se.											0.50	ES	PID 0.50r	n, 0.4ppm			-
														}						-
													• •							1-
														1.20	P	SPT(S) 1	20m, N=6 (1	1,1/2.1.1.2)		· ·
-,	At 1.20m bg	ıl - Soft																	-	
													1.50	ES	PID 1.50r	n, 0.0ppm			-	
																			-	
																				-
																				-
B	etween 2.00	m and 4.45m bg	n/ - Stiff											2.00	D	SPT(S) 2.	00m, N=20	(3,2/4,6,4,6)		2 -
																				-
														1						-
													*.°⊢.∘							-
																				-
																				-
														3.00	D	SPT(S) 3.	00m, N=26	(7,5/5,5,6,10)	3 -
																				-
																SPT(S) 4.	00m, N=17	(3,3/5,4,4,4)		4 -
																				-
	E	OH at 4.45m -	Termi	nated borehole as i	reached target dept		<u>'*' • ' * '</u>	4.45											-	
														[
												-						5 -		
Observ	ations / Re	emarks													 Samplin	l Ig Runs		н	ammer I	nformation
1. Insp	ection pit	hand excavate	ed to 1	.20m bgl prior to dr	illing. 2. Groundwate	er was no	ot observ	/ed. 3. U	pon com	pletion			From (m)	To (m)	Diam (mm)	Recovery %	Remar	ks S	erial No.	Energy Ratio %
explora	IOLA LOIA	Instanted with !	Joun	ulameter standpipe	to 2.50m byl.								1.20 2.00 3.00	2.00 3.00 4.45	97 87 77	100 100 100		S	M110.44	85
																			Project	Number
																			800	1070
																			AU3'	7337

Appendix C – Geo-chemical Laboratory Test Results

WYG

Quay West at MediaCityUK

Trafford Wharf Road

Trafford Park Manchester M17 1HH

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention : Sara Hegewald Date : 15th February, 2017 Your reference : A094939 Test Report 17/3294 Batch 1 Our reference : Location : **Clitheroe Community Hospital** Date samples received : 2nd February, 2017 Status : Final report Issue : 1

Sixteen samples were received for analysis on 2nd February, 2017 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

6 June

Bruce Leslie Project Co-ordinator

Client Name:
Reference:
Location:
Contact:
IE Joh No i

Clitheroe Community Hospital Sara Hegewald 17/3294

A094939

WYG

Report : Solid

SE 500 NO.:	17/5254								_		
J E Sample No.	10-12	16-18	19-21	25-27	37-39	40-42					
Sample ID	TP101A	TP102	TP102	TP104	TP105	TP106					
Depth	0.20	0.20	0.50	0.20	0.50	0.20			Disease		
COC No / misc									abbrevi	ations and a	cronyms
Containara	VIT	VIT	VIT)/ I T	VIT					
Containers	VJI	VJI	VJI	VJI	VJI	VJI					
Sample Date	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1				Linito	Method
Date of Receipt	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017			LOD/LOK	OTINS	No.
Arsenic #M	18.6	10.8	10.6	27.2	13.4	22.6			<0.5	mg/kg	TM30/PM15
Cadmium ^{#M}	0.7	0.5	0.3	0.8	0.7	0.9			<0.1	mg/kg	TM30/PM15
Chromium ^{#M}	68.4	60.1	48.5	56.1	46.7	59.2			<0.5	mg/kg	TM30/PM15
Copper #M	59	23	19	49	24	40			<1	mg/kg	TM30/PM15
Lead ^{#M}	173	92	32	409	43	181			<5	mg/kg	TM30/PM15
Mercury #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Nickel ^{#M}	33.7	19.9	35.3	33.2	29.5	36.6			<0.7	mg/kg	TM30/PM15
Selenium ***	2	<1	2	1	2	2			<1	mg/kg	TM30/PM15
Vvater Soluble Boron ***	199	122	108	1.0	0.5	1.3			<0.1	mg/kg	TM30/PM15
Zinc	100	122	108	244	101	207			~3	ilig/kg	1100/11010
PAH MS											
Naphthalene ^{#M}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Phenanthrene #M	0.24	0.14	<0.03	0.15	0.05	0.05			<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Fluoranthene #M	0.41	0.44	<0.03	0.38	0.06	0.19			<0.03	mg/kg	TM4/PM8
Pyrene #	0.34	0.39	<0.03	0.33	0.05	0.17			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	0.22	0.26	<0.06	0.22	<0.06	0.13			<0.06	mg/kg	TM4/PM8
Chrysene ***	0.20	0.20	<0.02	0.21	0.03	0.12			<0.02	mg/kg	
Benzo(a)pyrepe [#]	0.20	0.39	<0.07	0.29	<0.07	0.20			<0.07	ma/ka	TM4/PM8
Indeno(123cd)pyrene #M	0.11	0.18	<0.04	0.11	<0.04	0.11			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.09	0.15	<0.04	0.10	<0.04	0.09			<0.04	mg/kg	TM4/PM8
PAH 16 Total	2.0	2.5	<0.6	2.0	<0.6	1.2			<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.19	0.28	<0.05	0.21	<0.05	0.14			<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.07	0.11	<0.02	0.08	<0.02	0.06			<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	105	107	109	107	107	111			<0	%	TM4/PM8
				0							THEFT
Methyl Tertiary Butyl Ether "	-	-	-	<2	-	-			<2	ug/kg	TM15/PM10
Benzene	-	-	-	<3	-	-			<3	ug/kg	TM15/PM10
Ethylbenzene #	-	-	-	<3	-	-			<3	ug/kg	TM15/PM10
p/m-Xvlene #	-	-	-	<5	-	-			<5	ug/kg	TM15/PM10
o-Xylene [#]	-	-	-	<3	-	-			<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	-	-	109	-	-			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	-	-	94	-	-			<0	%	TM15/PM10
EPH >C8-C10 ^{#M}	<5	<5	<5	<5	<5	<5			<5	mg/kg	TM5/PM8
EPH >C10-C12 #M	<10	<10	<10	<10	<10	<10			<10	mg/kg	TM5/PM8
EPH >C12-C16 #M	<10	<10	<10	<10	<10	<10			<10	mg/kg	TM5/PM8

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Clitheroe Community Hospital Sara Hegewald 17/3294

WYG

A094939

Report : Solid

	17/3234								_		
J E Sample No.	10-12	16-18	19-21	25-27	37-39	40-42					
Sample ID	TP101A	TP102	TP102	TP104	TP105	TP106					
Depth	0.20	0.20	0.50	0.20	0.50	0.20			Diogen se	- ottoched r	-too for all
COC No / misc									abbrevi	e attached n ations and a	otes for all
Containers	VIT	VIT	VIT	VIT	VIT	VIT			l		
Comula Data	V J 1	V J 1	V J 1	V J 1	V J 1	V J 1					
Sample Date	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil			ļ		
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017					No.
EPH >C16-C21 #M	<10	30	<10	14	<10	<10			<10	mg/kg	TM5/PM8
EPH >C21-C40	50	187	<10	98	<10	55	 		<10	mg/kg	TM5/PM8
EPH >C8-C40	50	217	<30	112	<30	55			<30	mg/kg	TM5/PM8
Aliphatics											
>C5-C6 #M	-	-	-	<0.1	-	-			<0.1	mg/kg	TM36/PM12
>C6-C8 #M	-	-	-	<0.1	-	-			<0.1	mg/kg	TM36/PM12
>C8-C10	-	-	-	<0.1	-	-			<0.1	mg/kg	TM36/PM12
>C10-C12 #M	-	-	-	<0.2	-	-			<0.2	mg/kg	TM5/PM16
>C12-C16 #M	-	-	-	<4	-	-	 		<4	mg/kg	TM5/PM16
>C16-C21 ^{#M}	-	-	-	<7	-	-			<7	mg/kg	TM5/PM16
>C21-C35 ***	-	-	-	<7	-	-			<7	mg/kg	TM5/PM16
Aromatics		-	-	<19	-	-			<19	mg/kg	TMD/INI30remi2/emi3
Alonatos	-	-	-	<0.1	-	_			<0.1	ma/ka	TM36/PM12
>FC7-EC8 [#]	-	-	-	<0.1	-	-			<0.1	mg/kg	TM36/PM12
>EC8-EC10 ^{#M}	-	-	-	<0.1	-	-			<0.1	mg/kg	TM36/PM12
>EC10-EC12#	-	-	-	<0.2	-	-			<0.2	mg/kg	TM5/PM16
>EC12-EC16 [#]	-	-	-	<4	-	-			<4	mg/kg	TM5/PM16
>EC16-EC21 #	-	-	-	<7	-	-			<7	mg/kg	TM5/PM16
>EC21-EC35#	-	-	-	<7	-	-	 		<7	mg/kg	TM5/PM16
Total aromatics C5-35 [#]	-	-	-	<19	-	-			<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	-	-	-	<38	-	-			<38	mg/kg	TM5/TM36/PM12/PM16
PCB 77	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
PCB 81	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
PCB 105	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
PCB 114	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
PCB 118	-	-	-	<5	-	-	 	 	<5	ug/kg	TM16/PM8
PCB 123	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
PCB 126	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
PCB 155		-	-	<0	-	-			<5	ug/kg	
PCB 167		_		<5	-	_			<5	ug/kg	TM16/PM8
PCB 169	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
PCB 189	-	-	-	<5	-	-			<5	ug/kg	TM16/PM8
Total 12 PCBs	-	-	-	<60	-	-			<60	ug/kg	TM16/PM8
Total Phenols HPLC	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15			<0.15	mg/kg	TM26/PM21
	I						 	 		 	
Natural Moisture Content	26.3	17.0	25.5	26.4	27.2	38.0			<0.1	%	PM4/PM0
		-0.2		-0.0		.0.0			.0.2		TM29/DM20
Hexavalent Chromium	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			<0.3	mg/kg	11030/P1020

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Clitheroe Community Hospital Sara Hegewald 17/3294

A094939

WYG

Report : Solid

	11/0201										
J E Sample No.	10-12	16-18	19-21	25-27	37-39	40-42					
Sample ID	TP101A	TP102	TP102	TP104	TP105	TP106					
Depth	0.20	0.20	0.50	0.20	0.50	0.20			Please se	e attached n	otes for all
COC No / misc									abbrevia	ations and ac	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017	01/02/2017					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1					Mothod
Date of Receipt	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017			LOD/LOR	Units	No.
Sulphate as SO4 (2:1 Ext) #M	0.0103	0.0086	0.0021	0.0146	0.0017	<0.0015			<0.0015	g/l	TM38/PM20
Free Cyanide	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	mg/kg	TM89/PM45
Fraction Organic Carbon	-	-	0.008	-	0.009	0.033			<0.001	None	TM21/PM24
pH #M	8.00	7.80	8.18	7.91	8.16	7.85			<0.01	pH units	TM73/PM11
Sample Type	Clayey Loam	Loam	Clay	Sandy Loam	Clay	Clayey Loam				None	PM13/PM0
Sample Colour	Dark Brown	Dark Brown	Light Brown	Dark Brown	Medium Brown	Dark Brown				None	PM13/PM0
Other items	stones	siones, roois	roots, stones and loam	siones, roois	stones and sand	stones, roots				None	PM13/PM0

Exova Jones Envir	onmenta	ıl									
Client Name: Reference: Location: Contact:	WYG A094939 Clitheroe Sara Hege	Community ewald	/ Hospital		Report : Solids: V=	CEN 10:1 60g VOC ja	1 Batch r, J=250g gl	ass jar, T=p	elastic tub		
JE Job No.:	17/3294										
J E Sample No.	10-12	19-21									
Sample ID	TP101A	TP102									
Depth	0.20	0.50							Disease		
COC No / misc									abbrevi	ations and a	cronyms
Containers	V.I.T	V.IT									
Sample Date	01/02/2017	01/02/2017									
Sample Tune	01/02/2017	01/02/2017									
Sample Type	Soli	Soli									
Batch Number	1	1							LOD/LOR	Units	Method No
Date of Receipt	02/02/2017	02/02/2017									110.
Dissolved Arsenic [#]	<0.9	<0.9							<0.9	ug/l	TM30/PM14
Dissolved Cadmium #	<12	<12							<12	ug/I ua/I	TM30/PM12
Dissolved Chromium [#]	0.2	0.9							<0.2	ug/l	TM30/PM14
Dissolved Copper [#]	<3	<3							<3	ug/l	TM30/PM14
Dissolved Lead [#]	<0.4	<0.4							<0.4	ug/l	TM30/PM14
Dissolved Nickel [#]	0.8	0.4							<0.2	ug/l	TM30/PM14
Dissolved Selenium #	<1.2	<1.2							<1.2	ug/l	TM30/PM14
Dissolved Zinc*	4	4							<3	ug/l	TM30/PM14
Mercury Dissolved by CVAF	0.02	<0.01							<0.01	ug/i	110161/1210138
Sulphate [#]	1.06	0.67							< 0.05	mg/l	TM38/PM0
Ammoniacal Nitrogen as N#	0.04	0.05							<0.03	mg/l	TM38/PM0
Total Cyanide #	<0.005	<0.005							<0.005	mg/l	TM89/PM0
Mass of raw test portion	0.1256	0.1128								kg	NONE/PM17
Leachant volume	0.004	0.077								1	NONE/FIMIT
рН	8.22	8.07							<0.01	pH units	TM73/PM0

Exova Jones Enviro	o <mark>nment</mark> a	ıl								
Client Name: Reference:	WYG A094939				SVOC Re	port :	Solid			
Location:	Clitheroe	Community	y Hospital							
Contact:	Sara Hege	ewald								
JE Job No.:	17/3294									
J E Sample No.	25-27]		
Sample ID	TP104									
Depth	0.20							Please see	e attached n	otes for all
COC No / misc								abbrevia	ations and a	cronyms
Sample Date	V J I 01/02/2017									
Sample Type	Soil									
Batch Number	1								Units	Method
Date of Receipt	02/02/2017									No.
Phenols										
2-Chlorophenol #M	<10							<10	ug/kg	TM16/PM8
2-Methylphenol	<10							<10	ug/kg	TM16/PM8
2-Nitrophenol	<10							<10	ug/kg	TM16/PM8
2,4-Dichlorophenol	<10							<10	ug/kg ua/ka	TM16/PM8
2,4,5-Trichlorophenol	<10							<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10							<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10							<10	ug/kg	TM16/PM8
4-Methylphenol	<10							<10	ug/kg	TM16/PM8
Pentachlorophenol	<10							<10	ug/kg ua/ka	TM16/PM8
Phenol ^{#M}	<10							<10	ug/kg	TM16/PM8
PAHs										
2-Chloronaphthalene ^{#M}	<10							<10	ug/kg	TM16/PM8
2-Methylnaphthalene	<10							<10	ug/kg	11/116/P1/18
Bis(2-ethylhexyl) phthalate	<100							<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100							<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100							<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100							<100	ug/kg	TM16/PM8
Directly philalate	<100							<100	ug/kg ug/kg	TM16/PM8
Other SVOCs	1100							1100	ugnig	
1,2-Dichlorobenzene	<10							<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #M	<10							<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10							<10	ug/kg	TM16/PM8
2-Nitroaniline	<10							<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10							<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10							<10	ug/kg	TM16/PM8
3-Nitroaniline	<10							<10	ug/kg	TM16/PM8
4-Bromophenylphenylether "" 4-Chloroaniline	<10							<10	ug/kg	TM16/PM8 TM16/PM8
4-Chlorophenylphenylether	<10							<10	ug/kg	TM16/PM8
4-Nitroaniline	<10							<10	ug/kg	TM16/PM8
Azobenzene	<10							<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10							<10	ug/kg	TM16/PM8
Dis(∠-chloroethyl)ether Carbazole	<10							<10 <10	ug/kg	TM16/PM8
Dibenzofuran #M	<10							<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10							<10	ug/kg	TM16/PM8
Hexachlorobutadiene #M	<10							<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10							<10	ug/kg	TM16/PM8
	<10							<10	ug/kg ua/ka	TM16/PM8
N-nitrosodi-n-propylamine #M	<10							<10	ug/kg	TM16/PM8
Nitrobenzene #M	<10							<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	42 ^{sv}							<0	%	TM16/PM8
Surrogate Recovery p-Terphenyl-d14	89							<0	%	TM16/PM8
										}

Exova Jones Enviro	onmenta	ıl											
Client Name:	WYG						VOC Rep	ort :	Solid				
Reference:	A094939												
Location:	Clitheroe	Communit	y Hospital										
Contact:	Sara Hege	ewald											
JE Job No.:	17/3294										_		
J E Sample No.	25-27												
Sample ID	TP104												
	0.00												
COC No / misc	0.20										Please see abbrevia	e attached r ations and a	otes for all cronyms
Containers	VJT												
Sample Date	01/02/2017												
Sample Type Batch Number	Soil												Mathad
Date of Receipt	02/02/2017										LOD/LOR	Units	No.
VOC MS													
Dichlorodifluoromethane	<2										<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2										<2	ug/kg	TM15/PM10
Chloromethane#	<3										<3	ug/kg	TM15/PM10
Vinyl Chloride	<2										<2	ug/kg	TM15_A/PM10
Bromometnane Chloroothano#	<1										<1	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2										<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE)#	<6										<6	ug/kg	TM15/PM10
Dichloromethane (DCM)#	52										<30	ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3										<3	ug/kg	TM15/PM10
1,1-Dichloroethane#	<3										<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3										<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4										<4	ug/kg	TM15/PM10
Bromochioromethane	<3										<3	ug/kg	TM15/PM10
1.1.1-Trichloroethane [#]	<3										<3	ug/kg	TM15/PM10
1,1-Dichloropropene #	<3										<3	ug/kg	TM15/PM10
Carbon tetrachloride #	<4										<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4										<4	ug/kg	TM15/PM10
Benzene [#]	<3										<3	ug/kg	TM15/PM10
Trichloroethene (TCE)*	<3										<3	ug/kg	TM15/PM10
1,2-Dichloropropane "	<0										<0	ug/kg	TM15/PM10
Bromodichloromethane [#]	<3										<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4										<4	ug/kg	TM15/PM10
Toluene [#]	<3										<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3										<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane#	<3										<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE) *	<3										<3	ug/kg	TM15/PM10
1,3-Dichloropropane "	<3										<3	ug/kg	TM15/PM10 TM15/PM10
1 2-Dibromoethane #	<3										<3	ug/kg	TM15/PM10
Chlorobenzene [#]	<3										<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane	<3										<3	ug/kg	TM15/PM10
Ethylbenzene #	<3										<3	ug/kg	TM15/PM10
p/m-Xylene #	<5										<5	ug/kg	TM15/PM10
o-Xylene #	<3										<3	ug/kg	TM15/PM10
Styrene	<3										<3	ug/kg	TM15/PM10
Isopropylbenzene [#]	<3										<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane #	<3										<3	ug/kg	TM15/PM10
Bromobenzene	<2										<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #	<4										<4	ug/kg	TM15/PM10
Propylbenzene #	<4										<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3										<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene*	<3										<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3										<3	ug/kg	TM15/PM10
1 2 4-Trimethylbenzene [#]	<6										<6	ug/kg	TM15/PM10
sec-Butylbenzene#	<4										<4	ug/kg	TM15/PM10
4-Isopropyltoluene #	<4										<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene#	<4										<4	ug/kg	TM15/PM10
1,4-Dichlorobenzene #	<4										<4	ug/kg	TM15/PM10
n-Butylbenzene#	<4										<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #	<4										<4	ug/kg	TM15/PM10
1,2-DIDIOITIO-3-Chioropropane "	<4										<4 ~7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4										<4	ug/kg	TM15/PM10
Naphthalene	<27										<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene #	<7										<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	109										<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	94	1	1	1	1	1	1	1	1	1	<0	%	TM15/PM10

Client Name:	WYG
Reference:	A094939
Location:	Clitheroe Community Hospital
Contact:	Sara Hegewald

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested. Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

M AMOD

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/3294	1	TP101A	0.20	11	07/02/2017	General Description (Bulk Analysis)	soil/stones
					07/02/2017	Asbestos Fibres	NAD
					07/02/2017	Asbestos Fibres (2)	NAD
					07/02/2017	Asbestos ACM	NAD
					07/02/2017	Asbestos ACM (2)	NAD
					07/02/2017	Asbestos Type	NAD
					07/02/2017	Asbestos Type (2)	NAD
					07/02/2017	Asbestos Level Screen	NAD
17/3294	1	TP102	0.20	17	07/02/2017	General Description (Bulk Analysis)	soil/stones
					07/02/2017	Asbestos Fibres	NAD
					07/02/2017	Asbestos Fibres (2)	NAD
					07/02/2017	Asbestos ACM	NAD
					07/02/2017	Asbestos ACM (2)	NAD
					07/02/2017	Asbestos Type	NAD
					07/02/2017	Asbestos Type (2)	NAD
					07/02/2017	Asbestos Level Screen	NAD
17/3294	1	TP104	0.20	26	07/02/2017	General Description (Bulk Analysis)	soil/stones
					07/02/2017	Asbestos Fibres	NAD
					07/02/2017	Asbestos Fibres (2)	NAD
					07/02/2017	Asbestos ACM	NAD
					07/02/2017	Asbestos ACM (2)	NAD
					07/02/2017	Asbestos Type	NAD
					07/02/2017	Asbestos Type (2)	NAD
					07/02/2017	Asbestos Level Screen	NAD
17/3294	1	TP106	0.20	41	07/02/2017	General Description (Bulk Analysis)	soil/stones
					07/02/2017	Asbestos Fibres	NAD
					07/02/2017	Asbestos Fibres (2)	NAD
					07/02/2017	Asbestos ACM	NAD
					07/02/2017	Asbestos ACM (2)	NAD
					07/02/2017	Asbestos Type	NAD
					07/02/2017	Asbestos Type (2)	NAD
					07/02/2017	Asbestos Level Screen	NAD

Client Name: WYG

Reference: A094939

Location: Clitheroe Community Hospital

Contact: Sara Hegewald

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/3294	1	TP104	0.20	25-27	GRO, VOC	Solid Samples were received at a temperature above 9°C.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Notification of Deviating Samples

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/3294

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Method Code Appendix

JE Job No: 17/3294

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.				
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes

JE Job No: 17/3294

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM5/TM36	TM005: Modified USEPA 8015B. Determination of solvent Extractable Petroleum Hydrocarbons (EPH) including column fractionation in the carbon range of C10-35 into aliphatic and aromatic fractions by GC-FID. TM036: Modified USEPA 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C5-10 by headspace GC-FID. Including determination of	PM12/PM16	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis./Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM16	Modified USEPA 8270. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (0.1M NaOH) (60:40) by orbital shaker.			AR	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes		AR	Yes
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 and 6010B	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes

Method Code Appendix

Method Code Appendix

JE Job No: 17/3294

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes	Yes	AD	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes

Method Code Appendix

JE Job No: 17/3294

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM73	Modified US EPA methods 150.1 and 9045D. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.	Yes		AR	Yes
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.			AR	Yes
NONE	No Method Code	PM17	Modified method EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	
TM15_A	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

WYG

Quay West at MediaCityUK

Trafford Wharf Road

Trafford Park Manchester M17 1HH

Exova Jones Environmental

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention : Sara Hegewald Date : 15th February, 2017 Your reference : A094939 Test Report 17/3294 Batch 2 Our reference : Location : **Clitheroe Community Hospital** Date samples received : 4th February, 2017 Status : Final report Issue : 1

Eleven samples were received for analysis on 4th February, 2017 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

6 June

Bruce Leslie Project Co-ordinator

Client Name:
Reference:
Location:
Contact:
JE Job No.:

A094939 Clitheroe Community Hospital Sara Hegewald 17/3294

WYG

Report : Solid

	11/0201										
J E Sample No.	49-51	53-55	58-60	65-66	67-68	69-71					
Sample ID	WS101	WS102	WS103	WS104	WS105	WS106					
Depth	0.40	0.20	0.20	0.50	0.20	0.20			Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and ad	cronyms
Containers	VIT	VIT	VIT	V I	V I	VIT					
Containers	VJI	VJI	VJI	٧J	VJ	VJI					
Sample Date	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	2	2	2	2	2	2				Unito	Method
Date of Receipt	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017			LOD/LOR	Units	No.
Arsenic #M	30.9	18.6	36.3	13.4	19.5	7.4			<0.5	mg/kg	TM30/PM15
Cadmium ^{#M}	1.5	0.8	0.7	0.6	1.0	0.5			<0.1	mg/kg	TM30/PM15
Chromium ^{#M}	40.9	43.4	48.0	51.1	34.7	13.9			<0.5	mg/kg	TM30/PM15
Copper #M	80	47	34	25	51	34			<1	mg/kg	TM30/PM15
Lead ^{#M}	546	250	250	48	181	440			<5	mg/kg	TM30/PM15
Mercury ^{#M}	0.5	<0.1	<0.1	<0.1	0.1	<0.1			<0.1	mg/kg	TM30/PM15
Nickel ^{#M}	35.1	38.5	31.2	39.7	37.1	15.2			<0.7	mg/kg	TM30/PM15
Selenium ***	2	2	2	2	1	<1			<1	mg/kg	TM30/PM15
Vater Soluble Boron ***	1.8	1.0	1.4	0.6	0.8	0.3			<0.1	mg/kg	TM30/PM15
ZINC	003	220	2.52	107	247	70			23	iiig/kg	110130/1 10113
PAH MS											
Naphthalene ^{#M}	<0.04	<0.04	<0.04	<0.04	<0.04	1.49 _{AB}			<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.08	0.10	<0.03	<0.03	0.07	14.35 _{AB}			<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	<0.05	<0.05	29.67 _{AB}			<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	<0.04	<0.04	<0.04	<0.04	17.87 _{AB}			<0.04	mg/kg	TM4/PM8
Phenanthrene #M	0.37	0.51	0.18	0.04	0.25	99.01 _{AB}			<0.03	mg/kg	TM4/PM8
Anthracene #	0.09	0.15	<0.04	<0.04	0.08	49.44 _{AB}			<0.04	mg/kg	TM4/PM8
Fluoranthene #M	1.39	1.17	0.65	0.17	1.28	252.71 ⁺⁺ AB			<0.03	mg/kg	TM4/PM8
Pyrene [#]	1.23	0.95	0.54	0.14	1.14	198.76 ⁺⁺ AB			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.73	0.56	0.34	0.12	0.73	111.31 ^{**} AB			<0.06	mg/kg	TM4/PM8
Chrysene ""	0.78	0.55	0.37	0.09	0.78	106.78 _{AB}			<0.02	mg/kg	
Benzo(bk)iluorantnene	0.83	0.62	0.81	0.13	0.89	189.74 AB			<0.07	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	0.52	0.30	0.23	<0.04	0.60	70.34AB			<0.04	ma/ka	TM4/PM8
Dibenzo(ah)anthracene #	0.08	0.07	<0.04	<0.04	0.12	17.26 _{AB}			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	0.50	0.27	0.23	<0.04	0.59	60.91 _{AB}			<0.04	mg/kg	TM4/PM8
PAH 16 Total	8.0	6.0	3.5	0.8	8.0	1336.2 _{AB}			<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.98	0.59	0.44	0.09	1.04	136.61 _{AB}			<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.38	0.23	0.17	0.04	0.40	53.13 _{AB}			<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	102	105	105	103	100	103 _{AB}			<0	%	TM4/PM8
	-								-		
Methyl Tertiary Butyl Ether ***	<6	-	-	-	-	<6			<6	ug/kg	TM15/PM10
Benzene ""	<5	-	-	-	-	<5			<5	ug/kg	TM15/PM10
Toluene ***	-3	-	-	-	-	-3			<3	ug/kg	TM15/PM10
n/m-Xylene #M	<4	-	-	-	-	6			<4	ug/kg	TM15/PM10
o-Xvlene #M	<4	-	-	-	-	4			<4	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	96	-	-	-	-	78			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	70	-	-	-	-	67			<0	%	TM15/PM10
EPH >C8-C10 ^{#M}	<5	<5	<5	<5	<5	7**			<5	mg/kg	TM5/PM8
EPH >C10-C12 ^{#M}	<10	<10	<10	<10	<10	16**			<10	mg/kg	TM5/PM8
EPH >C12-C16 ^{#M}	<10	<10	<10	<10	<10	727**			<10	mg/kg	TM5/PM8

Client Name:
Reference:
Location:
Contact:
JE Job No.:

Clitheroe Community Hospital Sara Hegewald 17/3294

A094939

WYG

Report : Solid

J E Sample No.	49-51	53-55	58-60	65-66	67-68	69-71					
Sample ID	WS101	WS102	WS103	WS104	WS105	WS106					
Depth	0.40	0.20	0.20	0.50	0.20	0.20			Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	VIT	VIT	VIT	VI	V I	VIT					
Comula Dete	00/00/0047	00/00/0047	00/00/0047	00/00/0047	00/00/0047	00/00/0047					
Sample Date	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017	02/02/2017					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil			L		-
Batch Number	2	2	2	2	2	2				Units	Method
Date of Receipt	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017	04/02/2017			LOBILOI	onno	No.
EPH >C16-C21 #M	32	<10	<10	<10	18	3891**			<10	mg/kg	TM5/PM8
EPH >C21-C40	114	100	47	<10	147	9577**			<10	mg/kg	TM5/PM8
EPH >C8-C40	146	100	47	<30	165	14218**			<30	mg/kg	TM5/PM8
TPH CWG											
Alipnatics	<1.0.5	_		-		<10.5			-0.1	ma/ka	TM36/PM12
>C6-C8 #M	<1.0AC	-	-	-	-	<1.0AC			<0.1	ma/ka	TM36/PM12
>C8-C10	<1.0	-	-	-	-	<1.0 _{AC}			<0.1	mg/kg	TM36/PM12
>C10-C12 #M	<0.2	-	-	-	-	<0.2			<0.2	mg/kg	TM5/PM16
>C12-C16 #M	<4	-	-	-	-	38			<4	mg/kg	TM5/PM16
>C16-C21 #M	<7	-	-	-	-	127			<7	mg/kg	TM5/PM16
>C21-C35 #M	<7	-	-	-	-	423			<7	mg/kg	TM5/PM16
Total aliphatics C5-35	<19	-	-	-	-	588			<19	mg/kg	TM5/TM36/PM12/PM16
Aromatics											
>C5-EC7#	<1.0 _{AC}	-	-	-	-	<1.0 _{AC}			<0.1	mg/kg	TM36/PM12
>EC7-EC8"	<1.0 _{AC}	-	-	-	-	<1.0 _{AC}			<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	-	_	-	-	<0.2			<0.1	ma/ka	TM5/PM16
>EC12-EC16 [#]	<4	-	-	-	-	100			<4	mg/kg	TM5/PM16
>EC16-EC21 #	12	-	-	-	-	1214			<7	mg/kg	TM5/PM16
>EC21-EC35 #	65	-	-	-	-	4224			<7	mg/kg	TM5/PM16
Total aromatics C5-35 #	77	-	-	-	-	5538			<19	mg/kg	TM5/TM36/PM12/PM16
Total aliphatics and aromatics(C5-35)	77	-	-	-	-	6126			<38	mg/kg	TM5/TM36/PM12/PM16
PCB 77	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
PCB 81	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
PCB 105	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
PCB 114	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
PCB 118	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
PCB 123	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
PCB 126	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
PCB 150	<5	-	-	-	-	<25AB			<5	ug/kg	TM16/PM8
PCB 167	<5	-	_	-	-	<25AB			<5	ug/kg	TM16/PM8
PCB 169	<5	-	-	-	-	<25AB			<5	ug/kg	TM16/PM8
PCB 189	<5	-	-	-	-	<25 _{AB}			<5	ug/kg	TM16/PM8
Total 12 PCBs	<60	-	-	-	-	<300 _{AB}			<60	ug/kg	TM16/PM8
Total Phenols HPLC	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15			<0.15	mg/kg	TM26/PM21
Natural Moisture Content	30.1	48.1	34.7	29.9	37.3	5.9			<0.1	%	PM4/PM0
Hexavalent Chromium [#]	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			<0.3	ma/ka	TM38/PM20
										55	

Client Name:
Reference:
Location:
Contact:

Clitheroe Community Hospital Sara Hegewald

A094939

WYG

Report : Solid

J E Sample No. 49-51 53-55 58-60 65-66 67-68 69-71 Sample ID wS101 wS102 wS103 wS104 wS105 wS106	
Sample ID WS101 WS102 WS103 WS104 WS105 WS106 Denth 0.40 0.20 0.50 0.20 0.20	
Denth 0.40 0.20 0.50 0.20 0.20	
COC No / misc	acronyms
Sample Date 02/02/2017 02/02/2017 02/02/2017 02/02/2017 02/02/2017	
Date of Receiver 04/02/2017 04/02/2017 04/02/2017 04/02/2017 04/02/2017	Method No.
	T1 (00 /D1 (00
Sulphate as SO4 (2:1 Ext) 2000 0.0279 0.0206 0.0184 <0.0015 0.0082 0.0177 <0.0015 0.0082 0.0177	11038/P1020
Free Cyanide <0.5	TM89/PM45
Fraction Organic Carbon - 0.064 0.031 - 0.043 - </th <td>TM21/PM24</td>	TM21/PM24
pH#M 8.10 7.88 7.96 7.96 8.01 8.59 <0.01	5 TM73/PM11
Sample Type Clayey Loam Clayey Loam Clayey Loam Clayey Loam None	PM13/PM0
Sample Colour Dark Brown Dar	PIM13/PIM0
Other items Stories, roots, stories stories stories stories stories stories tories stories sto	PM13/PM0

Characterize in construction of the second secon	Exova Jones Envir	onmenta	al													
	Client Name: Reference:	WYG A094939							Report : CEN 10:1 1 Batch							
Stanke: Stanke with 17/24*** Lobox: 17/24*** Lobox: 001	Location:	Clitheroe	Communit	y Hospital				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub				
JE Don No.: 1/2	Contact:	Sara Heg	ewald													
Jestenses u 1000000000000000000000000000000000000	JE Job No.:	17/3294														
Subs	J E Sample No.	69-71														
Image: state in the state i	Sample ID	WS106														
Opport Opport <th></th>																
Cooke V Cooke V Cooke Cook	Depth	0.20										Please se	e attached n	otes for all		
Image: sector of the sector	COC No / misc											abbievi		cronyma		
Same box Same	Containers	VJT														
Same by by Same by <td>Sample Date</td> <td>02/02/2017</td> <td></td>	Sample Date	02/02/2017														
Batch Nome 2 1 <	Sample Type	Soil														
Date of Rescip 932297 Image of the second s	Batch Number	2												Method		
Descoved descon* 3.3 Normatical basis	Date of Receipt	04/02/2017										LOD/LOR	Units	No.		
Disable Blown <	Dissolved Arsenic [#]	3.5										<0.9	ug/l	TM30/PM14		
December Communif 1.03 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00	Dissolved Boron #	<12										<12	ug/l	TM30/PM14		
Discover 1.1 Image: Second Law 20 Up1 NADREW1 Discover 5.9 Image: Second Law 20 Up1 NADREW1 Discover 4.3 Up1 NADREW1 Up1 NADREW1 Discover 1.3 Up1 NADREW1 Up1 NADREW1 Discover 1.3 Up1 NADREW1 Up1 NADREW1 Discover 3.3 Up1 NADREW1 Up1 NADREW1 Stophan* 3.32 Up1 NADREW1 Up1 NADREW1 Annonacas N* 4.00 Up1 NADREW1 NADREW1 NADREW1 Stophan* 3.32 Up1 NADREW1 NADREW1 NADREW1 Cold Law Alley	Dissolved Cadmium #	<0.03										<0.03	ug/l	TM30/PM14		
Discover Looper -3 -3 -4	Dissolved Chromium #	1.1										<0.2	ug/l	TM30/PM14		
Discolved Nota ¹ 6.2 0 0 0.0 0.02 00 NADAPAK Discolved Steinum 1.2 0 0 0 0.0 0.01 <td>Dissolved Copper[#]</td> <td><3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><3</td> <td>ug/l</td> <td>TM30/PM14</td>	Dissolved Copper [#]	<3										<3	ug/l	TM30/PM14		
Discoved Shickeff 4.02 0.02 0.00 MAX047 Discoved Shickeff 3.3 0 0 0 0 0.00 0	Dissolved Lead [#]	5.9										<0.4	ug/l	TM30/PM14		
Usebook Image	Dissolved Nickel [#]	<0.2										<0.2	ug/l	TM30/PM14		
Usedure 12/2 4.3 0.01	Dissolved Selenium "	<1.2										<1.2	ug/i	TM30/PM14		
Note: Control of the interview of	Mercury Dissolved by CVAE #	<0.01										<0.01	ug/i	TM61/PM38		
Suphate* 3.92 -0.03 mg1 TM38/PM0 Ammoniacal Nirogen as N* -0.03 mg1 TM38/PM0 Total Cyonice* -0.005 -0.03 mg1 TM38/PM0 Mass of aw test portion 0.1014 -0.014<	Mercury Dissolved by OVA	0.01										0.01	ug/i			
Ammoniacal Netrogen as N* -0.03 Image Image Image Image Image Image Image Image Image Total Cyande* -0.005 <t< td=""><td>Sulphate[#]</td><td>3.92</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.05</td><td>mg/l</td><td>TM38/PM0</td></t<>	Sulphate [#]	3.92										<0.05	mg/l	TM38/PM0		
Total Quanication Automa Interpretain In	Ammoniacal Nitrogen as N#	<0.03										<0.03	mg/l	TM38/PM0		
Total Cyanie* -0.005 mg/l TM38/PM2 Mass of raw test portion 0.0114 I																
Mass of ray test portion 0.101 Image	Total Cyanide [#]	<0.005										<0.005	mg/l	TM89/PM0		
Image of the proof 0.000 </td <td>Mass of raw test portion</td> <td>0 1014</td> <td></td> <td>ka</td> <td>NONE/PM17</td>	Mass of raw test portion	0 1014											ka	NONE/PM17		
pH n	Leachant Volume	0.888											i l	NONE/PM17		
pH 8.14 <td></td>																
Image: state in the state intermImage: state intermI	рН	8.14										<0.01	pH units	TM73/PM0		
Image: state intermediateImage: state intermediat																
Image: state in the state intermImage: state intermI																
Image: state I																
Image: state I																
Image: state I																
Image: state s																
Image: state in the state interpretation of the state interpretation o																
Image: sector of the sector																
Image: state in the state interpretation of the state interpretation o																
Image: state of the state of																
Image: state s																
Image: state of the state o																
Image: state stat																
Image: state stat																
Image: state stat																
Image: Sector of the sector																

Client Name: Reference: Location:	WYG A094939 Clitheroe	Community	y Hospital		SVOC Re	port :	Solid			
JE Job No.:	17/3294	oward								
LE Sample No	10-51	69-71								
o E campie No.	43-31	03-71								
Sample ID	WS101	WS106								
Depth	0.40	0.20						Please see	e attached n	otes for all
COC No / misc								abbrevia	ations and a	cronyms
Containers	VJT	VJT								
Sample Date	02/02/2017	02/02/2017								
Sample Type	Soil	Soil		 						
Date of Receipt	2	2						LOD/LOR	Units	Method No.
SVOC MS	04/02/2011	04/02/2011								
Phenois										
2-Chlorophenol #M	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
2,4-Dichlorophenol #M	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	441AC						<10	ug/kg	TM16/PM8
2,4,5-1 richlorophenol	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<100AC						<10	ug/kg	TM16/PM8
4-Methylphenol	<10	1150AC						<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<100AC						<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
Phenol #M	<10	527 _{AC}						<10	ug/kg	TM16/PM8
PAHs										
2-Chloronaphthalene #M	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
2-Methylnaphthalene ^{#M}	<10	1960 _{AC}						<10	ug/kg	TM16/PM8
Prinalates	~100	1000						<100	ua/ka	TM16/DM9
Bis(2-etityinexyi) phinalate	<100	<1000AC						<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<1000AC						<100	ua/ka	TM16/PM8
Di-n-Octyl phthalate	<100	<1000AC						<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<1000 _{AC}						<100	ug/kg	TM16/PM8
Dimethyl phthalate #M	<100	<1000 _{AC}						<100	ug/kg	TM16/PM8
Other SVOCs										
1,2-Dichlorobenzene	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene #M	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
2 4-Dinitrotoluene	<10	<100AC						<10	ug/kg	TM16/PM8
2,4 Dinitrotoluene	<10	<100AC						<10	ua/ka	TM16/PM8
3-Nitroaniline	<10	<100AC						<10	ug/kg	TM16/PM8
4-Bromophenylphenylether #M	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
Azobenzene	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
Dis(2-chloroethoxy)methane	<10	<100AC						<10	ug/kg	TM16/PM8
	25	<100AC						<10	ug/kg	TM16/PM8
Dibenzofuran #M	<10	14473AC						<10	ug/kg	TM16/PM8
Hexachlorobenzene	<10	<100 AC						<10	ug/kg	TM16/PM8
Hexachlorobutadiene ^{#M}	<10	<100AC						<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
Isophorone #M	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #M	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
Nitrobenzene ""	<10	<100 _{AC}						<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	48	92AC						<0	%	TM16/PM8
ourrogate recovery p-rerphenyi-014	00	¹⁴⁴ AC						<0	70	11110/P118
										İ
										1
										j
										}
										ł

Exova Jones Enviro	onmenta	ıl								
Client Name: Reference: Location:	WYG A094939 Clitheroe	Community	/ Hospital		VOC Rep	ort :	Solid			
Contact: JE Job No.:	Sara Heg 17/3294	ewald								
J E Sample No.	49-51	69-71						I		
o E dampie No.	45-51	03-71								
Sample ID	WS101	WS106								
Depth COC No / misc	0.40	0.20						Please see abbrevia	e attached n ations and a	otes for all cronyms
Containers	VJT	VJT								
Sample Date	02/02/2017	02/02/2017								
Sample Type	Soil	Soil								Marthand
Date of Receipt	2 04/02/2017	2 04/02/2017						LOD/LOR	Units	No.
VOC MS										1
Dichlorodifluoromethane	<2	<2						<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #M	<6	<6						<6	ug/kg	TM15/PM10
Chloromethane *	<3	<3						<3	ug/kg	TM15/PM10
Bromomethane	<1	<1						<1	ug/kg	TM15/PM10
Chloroethane #M	<6	<6						<6	ug/kg	TM15/PM10
Trichlorofluoromethane #M	<3	<3						<3	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #M	<6	<6						<6	ug/kg	TM15/PM10
Dichloromethane (DCM)"	53	42						<30	ug/kg	TM15/PM10
1.1-Dichloroethane #M	<6	<6						<6	ug/kg ug/kg	TM15/PM10
cis-1-2-Dichloroethene #M	<7	<7						<7	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4						<4	ug/kg	TM15/PM10
Bromochloromethane #M	<4	<4						<4	ug/kg	TM15/PM10
Chloroform "" 1.1.1-Trichloroethane #M	<5	<5						<5	ug/kg	TM15/PM10 TM15/PM10
1,1-Dichloropropene #	<3	<3						<3	ug/kg	TM15/PM10
Carbon tetrachloride #M	<4	<4						<4	ug/kg	TM15/PM10
1,2-Dichloroethane #M	<5	<5						<5	ug/kg	TM15/PM10
Benzene ^{#M}	<5	<5						<5	ug/kg	TM15/PM10
Trichloroethene (TCE) ""	<5	<5						<5	ug/kg	TM15/PM10 TM15/PM10
Dibromomethane #M	<4	<4						<4	ug/kg	TM15/PM10
Bromodichloromethane #M	<4	<4						<4	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4						<4	ug/kg	TM15/PM10
Toluene #M	5	6						<3	ug/kg	TM15/PM10
1 1 2-Trichloroethane #M	<3	<3						<3	ug/kg	TM15/PM10 TM15/PM10
Tetrachloroethene (PCE) #	<3	<3						<3	ug/kg	TM15/PM10
1,3-Dichloropropane #M	<4	<4						<4	ug/kg	TM15/PM10
Dibromochloromethane #M	<5	<5						<5	ug/kg	TM15/PM10
1,2-Dibromoethane #	<3	<3						<3	ug/kg	TM15/PM10
1 1 2-Tetrachloroethane #M	<4	<4						<4	ug/kg	TM15/PM10 TM15/PM10
Ethylbenzene #M	<3	<3						<3	ug/kg	TM15/PM10
p/m-Xylene ^{#M}	<4	6						<4	ug/kg	TM15/PM10
o-Xylene #M	<4	4						<4	ug/kg	TM15/PM10
Styrene	<3	<3						<3	ug/kg	TM15_A/PM10
Isopropylbenzene [#]	<3	<3						<3	ua/ka	TM15/PM10
1,1,2,2-Tetrachloroethane #M	<3	<3						<3	ug/kg	TM15/PM10
Bromobenzene	<2	<2						<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #M	<4	<4						<4	ug/kg	TM15/PM10
Propylbenzene *	<4	<4						<4	ug/kg	TM15/PM10
2-Chlorotoluene	23	<3 10						<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3						<3	ug/kg	TM15/PM10
tert-Butylbenzene #	<5	<5						<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene #	185	47						<6	ug/kg	TM15/PM10
sec-Butylbenzene#	<4	<4						<4	ug/kg	TM15/PM10
4-isopropyitoluene [#]	<4 <4	<4 <4						<4 <4	ug/kg ug/ka	TM15/PM10
1,4-Dichlorobenzene [#]	<4	<4						<4	ug/ka	TM15/PM10
n-Butylbenzene [#]	<4	<4						<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene #M	<4	<4						<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane #	<4	<4						<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene *	<7	<7						<7	ug/kg	TM15/PM10
Naphthalene	<27	129						<27	ua/ka	TM15/PM10
1,2,3-Trichlorobenzene #	<7	<7						<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	96	78						<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	70	67						<0	%	TM15/PM10

Client Name:	WYG
Reference:	A094939
Location:	Clitheroe Community Hospital
Contact:	Sara Hegewald

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested. Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

M AMOD

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result
17/3294	2	WS101	0.40	50	08/02/2017	General Description (Bulk Analysis)	soil/stones
					08/02/2017	Asbestos Fibres	NAD
					08/02/2017	Asbestos Fibres (2)	NAD
					08/02/2017	Asbestos ACM	NAD
					08/02/2017	Asbestos ACM (2)	NAD
					08/02/2017	Asbestos Type	NAD
					08/02/2017	Asbestos Type (2)	NAD
					08/02/2017	Asbestos Level Screen	NAD
17/3294	2	WS102	0.20	54	08/02/2017	General Description (Bulk Analysis)	soil/stones
					08/02/2017	Asbestos Fibres	NAD
					08/02/2017	Asbestos Fibres (2)	NAD
					08/02/2017	Asbestos ACM	NAD
					08/02/2017	Asbestos ACM (2)	NAD
					08/02/2017	Asbestos Type	NAD
					08/02/2017	Asbestos Type (2)	NAD
					08/02/2017	Asbestos Level Screen	NAD
17/3294	2	WS103	0.20	59	08/02/2017	General Description (Bulk Analysis)	soil/stones
					08/02/2017	Asbestos Fibres	NAD
					08/02/2017	Asbestos Fibres (2)	NAD
					08/02/2017	Asbestos ACM	NAD
					08/02/2017	Asbestos ACM (2)	NAD
					08/02/2017	Asbestos Type	NAD
					08/02/2017	Asbestos Type (2)	NAD
					08/02/2017	Asbestos Level Screen	NAD
17/3294	2	WS106	0.20	70	08/02/2017	General Description (Bulk Analysis)	soil/stones
					08/02/2017	Asbestos Fibres	NAD
					08/02/2017	Asbestos Fibres (2)	NAD
					08/02/2017	Asbestos ACM	NAD
					08/02/2017	Asbestos ACM (2)	NAD
					08/02/2017	Asbestos Type	NAD
					08/02/2017	Asbestos Type (2)	NAD
					08/02/2017	Asbestos Level Screen	NAD

Client Name:WYGReference:A094939Location:Clitheroe Community HospitalContact:Sara Hegewald

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason			
	No deviating sample report results for job 17/3294								

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/3294

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.