

# ENVIRONMENTAL & GEOTECHNICAL ENGINEERING















# Land off Chatburn Road, Clitheroe







# PROPOSED RESIDENTIAL DEVELOPMENT, CHATBURN ROAD, CLITHEROE

Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for Oakmere Homes MW Ltd as the Phase II Geoenvironmental Assessment Report on land off Chatburn Road, Clitheroe, BB7 2EQ to identify possible areas of contamination and provide an assessment of potential ground related development constraints.

This report may not be used by any person other than Oakmere Homes NW Ltd and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than Oakmere Homes NW Ltd.

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

#### **Issue & Revision History**

| Revision    | Status      | Originated                    | Checked                                | Approved                                                      | Date       |
|-------------|-------------|-------------------------------|----------------------------------------|---------------------------------------------------------------|------------|
| -           | FINAL       | L. Bradley<br>B.Sc (Hons) FGS | J. P Bridgman<br>B.Sc (Hons) CGeol FGS | H.Pratt<br>B.Eng (Hons), C.Eng, F.Cons.E,<br>M.I.C.E, MI Mgt. | 30.06.2015 |
|             |             |                               |                                        |                                                               |            |
|             |             |                               |                                        |                                                               |            |
| Project Num | ber : C2099 |                               | Document Reference :C2099/PII          |                                                               |            |

This document is available electronically please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, Meadowbank Way, Nottingham, NG16 3SB T 0870 600 6090 F 0870 600 6090 W www.hspconsulting.com



# Contents

| 1.    | Introduction                                               | 1 |
|-------|------------------------------------------------------------|---|
| 1.1   | Background                                                 | 1 |
| 1.2   | Client Brief & Scope                                       | 1 |
| 1.2   | Report Objectives                                          | 1 |
| 1.3   | Limitations                                                | 1 |
| 1.4   | Previous Reports                                           | 1 |
| 2.    | Review of Existing Information & Geoenvironmental Setting  | 2 |
| 2.1   | The Site                                                   | 2 |
| 2.2   | Geology                                                    | 3 |
| 2.3   | Pertinent Site Sensitivity Information                     | 3 |
| 2.3.3 | Hydrology                                                  | 4 |
| 2.3.4 | Flood Risk                                                 | 4 |
| 2.3.5 | Radon                                                      | 4 |
| 2.3.6 | Sensitive Land Uses, Ecological and Statutory Designations | 4 |
| 3.    | Fieldwork & Factual Information                            | 5 |
| 3.1   | Exploratory Methods                                        | 5 |
| 3.2   | In-situ Testing                                            | 5 |
| 3.3   | Laboratory Testing                                         | 5 |
| 3.4   | Ground Conditions                                          | 6 |
| 3.5   | Groundwater Levels                                         | 7 |
| 3.6   | Ground Gas Monitoring                                      | 7 |
| 4.    | Geotechnical Assessment                                    | 8 |
| 4.1   | Detailed Ground Model                                      | 8 |
| 4.2   | Earthworks                                                 | 9 |
| 4.3   | Excavations1                                               | 0 |
| 4.4   | Foundations1                                               | 0 |
| 4.5   | Ground Floor Slab1                                         | 1 |
| 4.6   | Concrete Classification1                                   | 1 |
| 4.7   | Pavement Design1                                           | 1 |
| 4.8   | Drainage1                                                  | 2 |
| 5.    | Environmental Assessment1                                  | 3 |
| 5.1   | Introduction1                                              | 3 |





| _ |     |                                     |    |
|---|-----|-------------------------------------|----|
|   | 5.2 | Assessment of Soil Analysis Results | 13 |
|   | 5.3 | Human Health Mitigation             | 14 |
|   | 5.4 | Water Supply                        | 14 |
|   | 5.5 | Ground Gas Risk Assessment          | 15 |
|   | 5.6 | Updated Conceptual Site Model       | 15 |
| 6 |     | References                          | 17 |
|   |     |                                     |    |

# Appendices

|              |   | Proposed Development Layout<br>Exploratory Hole Logs |
|--------------|---|------------------------------------------------------|
|              |   | Ground Investigation Layout Plan                     |
|              |   | Geotechnical Testing Results                         |
| Appendix V - | - | Chemical Analysis Results                            |
| Appendix VI  | - | Ground Gas Monitoring Certificates                   |





## **Executive Summary**

HSP Consulting has been commissioned by Oakmere Homes NW Ltd to provide a Phase II Geoenvironmental Assessment report providing information on likely constraints to the development of the site, parameters for design and recommendations for any mitigation measures should they be required.

The site comprises two open fields to the north west of Chatburn Road, 1.5km north east of Clitheroe town centre at approximate National Grid reference (NGR) 375200,442990. The site address is Chatburn Road, Clitheroe, BB7 2EQ. It is proposed to develop the site to provide twenty eight residential houses.

The ground investigation comprised ten window sample boreholes to a maximum depth of 2.80m, twelve machine excavated trial pits to a maximum depth of 2.60m and three cable percussive boreholes to a maximum depth of 3.00m to provide information for foundation design and obtain representative disturbed soil samples to forward for geotechnical and geo-environmental analysis. The geology of the site comprises topsoil to a maximum depth of 0.30m begl overlying firm to stiff clay, gravel and limestone of the Clitheroe Limestone Formation and Hodder Mudstone Formation, the full depth of which was not proven.

The natural cohesive deposits belonging to the Clitheroe Limestone Formation and Hodder Mudstone Formation are considered as suitable a formation layer for the proposed houses where they have been encountered in a medium strength condition from a minimum depth of 0.50m (i.e. at least 200mm into the natural weathered bedrock deposits). At the above depth HSP would recommend that an allowable bearing pressure of 126kNm<sup>2</sup> should be readily achievable when utilising a 0.60m wide strip trench footing.

It is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

Elevated concentrations of Arsenic have been identified in one location at the site at 0.50m depth. Contamination at this depth is unlikely to pose a risk to end users and remediation is unlikely to be required unless ground levels are to be reduced in the area. Elevated levels of Benzo[b]fluoranthene and Dibenz(a,h)Anthracene have been identified in topsoil from WS3A and WS5. This material will need to be removed from site and is not suitable for re-use in gardens on the site.

Analysis of the ground gas monitoring undertaken to date indicates the site falls into a Characteristic Situation 1 / Green. Therefore gas protection measures are not necessary within any new developments upon the site.

The executive summary contains an overview of key findings and conclusions. However no reliance should be placed on the executive summary until the whole of the report has been read. Other sections of the report may contain information which puts into context the findings noted within the executive summary.



# 1. Introduction

#### 1.1 Background

Oakmere Homes NW Ltd propose develop the site with twenty eight residential properties and associated gardens, soft landscaping and access roads. Our Client intends to submit this report to support the discharge of planning conditions.

#### 1.2 Client Brief & Scope

HSP Consulting has been commissioned by Oakmere Homes NW Ltd to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to the development, parameters for design and recommendations for any mitigation measures should they be required.

The report presents the following information:

- a summary of the previous Geo-environmental Reports (Section 1.4 below),
- details of the ground investigation undertaken and the ground conditions encountered,
- details and results of the geotechnical testing and contamination analysis,
- recommendations for mitigating constraints to the proposed development where appropriate and providing parameters for foundation design.

Where applicable, the fieldwork was undertaken in accordance with BS5930:1999 Code of Practice for Site Investigations and BS10175:2001 Investigation of Potentially Contaminated Sites.

#### **1.2 Report Objectives**

The objectives of this report are to:

- establish the geological and hydrogeological conditions using existing available/published information;
- summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed siteuse;
- produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors;

#### 1.3 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken by HSP Consulting Ltd between 16<sup>th</sup> and 18<sup>th</sup> March 2015.

#### **1.4 Previous Reports**

A previous Phase I report has been made available to HSP Consulting Engineers Ltd by the Client.

• Thomas Consulting, Preliminary Risk Assessment Report, Land at Chatburn Road, Clitheroe, Ref: P4559-01-R1, October2013.



# 2. Review of Existing Information & Geoenvironmental Setting

#### 2.1 The Site

#### 2.1.1 Location

The site comprises two open fields to the north west of Chatburn Road, 1.5km north east of Clitheroe town centre at approximate National Grid reference (NGR) 375200,442990. The site address is Chatburn Road, Clitheroe, BB72EQ.

#### 2.1.2 Description

The site rises from approximately 82.7m by the watercourse in the north west to approximately 92.7m along the south eastern boundary with Chatburn Road. A wall defines the south eastern boundary while to the north west and north east the site is bound by wooden fencing. The site boundary to the south west is marked by a line of trees and hedges.

Two stone walled pens are present, one in the southern corner of the site and another along the centre of the south eastern boundary. An unnamed watercourse flows north east to south west in the north of the site.

#### 2.1.3 Surrounding Land Use

The main features of interest identified from the Phase I report and site walkover are:

- North: Railway line with residential properties and the former Coplow Hill Lime Quarry beyond.
- East: Open fields and the watercourse which flows through the site.
- South: Chatburn Road with further fields and a hospitalbeyond.
- West: Residential Housing.

#### 2.1.4 Site Access

Vehicle access is off Chatburn Road in the southern corner of the site.

#### 2.1.5 Proposed End Use

It is proposed to redevelop the site to provide twenty eight houses. The proposed development plan is provided in Appendix I.



### 2.2 Geology

#### 2.2.1 Made Ground

The BGS mapping (Ref 2) indicates that Made Ground should not be encountered upon the site.

#### 2.2.2 Superficial Deposits

The BGS mapping indicates that the site is underlain by glacial till of Devensian age. This is likely to comprise sandy gravelly clay with boulders.

#### 2.2.3 Bedrock Geology

The BGS mapping indicates the site is underlain by the Clitheroe Limestone Formation and Hodder Mudstone Formation, described as '*Predominantly pale grey and commonly coarsely crinoidal, packstones, wackestones and subordinate grainstones and mudstones with Waulsortian mudmound reef limestones present at two levels' and 'redominantly grey to dark grey mudstone, with subordinate and variable detrital limestone, siltstone and sandstone. Mudmound reef (Waulsortian) limestones, limestone boulder conglomerates and breccias locally, near the base. Soft sediment deformation, slumps, debris flows and gravity slides are widespread.'* 

#### 2.2.4 Structural Geology

One structural fault has been identified on BGS mapping 800m south west of the site. The fault trends north west to south east downthrown to the south west.

#### 2.3 Pertinent Site SensitivityInformation

This information is provided in the Preliminary Risk Assessment Report by Thomas Consulting (Ref. 1) and summarised here for completeness.

#### 2.3.1 Mining

The site is not in an area with potential for coal mining. One BGS mineral extraction site has been identified within 250m of the site relating to Coplow Limestone Quarry 145m north of the site. Extraction at the site is recorded as being ceased.

#### 2.3.2 Hydrogeology

#### **Aquifer Units**

The Clitheroe Limestone Formation and Hodder Mudstone Formation at the site are designated as a Secondary A Aquifer strata described as *permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as <i>minor aquifers.* 

#### **Groundwater Vulnerability**

The site is not located within a Source Protection Zone.



# 2.3.3 Hydrology

#### Nearest Surface Water Course

The closest recorded surface water course is the unnamed watercourse in the north of the site. The nearest off site water feature is a pond off Deanfield Way 280m east of the site.

#### 2.3.4 Flood Risk

The site is recorded to be located within the influence of an Environment Agency Zone 2 and 3 floodplain in the north and west of the site.

Although the report provides information on flood risk this does not constitute a flood risk assessment for the site. The flood risk information provided only relates to flooding from Rivers or Seas and does not account for flooding from other sources such as groundwater, blockages in drainage systems, artificial water features and overlandflow.

#### 2.3.5 Radon

The property is in a higher probability radon area, as between 10 and 30% of homes are above the action level. Full radon protective measures are necessary in the construction of new dwellings or extensions at the site.

#### 2.3.6 Sensitive Land Uses, Ecological and Statutory Designations

The site is not located within a Nitrate Vulnerable Zone.

A Site of Special Scientific Interest (SSSI) is located 19m north of the site at Coplow Quarry. A second SSSI and local nature reserve are present 260m south east of the site at Salthill Quarry. A local nature reserve is also present 415m north of the site at Cross Hill Quarry. No other records of sensitive land use (SSSI, SAC, Environmentally Sensitive Areas, Local Nature Reserves etc) have been identified within 1km radius of thesite.



# 3. Fieldwork & Factual Information

Site work was carried out between the 16<sup>th</sup> and 18<sup>th</sup> of March 2015. Where applicable, the fieldwork was undertaken in accordance with BS5930:1999 + A2:2010 Code of Practice for Site Investigations (Ref. 6) and BS 10175:2011 + A1:2013 Investigation of Potentially Contaminated Sites (Ref. 8).

The exploratory holes were positioned as close to the proposed building footprints as possible to provide information for foundation design and obtain representative soil samples for geotechnical and geo-environmental analysis. A number of trial pits were also excavated under the footprint of proposed roads in order to obtain samples for California Bearing Ratio (CBR) testing.

#### 3.1 Exploratory Methods

The physical methods of investigation employed were 10No window sample boreholes to a maximum depth of 2.80m begl, 3No cable percussive boreholes to a maximum depth of 7.00m begl and 12No machine excavated trial pits to a maximum depth of 2.60m begl. The exploratory holes were logged and sampled by an Engineer from HSP Consulting Ltd and the logs are presented in Appendix II. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in AppendixIII.

Fragmentary bulk, disturbed and undisturbed samples were recovered from materials revealed within all of the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

#### 3.2 In-situ Testing

#### 3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPT's) were carried out at 1.00m intervals to refusal within all of the window sample boreholes. In the cable percussive boreholes alternate SPTs and U100s at 1.00m intervals to 5.00m and at 1.50m intervals thereafter. The SPT's were undertaken in accordance with BS 1377:1990 and the results are included on the appended borehole logs (Appendix II).

#### 3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Ltd.

#### 3.3.1 Geotechnical Testing

Geotechnical testing has been undertaken by a UKAS accredited laboratory as part of the works at the site:

- Particle Size Distribution
- Atterburg Limits
- One Dimensional Consolidation
- Triaxial Tests
- Natural Moisture Content
- Dry Density / Optimum Moisture Content relationshiptests
- Laboratory California Bearing Ratio (CBR) undisturbedtests



• Sulphate Analysis

The laboratory testing has been carried out by Geolabs Limited (UKAS accredited, laboratory No.1982) in accordance with BS1377:1990 using calibrated equipment specifically for the British Standard.

#### 3.3.2 Chemical Analysis

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on nine soil samples for the presence of a selected suite of potential contaminants as outlined in the tables below:

| Exploratory Hole Location & Depth | Sample Description   |  |
|-----------------------------------|----------------------|--|
| WS1 0.50m                         | Clay                 |  |
| WS2 0.50m                         | Clay <sup>1</sup>    |  |
| WS3A 0.10m                        | Topsoil <sup>1</sup> |  |
| WS4 0.10m                         | Topsoil <sup>1</sup> |  |
| WS5 0.10m                         | Topsoil <sup>1</sup> |  |
| WS5 0.50m                         | Clay <sup>1</sup>    |  |
| WS6 0.50m                         | Clay <sup>1</sup>    |  |
| WS7 0.50m                         | Clay <sup>1</sup>    |  |
| WS8 0.50m                         | Clay <sup>1</sup>    |  |

<sup>1</sup>Geo-environmental Analysis Only

| Metals                      | Cadmium         | Chromium (III & VI) | Copper   |
|-----------------------------|-----------------|---------------------|----------|
|                             | Lead            | Mercury             | Nickel   |
|                             | Zinc            |                     |          |
| Semi Metals and Non-metals  | Arsenic         | Boron               | Selenium |
| Others                      | рН              | Asbestos            |          |
| Inorganic Chemicals Cyanide |                 | Sulphate            | Sulphide |
| Organic Chemicals           | PAH (US EPA 16) | TPH (CWG)           | Phenol   |

The contamination analysis was carried out by Chemtest Environmental Ltd (UKAS accredited, laboratory No. 2183) during the period 9<sup>th</sup> to 14<sup>th</sup> April 2015. The results are presented in Appendix V.

#### 3.4 **Ground Conditions**

#### 3.4.1 Published Geology

The published geology indicates the site is underlain by Till overlying the Clitheroe Limestone Formation and Hodder Mudstone formation as described in section 2.2.3above.

#### 3.4.2 Ground Conditions on site or General Geology & Revealed Strata

The exploratory hole confirms the published information, the strata generally comprises:



| Table 1 – Encountered Ground Conditions |                                                                      |                  |                  |                                                                        |  |
|-----------------------------------------|----------------------------------------------------------------------|------------------|------------------|------------------------------------------------------------------------|--|
| Ś                                       | Strata                                                               |                  | Thickness<br>(m) | Description                                                            |  |
| Anthropogenic<br>and Topsoil            | TOPSOIL                                                              | G.L - 0.30       | 0.30m            | TOPSOIL comprising turf over sandy gravelly<br>CLAY                    |  |
|                                         | Strata                                                               | Depth<br>(mbegl) | Thickness<br>(m) | Description                                                            |  |
|                                         |                                                                      | 0.15 – 2.80      | 2.65m            | Firm to stiff sandy gravelly CLAY with occasional cobbles and boulders |  |
|                                         |                                                                      | 0.20 – 1.60      | 1.40m            | Firm to stiff silty sandy CLAY                                         |  |
|                                         | Clitheroe Limestone<br>Formation and<br>Hodder Mudstone<br>Formation | 0.25 – 1.30      | 1.05m            | Clayey sandy GRAVEL & COBBLES of<br>sandstone                          |  |
| Bedrock                                 |                                                                      | 1.00 – 2.50      | 1.50m            | Clayey sandy GRAVEL of sandstone                                       |  |
| Dedioek                                 |                                                                      | 1.60 – 6.70      | 5.10m            | Firm to stiff brown and grey CLAY with occasional cobbles and boulders |  |
|                                         |                                                                      | 3.40 – 5.30      | 1.90m            | Stiff gravelly CLAY with cobbles and boulders                          |  |
|                                         |                                                                      | 5.30 - 5.80      | 0.50m            | Stiff sandy CLAY                                                       |  |
|                                         |                                                                      | 4.10 – 7.00      | 2.90m            | LIMESTONE                                                              |  |

#### 3.5 Groundwater Levels

Groundwater was encountered from a minimum depth of 1.00m during the drilling works.

Monitoring of the groundwater has been undertaken as part of this investigation. WS2 was proven to be dry on three occasions. Groundwater was proven in the remaining borehole installations at depths between 0.52m begl within CP1 and 4.16m begl in CP1.

#### 3.6 **Ground Gas Monitoring**

Sources of potential ground gas were identified with the Preliminary Risk Assessment Report (Ref. 1). Gas monitoring installations were constructed within six of the boreholes at the site (CP1, CP2, CP3, WS2, WS6 and WS8). Each well has been constructed using 50mm diameter HDPE pipe with the top one metre being plain and the remainder slotted. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are either a round or square lockable stopcock cover.

HSP Consulting uses a GFM 430 Gas Analyser. Prior to its use a calibration check can be performed against gas readings in air. It is recommended that this check is undertaken once on each day the analyser is used. Annual calibration is undertaken on the unit and a copy of this certificate has been included within Appendix VI.

The results of the ground gas monitoring undertaken to date are discussed in Section 5.5 below.



# 4. Geotechnical Assessment

#### 4.1 Detailed Ground Model

For the purposes of this assessment the trial pit logs, cable percussive and window sample borehole information has been utilised. The borehole logs are presented in Appendix II.

#### 4.1.1 Topsoil

Topsoil was encountered in all exploratory locations across the site and generally comprised turf over sandy gravelly CLAY to a maximum depth of 0.30m begl.

#### 4.1.2 Made Ground

Made Ground was not encountered at the site.

#### 4.1.3 Clitheroe Limestone Formation and Hodder Mudstone Formation

Cohesive deposits of the Clitheroe Limestone Formation and Hodder Mudstone Formation was encountered in all exploratory hole locations from 0.15m to 6.70m begl. This generally comprised firm to soft silty sandy CLAY with cobbles and occasional boulders overlying stiff gravelly CLAY with occasional boulders to a maximum proven depth of 6.70m begl. Sandstone GRAVEL was encountered between 1.00m and 2.50m begl in CP3, TP5 and TP6.

The bedrock strata was generally recorded to comprise limestone and sandstone recovered as gravel and cobbles from a minimum depth of 0.25m begl in the south west of the site to a maximum proven depth of 7.00m in the east of the site. The base of the Clitheroe Limestone Formation and Hodder Mudstone Formation was not proven.

#### 4.1.4 In-situ Testing and Assessment

A series of Standard Penetration Tests (SPT's) undertaken within the window sample boreholes have returned a SPT 'N' values in the range of 5 to 50 at 1.00m depth. The following table summarises the N values at depth across the site within the natural strata. The range of N values is provided for the site as awhole.

| Table 2 – SPT N Values Depth (m) | Range of 'N' Values | Mean 'N' Value | Description |
|----------------------------------|---------------------|----------------|-------------|
| 1.00                             | 5 - 50              | 13             | Clay        |
| 2.00                             | 7 - 50              | 18             | Clay        |
| 3.00                             | 42 - 50             | 37.5           | Clay        |
| 3.80                             | 50                  | 50             | Clay        |

Thirteen Plasticity Index Tests have been undertaken to confirm the visual description and engineering behaviour of the soils. The results are included in Appendix IV.

The plasticity index of the cohesive till deposits is in the range 11 to 24% indicating clays of low to high plasticity. The modified plasticity index of the cohesive soils are in the range 3% to 19% indicating soils of Low Volume Change Potential (VCP) in accordance with the NHBC guidance on building near trees (Ref. 9). The natural moisture content of the samples was in the range 10% to 26%.



Seven Particle Size Distribution and Natural Moisture Content tests have been undertaken to confirm the visual description and engineering behaviour of the soils. The results are included in Appendix IV.

#### 4.2 Earthworks

Earthworks operations are expected at the site to allow vehicle access. Significant earthworks are not expected for the individual residential housing plots as the finished floor levels can be tailored to suit the contours of the site. The site levels drop from the road at the south eastern boundary to the watercourse in the north west of the site and levels will need to be altered along the alignment of the access road to allow the highway gradients to conform to adoptable standards.

The grading results indicate the Glacial Till, broadly classifies as general cohesive fill Class 2 in accordance with Highways Specification for Highways Works, Series 600, however the soils do not wholly conform to further subdivision due to the gravel and cobble sized fractions. These materials are unlikely to be suitable for use as engineered fill without the use of a ground improvement technique and possibly some sorting to reduce the number of oversized particles (i.e the cobbles and boulders observed during the site work. Consideration should be given to a scheme of lime stabilisation to reduce the moisture content and to aid in achieving high compaction criteria with respect to controlling long term settlements. Specific details should be discussed with a specialistcontractor.

Stringent groundwater and surface water control will be imperative during excavation, as the cohesive deposits will rapidly soften upon contact with water. In addition these materials will be susceptible to softening during periods of wet weather and will easily be damaged by site traffic and deterioration at times of heavy rainfall. It can be seen from the appended compaction test results that the samples tested, in many cases had natural moisture contents above (by a maximum of <u>17%</u>) the optimum moisture content. End product compaction criteria of 100% of the maximum dry density obtained in the 2.5kg tests will need to be achieved if these materials are to be used as fill to structures including the highway.

Given the alteration of the site levels it is recommended that in-situ CBR testing is carried out to determine the deign CBR values once the formation levels are exposed. CBR values in the order of 2% may be anticipated at formation providing any anomalously very soft or soft pockets are over excavated.

It is recommended that the following should be carried out with respect to hardstanding in areas of cut:

- The exposed formation should be carefully inspected and any undesirable materials such as topsoil, obstructions and hard spots should be removed and replaced with suitable granular hardcore.
- Any very soft / soft spots should be similarly over excavated and replaced.
- The formation should be proof rolled prior to construction which, in view of the cohesive nature of the soils encountered, should be undertaken as soon as possible to reduce the exposure time and the risk of softening, particularly in wet or frosty weather conditions. Where it is unavoidable, the softened upper layer should be scraped back prior to rolling and emplacement of the sub-base and /or capping.
- Consideration should be given to provision of a geofabric and / or geogrid stiffener between the formation soils and road, car park or hard landscaping construction



materials in order to prevent either punching of materials into any soft underlying soils, or the squeezing of the soils into the road construction during rolling. This would have the added benefit of providing a small degree of long term reinforcement and will lessen the effect of any differential settlement across areas of hardstanding spanning a variable subgrade.

It should be appreciated that the comments above are based upon a limited number of samples and should be treated as a preliminary basic guide only and not for detailed design work. A full earthworks appraisal will be required prior to the earthworks.

#### 4.3 Excavations

Excavations to proposed formation level for new foundations and infrastructure should generally be readily achievable adopting standard excavation plant. However, random and potentially severe falls should be anticipated from the faces of near vertically sided unsupported excavations carried out at the site. Where personnel are required to enter near vertically sided excavations, it is considered that full support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

Groundwater was encountered from a minimum depth of 1.00m begl during the fieldwork, there is a possibility that groundwater entries may be encountered at shallow depths during construction. It should be noted that groundwater levels may vary due to seasonal variations or other effects. Should shallow groundwater entries be encountered at the site during groundwork operations traditional sump and pump dewatering should be sufficient if required.

#### 4.4 Foundations

The development proposals for the site indicate twenty eight residential properties. The proposed development plans for the site can be seen in Appendix I. Should development plans alter a geotechnical engineer from HSP must be consulted to review the foundation options.

For the purpose of this foundation assessment the information gained from all window sample and cable percussive boreholes has been included.

The table below indicates the indicative allowable bearing pressure (ABP) that could be achieved using strip foundations across the building footprint. An ABP has been calculated using the mean of the corrected SPT  $(N_1)_{60}$  values for the borehole group at 1m intervals from the existing ground level.

| Depth<br>(m) | Mean<br>SPT<br>'N160<br>'<br>Value | Eurocode 7<br>Soil<br>Strength<br>Description | Consistency<br>(BS5930)<br>Description | Approximate ABP<br>(kN/m <sup>2</sup> ) – 0.60m<br>wide strip footing | Approximate<br>ABP (kN/m <sup>2</sup> ) –<br>2x2m pad<br>footing |
|--------------|------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|
| 1.0          | 15.25                              | Medium Strength                               | -                                      | 125                                                                   | 130                                                              |

Table 3 – Indicative Allowable Bearing Pressures



| ľ | 2.0 | 21.11 | High Strength         | - | 195 | 200 |
|---|-----|-------|-----------------------|---|-----|-----|
|   | 3.0 | 37.5  | Very High<br>Strength | - | 415 | 450 |

The natural cohesive deposits belonging to the Clitheroe Limestone Formation and Hodder Mudstone Formation are considered as suitable a formation layer for the proposed houses where they have been encountered in a medium strength condition from a minimum depth of 0.50m (i.e. at least 200mm into the natural weathered bedrock deposits).

At the above depth HSP would recommend that an allowable bearing pressure of 125kNm<sup>2</sup> should be readily achievable when utilising a 0.60m wide strip trench footing.

The allowable bearing capacity value incorporates a factor of safety of 3 and total settlements are not expected to exceed approximately 25mm, thereby keeping differential settlements within acceptable limits.

Should higher loadings be required, consideration should be given to deepening the foundations to bear onto the very high strength cohesive deposits encountered from 3.00m begl.

#### 4.5 Ground Floor Slab

Ground bearing floor slabs are considered to be a feasible option for the proposed development. In order to meet the requirements for radon protection these will need to be reinforced.

#### 4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005.

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'greenfield site' location for the purposes of concrete classification.

On the basis of the above, it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

#### 4.7 **Pavement Design**

At this stage the external proposals indicate a dedicated vehicular access from Chatburn Road heading to a turn head in the north of the site with smaller side roads for access to the residential dwellings.



Given the cohesive nature of the shallow soils encountered a CBR value of 3% to 3.5% is recommended for design purposes at this stage.

Consideration should be given to proof rolling the proposed building footprint and external areas once the formation level has been achieved as good practice. This is to target a CBR value of at least 5% throughout. Should any soft spots be encountered across the area they should be removed and replaced with suitably compacted stone or sub-base material.

Exposed subgrades will likely deteriorate rapidly on exposure to wet weather and should be shaped to shed water. Sub-base should be placed as soon as possible to minimise the exposure of the subgrade to adverse weather conditions.

#### 4.8 Drainage

No soakaway or permeability testing was carried out on the underlying soils at the site at the time of this ground investigation.

The exploratory holes encountered cohesive deposits of low permeability across the site. The use of soakaway drainage is not considered feasible at thesite.



# 5. Environmental Assessment

#### 5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in CRL 11, i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'minimal' or 'tolerable' risk,or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved). (Refs 11 & 10 respectively).

The potential sources of contamination based on historical and current land uses were identified within the Preliminary Risk Assessment Report (Ref. 1). The standard exposure scenario of residential with plant uptake has been used to identify potential exposure pathways for human health receptors as the proposed development plan indicates rear gardens to the two. Controlled water, flora and fauna and property receptors have also been included within the CSM.

#### 5.2 Assessment of Soil Analysis Results

Nine samples, as detailed in section 3.3.2, were scheduled for analysis from the development area. These provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that the GAC, representative of minimal risk for a residential setting was marginally exceeded for Arsenic and Benzo[b]fluoranthene in one location and Dibenz(a,h)Anthracene in two locations. The results for the remaining potential contaminants of concern were below the screening criteria for individual contaminant concentrations.

| Contaminant           | GAC (mg/kg)       | No. of<br>exceedances | Concentration (mg/kg), sampling location and depth (m) |
|-----------------------|-------------------|-----------------------|--------------------------------------------------------|
| Arsenic               | 37 <sup>1</sup>   | 1                     | 54<br>WS1, 0.50m                                       |
| Benzo[b]fluoranthene  | 2.6 <sup>2</sup>  | 1                     | 3.5<br>WS5, 0.10m                                      |
| Dibenz(a,h)Anthracene | 0.24 <sup>2</sup> | 2                     | 0.44 @ WS3A, 0.10m<br>0.43 @ WS5, 0.10m                |

#### Table 4 – GAC Exceedances

<sup>1</sup>C4SL, <sup>2</sup>LQM & CIEH GAC

This investigation has identified the ground conditions to comprise a layer of Topsoil to a maximum depth of 0.20m (WS5) underlain by Clay to a maximum depth of 1.75m (WS1).



We therefore consider that there is the potential risk associated with the interaction between the near surface soils and end users of the site including construction workers. Mitigation measures and recommendations in relation to the contamination identified are made in Section 5.3 below.

#### 5.3 Human Health Mitigation

Results from the nine geo-environmental samples have been screened for on-site human health receptors and none of the GACs (C4SLs or S4ULs) have been exceeded for any of the potential contaminants of concern with the exception of one elevated level of Arsenic in WS1 at 0.50m begl, one elevated level of Benzo[b]fluoranthene in WS5 at 0.10m begl and elevated levels of Dibenz(a,h)Anthracene in WS3A at 0.10m begl and WS5 at 0.10m begl.

The exceedance of the C4SL for Arsenic in WS1 is a single exceedance at 0.50m depth within undisturbed natural ground it is unlikely to pose a significant possibility of significant harm to the proposed end users of the site unless ground levels in this area are reduced during development. Should the lowering of levels in this area be considered a geoenvironmental engineer from HSP must be consulted to review the mitigation options.

The elevated levels of Benzo[b]fluoranthene and Dibenz(a,h)Anthracene at 0.10m begl in WS3A and WS5 are within topsoil at the site. It is recommended that the topsoil in the vicinity of WS3A and WS5 is removed from site. This material will not be suitable for re-use in gardens. The concentrations of Benzo[b]fluoranthene and Dibenz(a,h)Anthracene recorded in these locations are not considered to pose a significant possibility of significant harm to the proposed end use of the site provided they are removed from site. If the material passes a 3AA2 test it may be suitable for reuse on a commercial site. Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP so that an inspection can be made and appropriate sampling and assessment work be carried out.

Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to contaminated soils and dust. Reference to the HSE document HSG 66 'Protection of workers and the General Public during Redevelopment of Contaminated Land'.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

#### 5.4 Water Supply

The environmental testing for the site has been compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Guidance for the selection of water supply pipes to be used in Brownfield sites – UK Water Industry Research – Ref: 10/WM/03/21.'

Based on the chemical analysis report it is considered that specialist materials are unlikely to be required for water supply pipes at the site. However confirmation of supply pipes should be sought from utility providers.



#### 5.5 Ground Gas Risk Assessment

Sources of potential ground gas were identified within the Preliminary Risk Assessment Report. Ground gas concentrations have been monitored on six occasions over a three month period in order to obtain an indication of the ground gas regime at the site.

The results indicate that methane has not been recorded above the limits of detection of the gas monitor. Carbon dioxide has been recorded at concentrations up to a maximum 4.4% by volume in air. Positive gas flows have been recorded at levels up to 1.2l/hr.

The results have been assessed in line with the guidance provided in NHBC Guidance on Methane and Carbon Dioxide (Ref 14) and CIRIA Document C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (Ref 15.). Comparison of these results with Table 8.5 of the CIRIA document indicates that the site falls into a Characteristic Situation 1 and NHBC Green. Therefore gas protection measures are not necessary within any new developments upon the site with regards to methane and carbon dioxide, however full radon protection measures are required for the site.

The certificates and summary for the gas monitoring are included as Appendix VI.

#### 5.6 Updated Conceptual Site Model

The PCSM and Summary of plausible pollutant linkages was produced by undertaking a Source-Pathway-Receptor analysis of the site and is present in the Preliminary Risk Assessment (Ref. 1). Based on the findings of this and the previous investigation the updated conceptual site model has been updated and is presented in the table below.



| Table 5 - Updated Co                        | onceptual Site Model.                                                                                                                              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                                      | Pathway                                                                                                                                            | Receptor                                       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| On site                                     | <b>P1:</b> Horizontal and vertical migration of contaminants through potentially permeable soils and rocks.                                        | R1: Property,<br>services and<br>substructures | The glacial till and Clitheroe Limestone Formation and Hodder Mudstone Formation may contain sulphates that present a risk to buried concrete. Testing indicates the soils are unlikely to be aggressive to concrete and it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.<br>The chemical analysis of the soils indicate specialist materials are unlikely to be required for water supply pipes at the site.                                                                                                                      |
| <b>S1</b> :Agricultural<br>Land.<br>On site | <ul> <li>P2: Human uptake pathways</li> <li>direct contact,</li> <li>ingestion of soils and dust,</li> <li>inhalation of fugitive dust.</li> </ul> | R2: Construction<br>and maintenance<br>workers | Elevated concentrations of Arsenic, Benzo[b]fluoranthene and Dibenz(a,h)Anthracene have been identified within the natural cohesive material and topsoil on site at 0.10 - 0.50m depth. Site workers should be advised of the potential for contact with the Made Ground materials. Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to contaminated soils and dust as per Section 5.3.                                                                                                                                                                                             |
| S2:Made Ground.                             | <ul> <li>P2: Human uptake pathways</li> <li>direct contact,</li> <li>ingestion of soils and dust,</li> <li>inhalation of fugitive dust.</li> </ul> | R3: End Users                                  | Elevated concentrations of Arsenic have been identified within the natural cohesive material on site at 0.50m depth. Due to the depth of the contamination it is unlikely that the end users will come into contact with soils through leisure/sporting activities. Benzo[b]fluoranthene and Dibenz(a,h)Anthracene have been identified within the topsoil on site at 0.10m depth. This material is not suitable for reuse in gardens and should be removed from site. As a result it is unlikely that the end users will come into contact with soils through leisure/sporting activities. Therefore the risk is considered to be very low. |



# 6. References

- 1. Thomas Consulting, Preliminary Risk Assessment Report, Land at Chatburn Road, Clitheroe, Ref: P4559-01-R1, October 2013.
- BRITISH GEOLOGICAL SURVEY. 1975. Clitheroe. England and Wales Sheet 68. Bedrock and Superficial Deposits. 1:50 000 (Keyworth, Nottingham: British geological Survey).
- 3. British Geological Survey Lexicon Search http://www.bgs.ac.uk/lexicon/
- 4. Department of the Environment Industry Profiles.
- 5. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 6. BS 5930:1999 + A2:2010 Code of Practice for Site Investigations.
- 7. BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- BS 10175:2011 + A1:2013 Investigation of Potentially Contaminated Sites Code of Practice.
- 9. NHBC Standards, Chapter 4.2, Building near trees.
- 10. Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 11. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 12. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 13. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 14. NHBC & RSK Group Plc, March 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Ed 4.
- 15. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'



# **Appendix I**

|              |                   | Housetype Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |               | SECTION 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref          | Housetype         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sq Ft (Excluding<br>Garage) | Number        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bow          | Bowfell           | 4 Bed detached house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1033                        | 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Caldew            | 1 Bed terraced house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 439                         | 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Enn          | Ennerdale         | 4 Bed detached house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1521                        | 4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gras         | Grasmere          | 4 Bed detached house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1434                        | 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kirk         | Kirkstone         | 4 Bed detached house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1404                        | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lough        | Loughrigg         | 1 Bed semi detached bungalow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 508                         | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Roth         | Rothay            | 2 Bed semi/terraced house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 693<br>519                  | 3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thirl        | Thirlmere         | 4 Bed detached house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1363                        | 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ulls         | Ullswater         | 4 Bed detached house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1662                        | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was          | Wasdale           | 4 Bed detached house                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1327                        | 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                       | 28            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               | Y 24 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THEFT                       | X             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ×.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathcal{D}$               | 1X            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | $\sim$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                           | $\rightarrow$ | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | $\langle \rangle$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$                      |               | Easement of the test of te |
|              | . y               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\smile$ (                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $\checkmark$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \                           | SI            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| / V          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | · /-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\checkmark$ |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | $\sum $       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| )            |                   | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SECTION 5                   | X             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | The second    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | - ) `         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLAN 4                      | ~ /           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 )                         | _ //          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PLAN 2       | $\sim$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | /             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | PLNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                           | Λ             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -            | - Mr              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                           | /             | l l l l l l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SECTION 3                   | / /           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | BL90.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   | Contraction of the second seco |                             | /             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EL88.19      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim$                      | /             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1            | /                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | /                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RL91.09<br>EL88.78          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\sim$       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                           |               | S [ ] ] ] ] ] ] ] ] [ ] [ ] [ ] [ ] [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





# **Appendix II**

| h S       | p                                                                     |           |                                  |              | Во           | reho     | ole Log                                      | Borehole I<br>CP1<br>Sheet 1 o |    |
|-----------|-----------------------------------------------------------------------|-----------|----------------------------------|--------------|--------------|----------|----------------------------------------------|--------------------------------|----|
|           | ime: Chatburn                                                         | Road,     |                                  | oject No.    |              | Co-ords: | -                                            | Hole Typ                       |    |
| Location: | Clitheroe                                                             |           | C                                | 2099         |              | Level:   |                                              | CP<br>Scale                    |    |
|           |                                                                       |           |                                  |              |              | Level.   |                                              | 1:50<br>Logged E               | 3v |
| Client:   | Oakmere                                                               |           |                                  | [            | 1            | Dates:   | 17/03/2015 - 17/03/2015                      | Driller                        |    |
| Well Wat  | er                                                                    | 1         | In Situ Testing<br>Results       | Depth<br>(m) | Level<br>(m) | Legend   | Stratum Description                          | ı                              |    |
|           | 0.00 - 0.20                                                           | Type<br>B | Results                          |              | (,           |          | Grass overyling brown clayey TOPS            | SOIL                           |    |
|           | 0.10<br>0.20                                                          | D         |                                  | 0.20         |              | ×××_     | Soft to firm orange brown mottled s<br>CLAY. | ilty sandy                     | 1  |
|           | 0.50 - 1.00                                                           | В         |                                  |              |              |          |                                              |                                |    |
|           | 1.00                                                                  |           | 50 (7,16/50 for                  |              |              | ×        |                                              |                                | 1  |
|           | 1.00 - 1.50                                                           | В         | 270mm)                           |              |              |          | with a few large boulder and cobbles and     | d a little coarse              |    |
|           | 1.60                                                                  | D         |                                  | 1.60         |              | ×        | gravel.                                      |                                |    |
|           | 1.70 - 1.80                                                           | Ū         | 50 (25 for 85mm/50               |              |              |          | Stiff dark grey CLAY.                        |                                |    |
|           | 1.80 - 2.30                                                           | В         | for 290mm)                       |              |              |          |                                              |                                | 2  |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           | 2.80                                                                  |           | 50 (9,12/50 for                  |              |              |          |                                              |                                |    |
|           | 2.80 - 3.30                                                           | В         | 265mm)                           |              |              |          |                                              |                                | 3  |
|           | 2.00 - 3.30                                                           |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           | 3.80                                                                  |           | 50 (25 for 95mm/50<br>for 275mm) |              |              |          |                                              |                                |    |
|           | 3.80 - 4.10                                                           | В         | loi 27 onninj                    | 4.10<br>4.20 |              |          | LIMESTONE boulder.                           |                                | 4  |
|           |                                                                       |           |                                  | 4.20         |              |          | End of borehole at 4.20 m                    |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                | 5  |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                | 6  |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                | 7  |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                | 8  |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                | 9  |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           |                                                                       |           |                                  |              |              |          |                                              |                                | 10 |
| Remarks   |                                                                       |           |                                  |              |              |          |                                              |                                |    |
|           | encountered during the drilling proc<br>ated at 4.20m due to refusal. | 85.       |                                  |              |              |          |                                              |                                |    |
|           | oring standpipe installed to 4.20m de                                 | epth.     |                                  |              |              |          |                                              | AG                             | ט  |

| h S<br>consulti                      | D<br>ng                                                 |                          |                                                                      |                   | Bo       | reho     | ole Log                                                                                 | Borehole N<br>CP2<br>Sheet 1 of |    |
|--------------------------------------|---------------------------------------------------------|--------------------------|----------------------------------------------------------------------|-------------------|----------|----------|-----------------------------------------------------------------------------------------|---------------------------------|----|
| Project Name:                        |                                                         | Road,                    |                                                                      | oject No.<br>2099 |          | Co-ords: | -                                                                                       | Hole Typ<br>CP<br>Scale         | e  |
| ocation:                             | Clitheroe                                               |                          |                                                                      |                   |          | Level:   |                                                                                         | 1:50                            |    |
| Client:                              | Oakmere H                                               | Homes                    | 3                                                                    |                   |          | Dates:   | 18/03/2015 - 19/03/2015                                                                 | Logged B<br>Driller             | iy |
| Well Water<br>Strikes                | Samples                                                 | and I                    | n Situ Testing                                                       | Depth             | Level    | Legend   | Stratum Description                                                                     | 1                               |    |
| Strikes                              | Depth (m)<br>0.00 - 0.25<br>0.10<br>0.30<br>0.50 - 1.00 | Type<br>B<br>D<br>B<br>B | Results                                                              | (m)<br>0.25       | (m)      |          | Grass overlying silty TOPSOIL.<br>Ornage brown mottled silty sandy (                    |                                 | -  |
|                                      | 1.00<br>1.00 - 1.50                                     | В                        | N=19 (1,1/3,4,6,6)                                                   |                   |          |          |                                                                                         |                                 |    |
|                                      | 1.80<br>1.90 - 2.35                                     | D<br>U                   |                                                                      | 1.80              |          |          | with sandstone gravel and occasional co<br>Firm to stiff brown grey mottled CL/         |                                 | -  |
|                                      | 2.40<br>2.60<br>2.70<br>2.70 - 3.20                     | D<br>D<br>B              | N=42 (4,9/14,11,8,9)                                                 | 2.40<br>2.60      |          |          | Firm to stiff brown grey mottled CL/<br>Grey brown very sandy CLAY with<br>and cobbles. |                                 | _  |
|                                      | 3.40<br>3.50 - 3.65<br>3.50 - 3.80<br>3.80 - 4.20       | D<br>U<br>B<br>U         |                                                                      | 3.40              |          |          | Stiff grey gravelly CLAY. Gravel is                                                     | of limestone.                   | _  |
|                                      | 4.20                                                    | D                        |                                                                      |                   |          |          |                                                                                         |                                 |    |
|                                      | 4.80<br>4.80 - 5.20<br>5.30<br>5.30                     | B<br>D                   | 50 (25 for 90mm/50<br>for 295mm)<br>50 (25 for 85mm/50<br>for 245mm) | 5.30              |          |          | Grey sandy CLAY.                                                                        |                                 |    |
|                                      | 5.30 - 5.50<br>5.30 - 5.80<br>5.80<br>5.80<br>6.00      | D<br>B<br>D              | 50 (25 for 90mm/50<br>for 250mm)<br>50 (25 for 80mm/50<br>for 225mm) | 5.80<br>6.00      |          |          | with limestone gravels, boulder and cob<br>LIMESTONE                                    |                                 | -  |
|                                      |                                                         |                          | ,                                                                    |                   |          |          |                                                                                         |                                 |    |
|                                      |                                                         |                          |                                                                      |                   |          |          |                                                                                         |                                 |    |
|                                      |                                                         |                          |                                                                      |                   |          |          |                                                                                         |                                 |    |
|                                      |                                                         |                          |                                                                      |                   |          |          |                                                                                         |                                 | 1  |
| emarks<br>o groundwater was encounte | red during the drilling process                         | s.                       |                                                                      | <u> </u>          | <u> </u> |          |                                                                                         |                                 |    |

| n<br>on | S<br>sulti | p<br>ng                        |             |                                   |                    | Bo    | ole Log                                      | CP3<br>Sheet 1 o                                                       |                  |    |
|---------|------------|--------------------------------|-------------|-----------------------------------|--------------------|-------|----------------------------------------------|------------------------------------------------------------------------|------------------|----|
| rojec   | t Name:    | Chatburn I                     | Road,       |                                   | roject No.<br>2099 |       | Co-ords:                                     | -                                                                      | Hole Typ<br>CP   | се |
| ocatio  | on:        | Clitheroe                      |             | 10                                | 2033               |       | Level:                                       |                                                                        | Scale            |    |
| lient:  |            | Oakmere                        | Homes       | 3                                 |                    |       | Dates:                                       | 18/03/2015 - 18/03/2015                                                | 1:50<br>Logged E |    |
|         | Water      | Samples                        | s and       | In Situ Testing                   | Depth              | Level |                                              |                                                                        | Driller          |    |
| /ell    | Strikes    | Depth (m)                      | Туре        | Results                           | (m)                | (m)   | Legend                                       | Stratum Description                                                    | ١                |    |
|         |            | 0.00 - 0.20<br>0.10<br>0.20    | B<br>D<br>D |                                   | 0.20               |       |                                              | Grass overyling brown clayey TOP<br>Orange brown mottled silty sandy ( |                  |    |
|         |            | 0.20<br>0.20 - 0.70<br>0.70    | B           |                                   | 0.70               |       | ×—                                           | ;;;;;;;;;                                                              |                  |    |
|         |            | 0.70<br>0.70 - 1.00<br>0.80    | B<br>W      |                                   | 1.00               |       | × ×                                          | Grey brown mottled silty sandy CL                                      | AY with some     | +  |
|         |            | 1.00<br>1.10                   | D           | N=41 (4,5/8,11,14,8)              | 1.00               |       | ——————————————————————————————————————       | gravel and cobbles.<br>Brown clayey GRAVEL.                            |                  |    |
|         |            | 1.10 - 1.60                    | В           |                                   |                    |       | · · · · · · ·                                |                                                                        |                  |    |
|         |            | 1.70<br>1.80 - 2.20            | D<br>U      |                                   | 1.70               |       |                                              | 5                                                                      |                  |    |
| -       |            | 2.20                           | D           |                                   |                    |       |                                              | Firm to stiff brown grey mottled CL                                    | ΑΥ.              |    |
|         |            | 2.40<br>2.50 - 2.70            | DB          |                                   | 2.40               |       |                                              |                                                                        |                  |    |
|         |            | 2.70<br>2.70 - 3.15            | D           | N=33 (4,7/6,8,8,11)               |                    |       | <u> </u>                                     | Stiff grey CLAY with many limestor                                     | e cobbles and    |    |
| _       |            | 2.70 - 3.20                    | B           |                                   |                    |       | <u> </u>                                     | boulders.                                                              |                  |    |
|         |            |                                |             |                                   |                    |       | <u>~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       | <u> </u>                                     |                                                                        |                  |    |
|         |            | 3.70 - 4.15                    | U           |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            | 4.20                           | D           |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       | <u>~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                                        |                  |    |
|         |            | 4.70                           |             | 50 (25 for 80mm/50<br>for 250mm)  |                    |       | <u> </u>                                     |                                                                        |                  |    |
|         |            | 4.70 - 5.20                    | В           | ,                                 |                    |       | <u> </u>                                     |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            | 5.70 - 5.85                    | U           |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            | 5.70 - 6.20                    | В           |                                   |                    |       | <u>~~~~</u> ~_~                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       | <u> </u>                                     |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       | <u> </u>                                     |                                                                        |                  |    |
|         |            | 6.70                           |             | 50 (25 for 135mm/50<br>for 228mm) | 6.70               |       |                                              | LIMESTONE                                                              |                  | +  |
| -       |            | 6.70 - 6.80<br>7.00            | D           | 50 (25 for 85mm/50                | 7.00               |       |                                              | End of borehole at 7.00 r                                              | n                |    |
|         |            |                                |             | for 225mm)                        |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  |    |
|         |            |                                |             |                                   |                    |       |                                              |                                                                        |                  | 1  |
| emar    |            | ered during the drilling proce | 55.         | l                                 | I                  | 1     |                                              |                                                                        |                  | ┣  |
|         |            | .00m due to refusal.           |             |                                   |                    |       |                                              |                                                                        |                  |    |

|                 |               |           |                         |              |              |                                                |                                                                                                              | Trialpit I        | No               |
|-----------------|---------------|-----------|-------------------------|--------------|--------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------|------------------|
| n               | SP            |           |                         |              |              | Tr                                             | ial Pit Log                                                                                                  | TP1               |                  |
| con             | sulting       |           |                         |              |              |                                                | _                                                                                                            | Sheet 1 of        |                  |
| Projec<br>Name  | ct Chatbur    | n Road,   |                         | Projec       |              |                                                | Co-ords: -                                                                                                   | Date              |                  |
|                 |               |           |                         | C209         | 9            |                                                | Level:<br>Dimensions                                                                                         | 18/03/20<br>Scale |                  |
| Locati          | on: Clitheroe | Э         |                         |              |              |                                                | (m):                                                                                                         | 1:25              |                  |
| Client          | : Oakmer      | e Homes   | 6                       |              |              |                                                | Depth<br>1.30                                                                                                | Logge             | d                |
| <b>_</b>        | Sample        | es and In | Situ Testing            | <b>.</b>     | 1            |                                                |                                                                                                              | LEB               |                  |
| Water<br>Strike | Depth         | Туре      | Results                 | Depth<br>(m) | Level<br>(m) | Legend                                         | Stratum Description<br>Grass overlying brown sandy clayey TOPSOIL                                            | Llash             |                  |
|                 |               |           |                         | 0.25         |              |                                                | plasticity.<br>Grey slightly clayey sandy GRAVEL & COBBLE<br>and cobbles is fine to coarse angular to sub an | S. Gravel         |                  |
|                 |               |           |                         |              |              | ، بعد م<br>بن فیب<br>روف میب<br>روف م          | sandstone.                                                                                                   | guiai             | -<br>-<br>-<br>- |
|                 | 0.80          | в         |                         |              |              | بف °بیت<br>و بفت م<br>بف °بیت<br>و بفت م       |                                                                                                              |                   | -                |
|                 | 1 20          | в         |                         |              |              | بھی ہے۔<br>افراقی مہ<br>افراقی مہ<br>افراقی مہ |                                                                                                              |                   | 1<br>-<br>-      |
|                 | 1.20          | D         |                         | 1.30         |              | , <u>, , , ,</u>                               | TEnd of pit at 1.30 m                                                                                        |                   | -                |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   | -                |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   | 3                |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   | -<br>-<br>-<br>4 |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
|                 |               |           |                         |              |              |                                                |                                                                                                              |                   |                  |
| Rema            | rks: 1. No    | groundwa  | iter was encountered du | uring the e  | excavatio    | n proces                                       | 5.                                                                                                           |                   | 5—               |
| Stabil          | 2. Tria       |           | erminated at 1.30m dep  |              |              |                                                |                                                                                                              | AG                | IS<br>IS         |

| ~                                                                                                                                                                                                | -    | 6           |         |                |              |              |        |                                                                                                                                                                                                                                                                                                                       | Trialpit          | No |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|---------|----------------|--------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|
| N                                                                                                                                                                                                | S    | ρ           |         |                |              |              | Tr     | ial Pit Log                                                                                                                                                                                                                                                                                                           | TP1               |    |
| con                                                                                                                                                                                              | ISUI | ting        |         |                |              |              |        | _                                                                                                                                                                                                                                                                                                                     | Sheet 1           |    |
| Projec<br>Name                                                                                                                                                                                   | ct   | Chatburr    | n Road, |                | Projec       |              |        | Co-ords: -                                                                                                                                                                                                                                                                                                            | Date              |    |
|                                                                                                                                                                                                  |      |             |         |                | C2099        | 9            |        | Level:<br>Dimensions                                                                                                                                                                                                                                                                                                  | 18/03/20<br>Scale |    |
| Locat                                                                                                                                                                                            | ion: | Clitheroe   | ;       |                |              |              |        | (m):                                                                                                                                                                                                                                                                                                                  | 1:25              |    |
| Client                                                                                                                                                                                           | t:   | Oakmere     | e Homes | 6              |              |              |        | 0.50                                                                                                                                                                                                                                                                                                                  | Logge<br>LB       | d  |
| 'ater<br>trike                                                                                                                                                                                   |      |             |         | n Situ Testing | Depth<br>(m) | Level<br>(m) | Legend | Stratum Description                                                                                                                                                                                                                                                                                                   |                   |    |
| Water                                                                                                                                                                                            |      | Pepth Pepth | Туре    | Results        | 0.15<br>0.50 | (m)          |        | Grass overlying blackish brown slightly gravelly<br>sandy clayey TOPSOIL. High plasticity. Gravel<br>medium angular to sub angular of sandstone.<br>Firm orange brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>angular of sandstone and mudstone.<br>End of pit at 0.50 m | is fine to        |    |
|                                                                                                                                                                                                  |      |             |         |                |              |              |        |                                                                                                                                                                                                                                                                                                                       |                   |    |
|                                                                                                                                                                                                  |      | 4 11        |         |                |              |              |        |                                                                                                                                                                                                                                                                                                                       |                   | 5- |
| Remarks:       1. No groundwater was encountered during the drilling process.         2. Trial pit was terminated at 0.50m depth due to bedrock and backfilled with arisings.         Stability: |      |             |         |                |              |              |        |                                                                                                                                                                                                                                                                                                                       | L)<br>iS          |    |

|                 | C 10           |          |                           |              |              |           |                                                                                                                                                                                    | Trialpit N                     | ٧o           |
|-----------------|----------------|----------|---------------------------|--------------|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| n               | Sp             |          |                           |              |              | Tri       | al Pit Log                                                                                                                                                                         | TP1                            | 4            |
| con             | sulting        |          |                           |              |              |           | _                                                                                                                                                                                  | Sheet 1 c                      |              |
| Projec<br>Name: | t Chatbu       | rn Road, |                           | Projec       |              |           | Co-ords: -                                                                                                                                                                         | Date                           |              |
| Name.           |                |          |                           | C2099        | )            |           | Level:<br>Dimensions                                                                                                                                                               | 18/03/20 <sup>-</sup><br>Scale |              |
| Locatio         | on: Clithero   | e        |                           |              |              |           | (m):                                                                                                                                                                               | 1:25                           |              |
| Client:         | Oakme          | re Homes | S                         |              |              |           | Depth<br>0.50                                                                                                                                                                      | Loggeo<br>LB                   |              |
| Water<br>Strike | Sampl<br>Depth |          | n Situ Testing<br>Results | Depth<br>(m) | Level<br>(m) | Legend    | StratumDescription                                                                                                                                                                 |                                |              |
| ≥ ∞             | Depth          | Туре     | Results                   |              | (,           |           | Grass overlying blackish brown slightly gravelly sandy clayey TOPSOIL. High plasticity. Gravel                                                                                     | very<br>is fine to             |              |
|                 |                |          |                           | 0.15         |              |           | <ul> <li>medium angular to sub angular of sandstone.</li> <li>Firm orange brown slightly gravelly very sandy</li> <li>High plasticity. Gravel is fine to coarse angular</li> </ul> | CLAY.                          | -            |
|                 |                |          |                           | 0.50         |              |           | angular of sandstone and mudstone.                                                                                                                                                 |                                | -<br>-<br>-  |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | 1—           |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -<br>-<br>   |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | 2-           |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                |              |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                |              |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                |              |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | 3-           |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                |              |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -<br>-       |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -<br>-<br>   |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | 4-           |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | 4-           |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -<br>-<br>   |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -<br>-<br>   |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -<br>-<br>   |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -            |
|                 |                |          |                           |              |              |           |                                                                                                                                                                                    |                                | -<br>-<br>5- |
| Remar           | rks: 1. No     | groundwa | ater seepage was encou    | ntered du    | ring the e   | excavatio | process.                                                                                                                                                                           |                                |              |
|                 | 2. Tri         |          | terminated at 0.50m dep   |              |              |           |                                                                                                                                                                                    | AG                             | S            |
| Stabili         | ity:           |          |                           |              |              |           |                                                                                                                                                                                    |                                |              |

|                              |                                                   |             |       |        |                                                                                                                                                                                                                                          | Trialpit No        |
|------------------------------|---------------------------------------------------|-------------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| n s p                        |                                                   |             |       | Tri    | al Pit Log                                                                                                                                                                                                                               | TP2                |
| consulting                   |                                                   | Project     |       |        |                                                                                                                                                                                                                                          | Sheet 1 of 1       |
| Project Chatburn Road, Name: |                                                   | C2099       |       |        | Co-ords: -<br>Level:                                                                                                                                                                                                                     | Date<br>18/03/2015 |
|                              |                                                   | 02000       |       |        | Dimensions                                                                                                                                                                                                                               | Scale              |
| Location: Clitheroe          |                                                   |             |       |        | (m):                                                                                                                                                                                                                                     | 1:25               |
| Client: Oakmere Homes        |                                                   |             |       |        | Depth<br>2.00                                                                                                                                                                                                                            | Logged<br>LEB      |
| Σamples and In S             | itu Testing                                       | Depth       | Level |        |                                                                                                                                                                                                                                          |                    |
| bepth Type                   | Results                                           | (m)<br>0.15 | (m)   | Legenc | Grass overlying blackish brown sandy clayey T<br>Low plasticity.<br>Firm orange brown slightly gravelly sandy CLAY                                                                                                                       | High               |
| 0.80 B                       |                                                   |             |       |        | plasticity. Gravel is fine to coarse angular to su<br>of sandstone and mudstone.<br><u>HSV - 24 kPa at 0.50m depth.</u><br>with medium sub angular to sub rounded boulder of sand<br>1.50m depth.<br><u>HSV - 32 kPa at 1.50m depth.</u> | 1-                 |
|                              |                                                   | 2.00        |       |        | End of pit at 2:00 m                                                                                                                                                                                                                     | 2-<br>3-<br>4-     |
|                              | r was encountered durin<br>minated at 2.00m depth |             |       |        | gs.                                                                                                                                                                                                                                      | AGS                |

|                 |               |               |                        |                 |            |             |                                                                                                                                                                                                                                                                                                                                              | Trialpit No         |
|-----------------|---------------|---------------|------------------------|-----------------|------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| n               | Sp            |               |                        |                 |            | Tr          | ial Pit Log                                                                                                                                                                                                                                                                                                                                  | TP3                 |
| con             | sulting       |               |                        |                 |            |             |                                                                                                                                                                                                                                                                                                                                              | Sheet 1 of 1        |
| Projec<br>Name  | ct Chatbur    | n Road,       |                        | Projec<br>C2099 |            |             | Co-ords: -                                                                                                                                                                                                                                                                                                                                   | Date                |
|                 |               |               |                        | 0209            | 9          |             | Level:<br>Dimensions                                                                                                                                                                                                                                                                                                                         | 18/03/2015<br>Scale |
| Locati          | ion: Clithero | е             |                        |                 |            |             | (m):                                                                                                                                                                                                                                                                                                                                         | 1:25                |
| Client          | t: Oakmer     | e Homes       |                        |                 |            |             | Depth<br>1.70                                                                                                                                                                                                                                                                                                                                | Logged<br>LEB       |
| 50              | Sampl         | es and In     | Situ Testing           | Depth           | Level      |             |                                                                                                                                                                                                                                                                                                                                              |                     |
| Water<br>Strike | Depth         | Туре          | Results                | (m)             | (m)        | Legend      |                                                                                                                                                                                                                                                                                                                                              |                     |
| Rema            | 0.50<br>1.50  | B             |                        | 0.15            |            |             | Grass overlying blackish brown sandy gravelly CLAY. Hig plasticity.         Firm orangish brown sandy gravelly CLAY. Hig plasticity. Gravel is fine to coarse angular to sub of sandstone and mudstone.         HSV - 48 kPa at 0.60m depth.        with low sub rounded boulders of sandstone at 1.40m depth.         Tend of pit at 1.70 m | h<br>rounded        |
|                 |               |               |                        |                 |            |             |                                                                                                                                                                                                                                                                                                                                              |                     |
| Stabil          |               | al pit was te | erminated at 1.70m dep | th and ba       | ckfilled w | vith arisin | gs.                                                                                                                                                                                                                                                                                                                                          | AGS                 |

| 6               | <b>c D</b>         |           |                                       |                 |             |            |                                                                                                                                                                                                                                                                                                                                                       | Trialpit         | No |
|-----------------|--------------------|-----------|---------------------------------------|-----------------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
|                 | SP                 |           |                                       |                 |             | Tri        | al Pit Log                                                                                                                                                                                                                                                                                                                                            | TP4              |    |
|                 | sulting            |           |                                       | During          |             |            |                                                                                                                                                                                                                                                                                                                                                       | Sheet 1          |    |
| Projec<br>Name  | ct Chatburi        | n Road,   |                                       | Projec<br>C2099 |             |            | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                                                  | Date<br>18/03/20 |    |
|                 |                    |           |                                       | 0203            | 5           |            | Dimensions                                                                                                                                                                                                                                                                                                                                            | Scale            |    |
| Locati          | ion: Clitheroe     | 9         |                                       |                 |             |            | (m):                                                                                                                                                                                                                                                                                                                                                  | 1:25             | 5  |
| Client          | t: Oakmer          | e Home    | 6                                     |                 |             |            | Depth<br>1.90                                                                                                                                                                                                                                                                                                                                         | Logge<br>LB      | d  |
| л ө             | Sample             | s and li  | n Situ Testing                        | Depth           | Level       |            |                                                                                                                                                                                                                                                                                                                                                       |                  |    |
| Water<br>Strike | Depth              | Туре      | Results                               | (m)             | (m)         | Legend     | Stratum Description                                                                                                                                                                                                                                                                                                                                   | alayay           | 1  |
| Rema            | 0.60<br>rks: 1. No | B         | ater was encountered dur              | 0.15<br>1.90    | rilling pro |            | TOPSOIL. High plasticity. Gravel is fine to mean angular to sub angular of sandstone.         Firm orangish brown sandy gravelly CLAY. High plasticity. Gravel is fine to coarse angular to sub of sandstone and mudstone.         HSV - 38 kPa at 0.50m depth.        with a medium sub rounded boulder of sandstone.         HSV - 22 kPa at 1.40m. | lium<br>h        |    |
|                 | 2 Tria             | l pit was | terminated at 2.00m dept              | h and ba        | ckfilled w  | ith arisin | qs.                                                                                                                                                                                                                                                                                                                                                   |                  |    |
| Stabil          |                    |           | · · · · · · · · · · · · · · · · · · · |                 |             |            | ~<br>                                                                                                                                                                                                                                                                                                                                                 | AU               | 0  |

| 6                                                                        | c D          |           |                         |                 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trialpit No             |  |  |
|--------------------------------------------------------------------------|--------------|-----------|-------------------------|-----------------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
|                                                                          | S P          |           |                         |                 |         | Tri    | ial Pit Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TP5                     |  |  |
|                                                                          | sulting      |           |                         | Droing          | 4 N I a |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheet 1 of 1            |  |  |
| Projec<br>Name:                                                          | t Chatbur    | n Road,   |                         | Projec<br>C2099 |         |        | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date<br>18/03/2015      |  |  |
|                                                                          |              |           |                         | 02000           | ,       |        | Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scale                   |  |  |
| Location                                                                 | on: Clithero | e         |                         |                 |         |        | (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1:25                    |  |  |
| Client                                                                   | : Oakmer     | e Homes   |                         |                 |         |        | Depth<br>2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Logged<br>LB            |  |  |
| л ө                                                                      | Sample       | es and In | Situ Testing            | Depth           | Level   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |  |  |
| Water<br>Strike                                                          | Depth        | Туре      | Results                 | (m)             | (m)     | Legend |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |  |  |
|                                                                          | 0.50         | B         |                         | 0.15            |         |        | Grass overlying blackish brown sandy gravelly<br>TOPSOIL. High plasticity. Gravel is fine to mer<br>angular to sub angular of sandstone.<br>Firm orange brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>rounded of sandstone and mudstone.<br><i>HSV - 83 kPa at 0.50m.</i><br>with medium sub angular to sub rounded at 0.80m.<br>HSV - 46 kPa at 1.10m depth.<br>with medium angular to sub rounded sandstone.<br>Greyish brown clayey sandy GRAVEL. Gravel<br>coarse angular to rounded of sandstone.<br>End of pir at 2.10 m | dium<br>CLAY.<br>to sub |  |  |
| Rema                                                                     |              |           | ter was encountered dur |                 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |  |  |
| 2. Trial pit was terminated at 2.10m depth and backfilled with arisings. |              |           |                         |                 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |  |  |

|                 |                                                                          |          |                        |                |              |          |                                                                                                                                                                                                                                                                                                          | Trialpit No        |  |  |
|-----------------|--------------------------------------------------------------------------|----------|------------------------|----------------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
|                 | SP                                                                       |          |                        |                |              | Tr       | ial Pit Log                                                                                                                                                                                                                                                                                              | TP6                |  |  |
| con             | sulting                                                                  |          |                        | During         | ( N I -      |          | _                                                                                                                                                                                                                                                                                                        | Sheet 1 of 1       |  |  |
| Projec<br>Name: |                                                                          | n Road,  |                        | Projec<br>C209 |              |          | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                     | Date<br>18/03/2015 |  |  |
|                 |                                                                          |          |                        | 0209           | 9            |          | Dimensions                                                                                                                                                                                                                                                                                               | Scale              |  |  |
| Locati          | on: Clitheroe                                                            | 9        |                        |                |              |          | (m):                                                                                                                                                                                                                                                                                                     | 1:25               |  |  |
| Client          | : Oakmere                                                                | e Homes  | ;                      |                |              |          | Depth<br>2.50                                                                                                                                                                                                                                                                                            | Logged<br>LB       |  |  |
|                 | Sample                                                                   | s and In | Situ Testing           | <b>D</b> (1    |              |          | 2.30                                                                                                                                                                                                                                                                                                     | LD                 |  |  |
| Water<br>Strike | Depth                                                                    | Туре     | Results                | Depth<br>(m)   | Level<br>(m) | Legend   |                                                                                                                                                                                                                                                                                                          |                    |  |  |
|                 | 0.50                                                                     | В        |                        | 0.10           |              |          | Grass overlying blackish brown sandy gravelly<br>TOPSOIL. High plasticity. Gravel is fine to mec<br>angular to sub angular of sandstone.<br>Firm orange brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>angular ofsandstone.<br><u>HSV - 56 kPa at 0.60m.</u> | Lium               |  |  |
| •               | 1.50                                                                     | В        |                        | 1.00           |              |          | Firm greyish brown sandy gravelly CLAY. High p<br>Gravel is fine to coarse angular to sub rounded<br>sandstone.                                                                                                                                                                                          |                    |  |  |
|                 | 2.20                                                                     | в        |                        | 2.10           |              |          | Stiff dark grey silty sandy gravelly CLAY. Low<br>Gravel is fine to coarse angular to sub rounded                                                                                                                                                                                                        | l of               |  |  |
|                 |                                                                          |          |                        | 2.30           |              |          | Sandstone.<br>Dark grey sandy very clayey GRAVEL. Gravel is<br>coarse angular to sub rounded of sandstone.                                                                                                                                                                                               | s fine to          |  |  |
|                 |                                                                          |          |                        | 2.50           |              |          | End of ρit at 2.50 m                                                                                                                                                                                                                                                                                     | 3                  |  |  |
| Rema            | rks: 1. No                                                               | groundwa | ter was encountered du | ring the e     | excavatio    | n proces | ۱<br>۶.                                                                                                                                                                                                                                                                                                  |                    |  |  |
| Stabili         | 2. Trial pit was terminated at 2.50m depth and backfilled with arisings. |          |                        |                |              |          |                                                                                                                                                                                                                                                                                                          |                    |  |  |

|                 | c p             |           |                           |              |              |          |                                                                                                                                                    | Trialpit N        | ١o   |
|-----------------|-----------------|-----------|---------------------------|--------------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
|                 | SP              |           |                           |              |              | Tri      | al Pit Log                                                                                                                                         | TP7               |      |
|                 | sulting         |           |                           | Projec       |              |          | _                                                                                                                                                  | Sheet 1 c         | of 1 |
| Projec<br>Name  |                 | n Road,   |                           | C2099        |              |          | Co-ords: -<br>Level:                                                                                                                               | Date<br>18/03/201 | 15   |
| Locati          | on: Clitheroe   | <u> </u>  |                           | 1            | -            |          | Dimensions                                                                                                                                         | Scale             |      |
|                 |                 |           |                           |              |              |          | (m):<br>Depth                                                                                                                                      | 1:25<br>Logged    |      |
| Client          | : Oakmer        | e Homes   | 6                         |              |              |          | 1.10                                                                                                                                               | LOgged            | 1    |
| Water<br>Strike | Sample<br>Depth | es and Ir | n Situ Testing<br>Results | Depth<br>(m) | Level<br>(m) | Legend   | I Stratum Description                                                                                                                              |                   |      |
| <u>&gt; 0</u>   | Doptil          | 1 ) p 0   |                           |              |              | K        | Grass overlying blackish brown slightly gravell                                                                                                    | y very            | -    |
|                 |                 |           |                           | 0.30         |              |          | sandy clayey TOPSOIL. High plasticity. Gravel<br>coarse sub angular to sub rounded of sandstor<br>Firm light grey to orangish brown slightly grave | ne.<br>elly very  | -    |
|                 | 0.50            | В         |                           |              |              |          | sandy CLAY. High plasticity. Gravel is fine to m<br>angular to sub angular of sandstone and mudst<br>HSV - 32 kPa at 0.60m depth.                  | iedium<br>tone.   |      |
|                 |                 |           |                           |              |              |          | becoming softer and very garvelly from 0.70m depth.                                                                                                |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | 1_   |
|                 |                 |           |                           | 1.10         |              | <u></u>  | End of pit at 1.10 m                                                                                                                               |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | 2—   |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | 3—   |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | 4—   |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | -    |
|                 |                 |           |                           |              |              |          |                                                                                                                                                    |                   | 5—   |
| Rema            | rks: 1. Slig    | ht ground | dwater seepage was enco   | ountered     | during th    | e excava | tion process at 0.70m depth.                                                                                                                       |                   |      |
| Stabili         |                 | l pit was | terminated at 1.10m dept  | h due to     | collapsin    | g and ba | ckfilled with arisings.                                                                                                                            | AG                | S    |

| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S P           |         |      | Tr     | ial Pit Log                                                                                                                                                                                                                                           | TP8     | ;                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------|
| Nome       Control                                                                                                                                                                                                                                                      |               |         |      |        |                                                                                                                                                                                                                                                       |         |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | n Road, |      |        |                                                                                                                                                                                                                                                       |         |                                                                                             |
| Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on: Clitheroe | е       |      |        |                                                                                                                                                                                                                                                       |         |                                                                                             |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oakmer        | e Homes |      |        | Depth                                                                                                                                                                                                                                                 | Logge   |                                                                                             |
| Project<br>Name:       Chatburn Road,       Project No.<br>(2099       Co-ords:<br>Level:       -         Location:       Clitherce       Dimensions<br>(m):<br>Depth<br>2.50       Depth<br>2.50         Client:       Oakmere Homes       Depth<br>2.50       Depth<br>2.50         Image: Stratum Description       Grass overlying blackish brown slightly gravell<br>stratum Description         Image: Stratum Description       Grass overlying blackish brown slightly gravell<br>stratum Description         Image: Stratum Description       Grass overlying blackish brown slightly gravell<br>stratum coarse angular to sub rounded of sandstone<br>orange sub angular to sub rounded of sandstone.         Image: Stratum Description       Image: Stratum Description         Image: Stratum Description       Grass overlying blackish brown slightly gravelly server sand<br>High plasticity. Gravel is fine to coarse angular<br>rounded of sandstone and mudstone.         Image: Stratum Description       Image: Stratum Description         Image: Stratum Description       < |               |         | LB   |        |                                                                                                                                                                                                                                                       |         |                                                                                             |
| Vater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 1 I     |      | Legend | d Stratum Description                                                                                                                                                                                                                                 |         |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50          | В       | 0.25 |        | sandy clayey TOPSOIL. High plasticity. Gravel is<br>coarse sub angular to sub rounded of sandstone<br>Firm greyish brown slightly gravelly very sandy C<br>High plasticity. Gravel is fine to coarse angular to<br>rounded of sandstone and mudstone. | fine to |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |         |      |        | depth.                                                                                                                                                                                                                                                | 90m     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.50          | В       |      |        |                                                                                                                                                                                                                                                       |         |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.40          | в       | 2.50 |        |                                                                                                                                                                                                                                                       |         | 2                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |         |      |        |                                                                                                                                                                                                                                                       |         | 3_                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |         |      |        |                                                                                                                                                                                                                                                       |         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |         |      |        |                                                                                                                                                                                                                                                       |         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Remar<br>Stabilit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. Tria       |         |      |        |                                                                                                                                                                                                                                                       | AC      | L<br>IS                                                                                     |

| h                  | S P           |              |                                   |        |       | Tri    | ial Pit Log                                                                                                                                                                                                                                                                                                                  | Trialpit<br><b>TP9</b><br>Sheet 1 | )       |
|--------------------|---------------|--------------|-----------------------------------|--------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|
| Project            |               | n Road       |                                   | Projec | t No. |        | Co-ords: -                                                                                                                                                                                                                                                                                                                   | Date                              | -       |
| Name:              | Chatbul       | in Road,     |                                   | C209   | 9     |        | Level:                                                                                                                                                                                                                                                                                                                       | 18/03/20                          |         |
| Locatio            | on: Clitheroe | e            |                                   |        |       |        | Dimensions<br>(m):                                                                                                                                                                                                                                                                                                           | Scale<br>1:25                     |         |
| Client:            | Oakmer        | e Homes      |                                   |        |       |        | Depth<br>2.50                                                                                                                                                                                                                                                                                                                | Logge<br>LB                       | d       |
| 50                 | Sample        | es and In Si | itu Testing                       | Depth  | Level |        |                                                                                                                                                                                                                                                                                                                              | LB                                |         |
| Water<br>Strike    | Depth         | Туре         | Results                           | (m)    | (m)   | Legenc | d Stratum Description                                                                                                                                                                                                                                                                                                        |                                   |         |
|                    | 0.60          | В            |                                   | 0.20   |       |        | Grass overlying blackish brown slightly gravell<br>sandy clayey TOPSOIL. High plasticity. Grave<br>medium angular to sub angular of sandstone.<br>Firm greyish brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>angular of sandstone and mudstone.<br>HSV - 61 kPa at 0.40m depth. | l is fine to                      |         |
|                    | 1.50          | в            |                                   | 1.20   |       |        | becoming less gravelly at 1.00m depth.     Firm dark grey slightly sandy gravelly CLAY. L     plasticity. Gravel is fine to coarse angular to su     of sandstone.     HSV - 28 kPa at 1.40m depth.    with a low sub rounded boulder content of sandstone at     depth.                                                     | ıb angular                        |         |
|                    | 2.20          | В            |                                   | 2.50   |       |        |                                                                                                                                                                                                                                                                                                                              |                                   | 2       |
|                    |               |              |                                   |        |       |        | 'End of pit at 2:50 m                                                                                                                                                                                                                                                                                                        |                                   | 3-      |
| Remari<br>Stabilit | 2. Tria       |              | ater seepage was minated at 2.50m |        |       |        | l<br>tion process at 1.00m depth.<br>igs.                                                                                                                                                                                                                                                                                    | AC                                | u<br>iS |

|                 |               |                                         |                           |              |              |             |                                                                                               | Trialpit No           | С   |
|-----------------|---------------|-----------------------------------------|---------------------------|--------------|--------------|-------------|-----------------------------------------------------------------------------------------------|-----------------------|-----|
| n               | S P           |                                         |                           |              |              | Tri         | al Pit Log                                                                                    | TP10                  |     |
| con             | sulting       |                                         |                           |              |              |             | _                                                                                             | Sheet 1 of            | 1   |
| Projec          |               | n Road,                                 |                           | Projec       |              |             | Co-ords: -                                                                                    | Date                  | _   |
| Name            |               |                                         |                           | C209         | 9            |             | Level:<br>Dimensions                                                                          | 18/03/2015<br>Scale   | >   |
| Locat           | ion: Clithero | е                                       |                           |              |              |             | (m):                                                                                          | 1:25                  |     |
| Client          | t: Oakmer     | e Homes                                 | 5                         |              |              |             | Depth                                                                                         | Logged                |     |
| <u> </u>        | 1             |                                         |                           |              |              |             | 2.60                                                                                          | LB                    |     |
| Water<br>Strike | Depth         | Type                                    | n Situ Testing<br>Results | Depth<br>(m) | Level<br>(m) | Legend      | I Stratum Description                                                                         |                       |     |
| > 00            | 200           | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                           |              |              |             | Grass overlying blackish brown slightly gravell sandy clayey TOPSOIL. High plasticity. Grave  | y very<br>Lis fine to |     |
|                 |               |                                         |                           | 0.25         |              |             | medium angular to sub angular of sandstone.<br>Firm orangish brown slightly gravelly very san |                       | -   |
|                 |               |                                         |                           |              |              |             | High plasticity. Gravel is fine to coarse angula                                              |                       | -   |
|                 |               |                                         |                           |              |              |             | rounded of sandstone.                                                                         |                       | -   |
|                 | 0.60          | В                                       |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             | with medium angular to sub rounded content of sandstor depth.                                 | e at 0.80m            | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | 1—  |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             | with low angular to sub rounded content of sandstone at                                       | 1.20m                 | -   |
|                 |               |                                         |                           |              |              |             | depth.                                                                                        |                       | -   |
|                 | 1.50          | в                                       |                           |              |              |             | HSV - 40 kPa at 1.40m depth.                                                                  |                       | -   |
|                 | 1.00          |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | 2-  |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | - 2 |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 | 2.40          | В                                       |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           | 2.60         |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           | 2.00         |              |             | " "End of pit at 2.60"m                                                                       |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | 3—  |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | 4-  |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | -   |
| 1               |               |                                         |                           |              |              |             |                                                                                               |                       | 5_  |
| Rema            | arks: 1. No   | groundwa                                | ater was encountered du   | iring the e  | excavatio    | n process   | 5.                                                                                            |                       |     |
| 1               | 2. Tria       | al pit was                              | terminated at 2.60m dep   | oth and ba   | ackfilled v  | vith arisin | gs.                                                                                           | AGS                   | 3   |
| Stabi           |               | -                                       |                           |              |              |             |                                                                                               | AGS                   | D   |
|                 |               |                                         |                           |              |              |             |                                                                                               |                       |     |

|               |                  | 0                                    |               |                            |                      |              |              |                                                                                                                                                                                                                                                                                                               | Borehole N                | io.   |
|---------------|------------------|--------------------------------------|---------------|----------------------------|----------------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|
| n             | S                | p                                    |               |                            |                      | Bo           | reho         | ole Log                                                                                                                                                                                                                                                                                                       | WS1                       |       |
| cor           | sult             | ing                                  |               |                            | Draig at Na          |              |              |                                                                                                                                                                                                                                                                                                               | Sheet 1 of<br>Hole Type   |       |
| Proje         | ct Name          | : Chatburn                           | Road,         |                            | Project No.<br>C2099 |              | Co-ords:     | : -                                                                                                                                                                                                                                                                                                           | WS                        | ;     |
|               |                  | Olith a rais                         |               |                            | 02000                |              | Lavali       |                                                                                                                                                                                                                                                                                                               | Scale                     |       |
| Locat         | lion.            | Clitheroe                            |               |                            |                      |              | Level:       |                                                                                                                                                                                                                                                                                                               | 1:50                      |       |
| Client        | :                | Oakmere                              |               |                            |                      |              | Dates:       | 17/04/2015 - 17/04/2015                                                                                                                                                                                                                                                                                       | Logged By<br>LEB          | ¥     |
| Well          | Water<br>Strikes | Sample:<br>Depth (m)                 | s and<br>Type | In Situ Testing<br>Results | Depth<br>(m)         | Level<br>(m) | Legend       | StratumDescription                                                                                                                                                                                                                                                                                            |                           |       |
| X             |                  |                                      |               |                            | 0.15                 |              |              | MADE GROUND - blackish brown                                                                                                                                                                                                                                                                                  | very sandy                |       |
|               |                  | 0.15<br>0.50<br>1.00<br>1.50<br>1.75 | D<br>D<br>ES  | N=12 (0,0/1,2,3,6          | 0.15                 |              |              | MADE GROUND - blackish brown<br>clayey TOPSOIL. Lowplasticity.<br>Firm orangish brown slightly gravelly<br>CLAY. High plasticity. Gravel is fine<br>subangular to angular of sandstone<br><i>HSV - 46 kPa at 0.70m depth.</i><br>Grey SANDSTONE. Recovered as<br>angular gravel.<br>End of borehole at 1.80 m | y very sandy<br>to coarse |       |
|               |                  |                                      |               |                            |                      |              |              |                                                                                                                                                                                                                                                                                                               |                           | 8<br> |
| Rema<br>1. No |                  | vater was enc                        | ounter        | red during the drilli      | ng process.          |              |              |                                                                                                                                                                                                                                                                                                               |                           | 10 –  |
|               |                  |                                      |               | Om depth due to re         |                      | ackfilled w  | ith arisings | 5.                                                                                                                                                                                                                                                                                                            | AGS                       |       |

| n s                  | р                                  |       |                     |           | Во    | reho     | ole Log                                                                         | Borehole N                    | 1  |
|----------------------|------------------------------------|-------|---------------------|-----------|-------|----------|---------------------------------------------------------------------------------|-------------------------------|----|
| onsu                 | -                                  |       | Pr                  | oject No. |       |          |                                                                                 | Sheet 1 of<br>Hole Type       |    |
| roject Nan           | ne: Chatburn                       | Road, |                     | 2099      |       | Co-ords: | -                                                                               | WS                            |    |
| ocation:             | Clitheroe                          |       |                     |           |       | Level:   |                                                                                 | Scale<br>1:50                 |    |
| lient:               | Oakmere                            | Homes | 6                   |           |       | Dates:   | 17/04/2015 - 17/04/2015                                                         | Logged B<br>LEB               | 3y |
| ., "Wate             | Sample                             | s and | In Situ Testing     | Depth     | Level | Legend   | StratumDescription                                                              |                               | Γ  |
| Vell Wate<br>Strike  | s Depth (m)                        | Туре  | Results             | (m)       | (m)   | Legend   |                                                                                 |                               |    |
|                      | 0.10                               | D     |                     | 0.20      |       |          | Grass overlying blackish brown ver<br>clayey TOPSOIL. Lowplasticity.            |                               |    |
|                      | 0.50                               | D     |                     |           |       |          | Firm orangish brown slightly gravelly<br>CLAY. High plasticity. Gravel is fine  | / very sandy<br>to coarse sub |    |
|                      |                                    |       |                     |           |       |          | angular to angular of sandstone.<br>HSV - 42 kPa at 0.80m depth.                |                               |    |
|                      | 1.00                               |       | N=10(1,1/2,2,3,3)   |           |       |          |                                                                                 |                               |    |
|                      | 1.50                               | D     |                     |           |       |          |                                                                                 |                               |    |
|                      | 1.50                               |       |                     |           |       |          |                                                                                 |                               |    |
|                      | 2.00                               |       | N=16(2,3/4,4,4,4)   | 2.40      |       |          | HSV - 62 kPa at 1.80m depth                                                     |                               |    |
|                      |                                    |       |                     | 2.10      |       |          | Firm greyish brown sandy gravelly of<br>plasticity. Gravel is fine to coarse su | ub rounded to                 | 1  |
| -81                  | 2.50<br>2.50                       | D     | 50 (25 for 105mm/50 |           |       |          | angular of sandstone and mudstone<br>HSV - 52 kPa at 2.40m depth.               | ).                            |    |
|                      | 2.00                               |       | for 255mm)          | 2.80      |       | <u></u>  | <br>End of borehole at 2.80 m -                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
|                      |                                    |       |                     |           |       |          |                                                                                 |                               |    |
| marke                |                                    |       |                     |           |       |          |                                                                                 |                               |    |
| groundwater was e    | countered during the drilling proc | ess.  |                     |           |       |          |                                                                                 |                               |    |
| rehole was terminate | at 2.50m depth due to refusal.     |       |                     |           |       |          |                                                                                 | AGS                           | 9  |

|        | C                | 5                 |        |                       |                      |              |                                                                                                                  |                                                                        | Borehole N                    | ۱o.      |
|--------|------------------|-------------------|--------|-----------------------|----------------------|--------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|----------|
|        | S                | ρ                 |        |                       |                      | Bo           | reho                                                                                                             | ole Log                                                                | WS3                           |          |
|        | ISUIT<br>ct Name | ing<br>: Chatburn | Road,  |                       | Project No.<br>C2099 |              | Co-ords:                                                                                                         | -                                                                      | Sheet 1 of<br>Hole Type<br>WS |          |
| Locat  | ion <sup>.</sup> | Clitheroe         |        |                       |                      |              | Level:                                                                                                           |                                                                        | Scale                         |          |
| Loout  |                  | Ontheree          |        |                       |                      |              | 20701                                                                                                            |                                                                        | 1:50<br>Logged B              | <u>.</u> |
| Client | :                | Oakmere           | Home   | S                     |                      |              | Dates:                                                                                                           | 17/04/2015 - 17/04/2015                                                | Logged B                      | y        |
| Well   | Water<br>Strikes | -                 | 1      | In Situ Testing       | Depth<br>(m)         | Level<br>(m) | Legend                                                                                                           | StratumDescription                                                     |                               |          |
| n han  | Suikes           | Dopti (iii)       | Туре   | Results               |                      | (11)         |                                                                                                                  | Grass overlying blackish brown ver                                     | y sandy clay                  | <u> </u> |
|        |                  | 0.20              | D      |                       | 0.20                 |              |                                                                                                                  | TOPSOIL. Lowplasticity.<br>Firm light grey and oranish brown sa        | /                             |          |
|        |                  | 0.50<br>0.60      | D<br>D |                       |                      |              |                                                                                                                  | CLAY. High plasticity. Gravel is fine angular to rounded of sandstone. | to coarse                     | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  | HSV - 44 kPa at 0.50m depth.                                           |                               |          |
|        |                  | 1.00              |        | N=9 (1,2/1,2,3,3)     | )                    |              |                                                                                                                  | becoming soft from 1.10m depth.                                        |                               | 1-       |
|        |                  | 1.50              | D      |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  | 1.50              |        | 50 (25 for 145mm/     | 1.80                 |              |                                                                                                                  | with a cobble of sandstone.                                            |                               |          |
|        |                  |                   |        | for 295mm)            | 1.00                 |              | and the second | End of borehole at 1.80 m                                              |                               | 2 –      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 3 -      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 4 -      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 5 -      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 6 -      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 7 –      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 8 -      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 9 -      |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | -        |
|        |                  |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               |          |
| Rema   | urks             |                   |        |                       |                      |              |                                                                                                                  |                                                                        |                               | 10 -     |
|        |                  | vater was enc     | ounter | red during the drilli | ng process.          |              |                                                                                                                  |                                                                        |                               |          |
| 2. Bor | ehole w          | as terminated     | at 1.8 | 0m depth due to r     | efusal and ba        | ackfilled wi | th arisings                                                                                                      | ).                                                                     | AGS                           | S        |

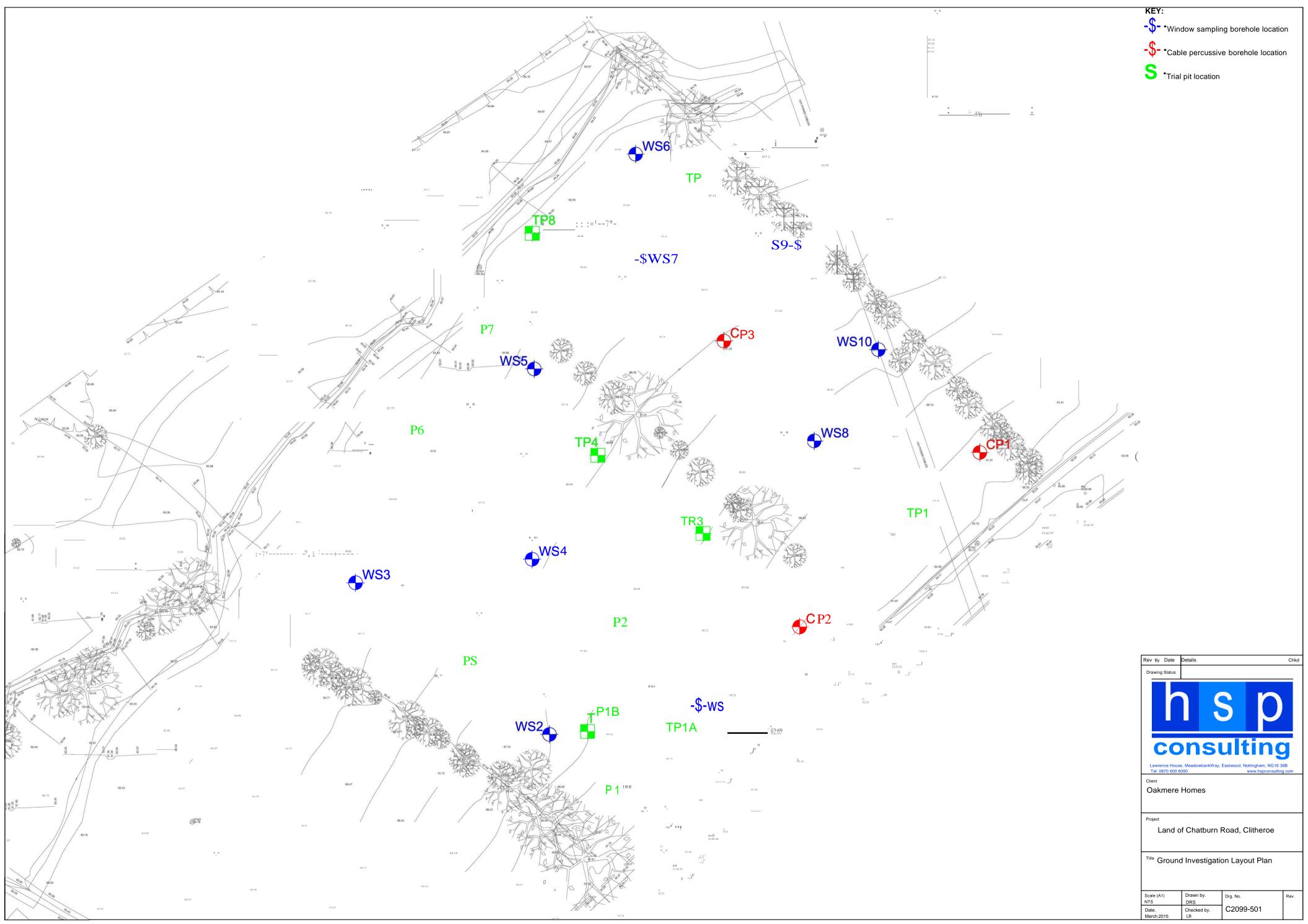
|        | C                | 5                                    |               |                                                      |                    |     |             |             |                                                                                                                                                                                                                                                                                                                                                                     | Borehole No                                   | <u>э.</u>                                                        |
|--------|------------------|--------------------------------------|---------------|------------------------------------------------------|--------------------|-----|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|
|        | 5                | ρ                                    |               |                                                      |                    | E   | Soi         | reho        | ole Log                                                                                                                                                                                                                                                                                                                                                             | WS3A                                          |                                                                  |
| con    | sult             | ing                                  |               |                                                      | <b>.</b>           |     |             |             | •                                                                                                                                                                                                                                                                                                                                                                   | Sheet 1 of 1                                  |                                                                  |
| Proje  | ct Name          | : Chatburn                           | Road,         |                                                      | Project I<br>C2099 | NO. | _           | Co-ords:    | -                                                                                                                                                                                                                                                                                                                                                                   | Hole Type<br>WS                               | _                                                                |
| Locat  | ion:             | Clitheroe                            |               |                                                      | I                  |     |             | Level:      |                                                                                                                                                                                                                                                                                                                                                                     | Scale                                         |                                                                  |
| LUCA   |                  | Cillieroe                            |               |                                                      |                    |     |             | Level.      |                                                                                                                                                                                                                                                                                                                                                                     | 1:50                                          |                                                                  |
| Client | :                | Oakmere                              | Home          | S                                                    |                    |     |             | Dates:      | 17/04/2015 - 17/04/2015                                                                                                                                                                                                                                                                                                                                             | Logged By<br>LEB                              |                                                                  |
| Well   | Water<br>Strikes |                                      | s and<br>Type | In Situ Testing<br>Results                           | Dep<br>(m          |     | evel<br>(m) | Legend      | StratumDescription                                                                                                                                                                                                                                                                                                                                                  |                                               |                                                                  |
|        |                  | Deptil (ill)                         |               | Results                                              |                    |     | . ,         |             | Grass overlying blackish brown sar                                                                                                                                                                                                                                                                                                                                  | ndy clayey                                    |                                                                  |
|        |                  | 0.10<br>0.50<br>1.00<br>1.40<br>1.60 |               | N=16 (1,1/3,4,5,4<br>50 (25 for 135mm/<br>for 235mm) |                    | 50  |             |             | Grass overlying blackish brown sar<br><u>TOPSOIL</u> . High plasticity.<br>Firm light grey and oragnish brown<br>gravelly sandy CLAY. High plasticit<br>to medium sub rounded to angular<br>and mudstone.<br>with a cobble of sandstone at 1.50m depth<br>Extremely weak grey medium grain<br>SANDSTONE recovered as angula<br>gravel.<br>End of borehole at 1.70 m | slightly<br>y. Gravel is fine<br>of sandstone | 1 -<br>-<br>3 -<br>4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>8 -<br>9 - |
|        |                  |                                      |               |                                                      |                    |     |             |             |                                                                                                                                                                                                                                                                                                                                                                     |                                               | 10 -                                                             |
|        | groundv          |                                      |               | red during the drill<br>'Om depth due to r           |                    |     | lled wi     | th arisings |                                                                                                                                                                                                                                                                                                                                                                     | AGS                                           |                                                                  |

| h             | C                | n                    |               |                            |                |              | _            |                                                                                                                      | Borehole N              | lo.              |
|---------------|------------------|----------------------|---------------|----------------------------|----------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
|               | S                |                      |               |                            |                | Bo           | reho         | ole Log                                                                                                              | WS4                     |                  |
|               | isult            | 0                    |               |                            | Project No.    |              |              |                                                                                                                      | Sheet 1 of<br>Hole Type |                  |
| Projec        | ct Name          | : Chatburn           | Road,         |                            | C2099          |              | Co-ords:     | -                                                                                                                    | WS                      | -                |
| Locat         | tion:            | Clitheroe            |               | 1                          |                |              | Level:       |                                                                                                                      | Scale                   |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      | 1:50<br>Logged          |                  |
| Client        | ::<br>           | Oakmere              |               |                            |                |              | Dates:       | 17/04/2015 - 17/04/2015                                                                                              | LEB                     | 1                |
| Well          | Water<br>Strikes | Sample:<br>Depth (m) | s and<br>Type | In Situ Testing<br>Results | Depth<br>(m)   | Level<br>(m) | Legend       | StratumDescription                                                                                                   | l                       |                  |
|               |                  | 0.10                 | D             |                            | 0.20           |              |              | Grass overlying blackish brown slig<br>sandy clay TOSPOIL. High plasticit<br>fine to medium angular to sub angu      | ty. Gravel is           |                  |
|               |                  | 0.50                 | D             |                            |                |              |              | sandstone<br>Firm orangish brown slightly gravell<br>CLAY. High plasticity. Gravel is fine                           | y sandy                 |                  |
|               |                  | 1.00                 |               | N=5(1,1/1,2,1,1)           |                |              |              | angular to sub angular of sandstone<br>mudstone.<br>HSV-44 kPa at 0.80m depth.                                       |                         | 1_               |
|               |                  | 1.50                 | D             |                            |                |              |              |                                                                                                                      |                         | -                |
|               |                  | 2.00                 |               | N=31 (4,6/5,7,8,11)        |                |              |              |                                                                                                                      |                         | 2 -              |
|               |                  | 2.50<br>2.70         | D             | 35 (25 for 115mm/3         | 2.30<br>5 2.70 |              |              | Stiff dark grey silty sandy gravelly 0<br>plasticity. Gravel is fine to coarse a<br>rounded of sandstone and mudstor | ngular to sub           | .<br>  .<br>  .  |
|               |                  |                      |               | for 245mm)                 |                |              |              | HSV - 102 kPa at 2.40m depth.<br>End of borehole at 2.70 m                                                           | ·/                      | 3-               |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         | 4_               |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         | 5_               |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         | -<br>-<br>-<br>6 |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         | 7_               |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         | 8 _              |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         | 9_               |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         |                  |
|               |                  |                      |               |                            |                |              |              |                                                                                                                      |                         | 10_              |
| Rema<br>1. No |                  | water was enc        | ounter        | red during the drillir     | ng process.    |              |              |                                                                                                                      |                         | <u> </u>         |
| 2. Bor        | rehole w         | as terminated        | l at 2.7      | 'Om depth due to re        | fusal and b    | ackfilled w  | ith arisings | 5.                                                                                                                   | AGS                     | 5                |

| h s         | р                                    |       |                                                       |                      | Bo    | reho     | ole Log                                                                                                                                                                                                                                                                                     | Borehole No<br>WS5      | Э.                         |
|-------------|--------------------------------------|-------|-------------------------------------------------------|----------------------|-------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|
| consul      | ting                                 |       |                                                       |                      |       |          |                                                                                                                                                                                                                                                                                             | Sheet 1 of <sup>2</sup> |                            |
| Project Nam | e: Chatburn                          | Road, |                                                       | Project No.<br>C2099 |       | Co-ords: | -                                                                                                                                                                                                                                                                                           | Hole Type<br>WS         |                            |
| Location:   | Clitheroe                            |       |                                                       |                      |       | Level:   |                                                                                                                                                                                                                                                                                             | Scale<br>1:50           |                            |
| Client:     | Oakmere                              | Home  | S                                                     |                      |       | Dates:   | 17/04/2015 - 17/04/2015                                                                                                                                                                                                                                                                     | Logged By<br>LB         | r                          |
| Water       |                                      | s and | In Situ Testing                                       | Depth                | Level | Logond   | StratumDescription                                                                                                                                                                                                                                                                          |                         |                            |
| Well Strike | S Depth (m)                          | Туре  | Results                                               | (m)                  | (m)   | Legend   | Grass overlying brown slightly sand                                                                                                                                                                                                                                                         |                         |                            |
|             | 0.10<br>0.50<br>1.00<br>1.50<br>2.00 | D     | N=5 (3,2/2,1,1,1)<br>50 (25 for 135mm/5<br>for 275mm) | 1.70                 |       |          | very clayey TOPSOIL. High plastici<br>fine to medium angular to sub angu<br>sandstone.<br>Firm yellowish brown and grey sligh<br>very sandy CLAY. High plasticity. Gr<br>coarse angular to sub rounded ofsa<br>mudstone.<br>HSV - 19 kPa at 0.90m depth.<br>becoming soft from 1.20m depth. | Ilar of                 | 1<br><br>3                 |
|             |                                      |       |                                                       |                      |       |          |                                                                                                                                                                                                                                                                                             |                         | 4<br>5<br>6<br>7<br>8<br>9 |
|             |                                      |       | during the drilling<br>'Om depth due to re            |                      |       |          |                                                                                                                                                                                                                                                                                             | AGS                     | 10 –                       |

| oject Name: Chabum Road, Project No.<br>C2999 Co-ords: - WS<br>Scale<br>int: Oakmere Homes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes<br>Strikes | n S<br>onsult | p                                |                |                    |            | Bo | reho     | ole Log                                                                                                                                                                                                | Borehole N<br>WS6<br>Sheet 1 of |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|----------------|--------------------|------------|----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|
| coation: Citheroe Sole<br>ient: Oakmere Homes<br>Ient:                                                                                                                                                                                                                                                          |               |                                  | Road,          |                    |            |    | Co-ords: | -                                                                                                                                                                                                      | Hole Type                       |         |
| ient:         Dakes:         17/04/2015         Logged By<br>Lgged M           Strike:         Samples and In Situ Testing<br>Depth (m)         Depth (m)         Type         Results         0.10         Loved<br>(m)         Loved<br>(m)         Logend<br>(m)         Case conving black box slightly gravely<br>sony classy TD/SOLL Hgn paskety. Gravel Js<br>to model was an anglan of sanctone and<br>mudsione.           1.00         N=14 (1.22.3.4.5)         1.20         To mudsione.         To mudsione.         To mudsione.           1.100         N=14 (1.22.3.4.5)         1.20         To mudsione.         To mudsione.         To mudsione.           1.100         N=14 (1.22.3.4.5)         1.20         To mudsione.         To mudsione.         To mudsione.           1.100         N=14 (1.22.3.4.5)         1.20         To mudsione.         To mudsione.         To mudsione.           1.100         N=14 (1.22.3.4.5)         1.20         To mudsione.         To mudsione.         To mudsione.           1.100         N=14 (1.22.3.4.5)         1.20         To mudsione.         To mudsione.         To mudsione.           1.100         N=14 (1.22.3.4.5)         1.20         To mudsione.         To mudsione.         To mudsione.           1.100         Signer 24.12.14.1         1.90         Signer 24.12.14.1         To mudsione.         T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ocation:      | Clitheroe                        |                |                    | 2099       |    | Level:   |                                                                                                                                                                                                        |                                 |         |
| Image: control of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Cillieroe                        |                |                    |            |    | Level.   |                                                                                                                                                                                                        |                                 | <u></u> |
| Barties         Depth (m)         Type         Results         (m)         (m)         (m)         Legend         Stratum Description           0.10         D         0.10         D         Oracle of the data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lient:        | Oakmere I                        | Homes          | 3                  | - <b>-</b> |    | Dates:   | 17/04/2015 - 17/04/2015                                                                                                                                                                                |                                 | У       |
| Unit         Unit <th< td=""><td>Vell Water</td><td></td><td></td><td></td><td></td><td></td><td>Legend</td><td>StratumDescription</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vell Water    |                                  |                |                    |            |    | Legend   | StratumDescription                                                                                                                                                                                     |                                 |         |
| 1.00         N=14(1,2/2,3,4,5)           1.50         D           1.50         D           1.30         \$0 (25 for 85mm/24,12,14)           1.90         \$0 (25 for 85mm/24,12,14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 0.10                             | D              | Results            |            |    |          | sandy clayey TOPSOIL. High plasti<br>fine to medium sub angular of sand                                                                                                                                | city. Gravel is                 |         |
| 1.90 50 (25 for<br>35mm/24,12,14,) 1.90 angular of samoks at 130 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                  | D              | N=14 (1,2/2,3,4,5) | 1.20       |    |          | Soft light grey to orangish brown sli<br>very sandy CLAY. High plasticity. G<br>coarse angular to sub angular ofsai<br>mudstone.<br>HSV - 32 kPa at 0.60m depth.<br>Dark grey gravelly clayey SAND. Si | and is fine to                  | 1       |
| 86mm/24.12.14.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                  |                | 50 (05 (           |            |    |          | coarse. Gravel is fine to coarse ang<br>angular of sandstone and mudstone                                                                                                                              | jular to sub<br>e.              |         |
| emarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                  |                | 85mm/24,12,14,)    |            |    |          |                                                                                                                                                                                                        |                                 |         |
| emarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                  |                |                    |            |    |          |                                                                                                                                                                                                        |                                 | 7       |
| emarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                  |                |                    |            |    |          |                                                                                                                                                                                                        |                                 |         |
| marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                  |                |                    |            |    |          |                                                                                                                                                                                                        |                                 | 1       |
| emarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                  |                |                    |            |    |          |                                                                                                                                                                                                        |                                 |         |
| emarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                  |                |                    |            |    |          |                                                                                                                                                                                                        |                                 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | ed during the drilling process a | at 1.00m depth |                    |            |    |          |                                                                                                                                                                                                        |                                 | 1       |

| n S<br>onsult         | р<br>ing     |         |                              |                    | Bo        | reho     | ole Log                                                                                                                                                             | WS7<br>Sheet 1 of         |    |
|-----------------------|--------------|---------|------------------------------|--------------------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----|
| oject Name            | e: Chatburn  | Road,   |                              | roject No.<br>2099 |           | Co-ords: | -                                                                                                                                                                   | Hole Typ<br>WS            | е  |
| ocation:              | Clitheroe    |         |                              |                    |           | Level:   |                                                                                                                                                                     | Scale<br>1:50             |    |
| ient:                 | Oakmere      | Homes   | 3                            |                    |           | Dates:   | 17/04/2015 - 17/04/2015                                                                                                                                             | Logged B<br>LB            | 3y |
| /ell Water<br>Strikes | Sample       | s and I | In Situ Testing              | Depth              | Level     | Legend   | StratumDescription                                                                                                                                                  |                           | Τ  |
| Strikes               | 2 op ()      | Туре    | Results                      | (m)                | (m)       | Zogona   | Grass overlying blackish brown slig                                                                                                                                 |                           | _  |
|                       | 0.10<br>0.50 | D       |                              | 0.25               |           |          | sandy clayey TOPSOIL. High plasti<br>fine to medium sub angular of sand<br>mudstone.                                                                                | city. Gravel is stone and |    |
| <u> </u>              | 1.00         |         | N=10 (3,3/4,2,2,2)           |                    |           |          | Firm light brown and orangish brown<br>gravelly CLAY. High plasticity. Grave<br>medium angular to sub rounded of s<br>and mudstone.<br>HSV - 42 kPa at 0.70m depth. | el is fine to             |    |
|                       | 1.50         | D       |                              | 1.50               |           |          | Soft reddish brown slightly gravelly<br>CLAY. High plasticity. Gravel is fine                                                                                       | e to coarse               | -  |
|                       | 2.00         |         | N=7 (2,2/1,2,1,3)            |                    |           |          | angular to sub angular of sandstone<br>mudstone.<br>HSV - 24 kPa at 1.60m depth.                                                                                    | e and                     |    |
|                       | 2.70         |         | N=50 (11,12/50 for<br>285mm) | 2.70               |           |          | End of borehole at 2.70 m                                                                                                                                           |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
|                       |              |         |                              |                    |           |          |                                                                                                                                                                     |                           |    |
| marks<br>Groundwat    | er was encou | ntered  | during the drilling p        | rocess at 1        | .40m dept | h.       |                                                                                                                                                                     |                           |    |


| h                          | С                | n                    |               |                             |              | _            | -            |                                                                                                               | Borehole No               | ).   |  |
|----------------------------|------------------|----------------------|---------------|-----------------------------|--------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------|---------------------------|------|--|
|                            | 2                | Ρ                    |               |                             |              | Bo           | reho         | ole Log                                                                                                       | WS8                       |      |  |
|                            | sult             | 0                    |               |                             | Project No.  |              |              | -                                                                                                             | Sheet 1 of 1<br>Hole Type |      |  |
| Projec                     | t Name           | : Chatburn           | Road,         |                             | C2099        |              | Co-ords:     | -                                                                                                             | WS                        |      |  |
| Locati                     | ion:             | Clitheroe            |               |                             |              |              | Level:       |                                                                                                               | Scale                     |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               | 1:50<br>Logged By         |      |  |
| Client                     |                  | Oakmere              |               |                             |              | 1            | Dates:       | 17/04/2015 - 17/04/2015                                                                                       | LB                        |      |  |
| Well                       | Water<br>Strikes | Samples<br>Depth (m) | s and<br>Type | In Situ Testing<br>Results  | Depth<br>(m) | Level<br>(m) | Legend       | StratumDescription                                                                                            | 1                         |      |  |
| 194 - 1944)<br>1947 - 1947 |                  | Deptil (III)         | туре          | Results                     |              | (,           |              | Grass overlying brown sandy grave                                                                             | elly clayey               |      |  |
|                            |                  | 0.50                 |               |                             | 0.20         |              |              | TOPSOIL. High plasticity. Gravel is medium angular to sub rounded of                                          | s fine to<br>sandstone    |      |  |
| _                          |                  | 0.50                 | D             |                             |              |              |              | And mudstone.<br>Firm orangish brown slightly gravell                                                         | y very sandy              | -    |  |
|                            |                  | 1.00                 |               | N=5(1,1/1,1,1,2)            |              |              |              | CLAY. High plasticity. Gravel is fine t<br>angular to sub rounded of sandstor<br>HSV - 68 kPa at 0.70m depth. | io coarse<br>le.          | 1 –  |  |
|                            |                  |                      |               | , · · · · ,                 |              |              |              | HSV - 68 kPa at 0.70m depth.                                                                                  |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | -    |  |
|                            |                  | 1.80                 |               | N=50 (11,14/50 fo<br>285mm) | r 1.80       |              |              | End of borehole at 1.80 m                                                                                     |                           |      |  |
|                            |                  |                      |               | 2001111)                    |              |              |              |                                                                                                               |                           | 2 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | _    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 3 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | -    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 4 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 4 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | _    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 5 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | -    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 6 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | -    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 7 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | -    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 8 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | -    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 0    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 9 –  |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | _    |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           |      |  |
|                            |                  |                      |               |                             |              |              |              |                                                                                                               |                           | 10 — |  |
| Rema                       |                  | vater was enc        | ounter        | ed during the drilli        | ng process   |              | . I          |                                                                                                               |                           |      |  |
|                            |                  |                      |               | Om depth due to re          |              | ackfilled w  | ith arisings |                                                                                                               | AGS                       |      |  |

| h               | C       | 5                            |         |                                                   |                      |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                            | Borehole No                                                                       | э. |  |
|-----------------|---------|------------------------------|---------|---------------------------------------------------|----------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----|--|
|                 | 2       | Ρ                            |         |                                                   |                      | Bo           | reho        | ole Log                                                                                                                                                                                                                                                                                                                                                                                                                                    | WS9                                                                               |    |  |
| con             | sult    | ing                          |         |                                                   | Droiget No.          |              | 1           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sheet 1 of                                                                        |    |  |
| Projec          | t Name  | : Chatburn                   | Road,   |                                                   | Project No.<br>C2099 |              | Co-ords:    | : -                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hole Type<br>WS                                                                   |    |  |
| Locati          | ion:    | Clitheroe                    |         |                                                   |                      |              | Level:      |                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scale                                                                             |    |  |
|                 |         |                              |         |                                                   |                      |              | 20101.      |                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1:50<br>Logged By                                                                 |    |  |
| Client:         |         | Oakmere                      | Homes   | 3                                                 |                      |              | Dates:      | 17/04/2015 - 17/04/2015                                                                                                                                                                                                                                                                                                                                                                                                                    | LB                                                                                |    |  |
| Well            | Water   | -                            |         | In Situ Testing                                   | Depth                | Level        | Legend      | StratumDescription                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |    |  |
|                 | Strikes | Depth (m)                    | Туре    | Results                                           | (m)                  | (m)          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |    |  |
|                 |         | 0.50<br>1.00<br>1.50<br>2.00 | D       | N=8 (2,2/2,2,2,2,2)<br>N=50 (4,6/50 for<br>255mm) | 1.20                 |              |             | Grass overlying brown sandy grave<br>TOPSOIL. High plasticity. Gravel is<br>medium angular to sub angular of s<br><u>mudstone</u> .<br>High plasticity. Gravel is fine to<br>angular to sub rounded of sandstor<br>mudstone.<br>HSV - 42 kPa at 0.80m depth.<br>Firm greenish brown silty sandy gravel<br>High plasticity. Gravel is fine to coa<br>sub angular of sandstone.<br>HSV - 79 kPa at 1.50m depth.<br>End of borehole at 2.00 m | s fine to<br>sandstone and<br>y very sandy<br>to coarse<br>he and<br>avelly CLAY. |    |  |
| Rema<br>1. No ( |         | vater was enc                | ounter  | ed during the drilli                              | ng process.          |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   | 9  |  |
| 2. Bor          | ehole w | as terminated                | at 2.0r | m depth due to re                                 | fusal and bac        | ckfilled wit | h arisings. |                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGS                                                                               |    |  |

|        | C                | 5                        |          |                       |                      |             |              |                                                                                                                                                                                                                                                                                          | Borehole N                                                                | ۱o.                                            |
|--------|------------------|--------------------------|----------|-----------------------|----------------------|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|
|        | 5                | Ρ                        |          |                       |                      | Bo          | reho         | ole Log                                                                                                                                                                                                                                                                                  | WS10                                                                      | )                                              |
| con    | sult             | ing                      |          |                       |                      |             |              | 0                                                                                                                                                                                                                                                                                        | Sheet 1 of                                                                |                                                |
| Proje  | ct Name          | : Chatburn               | Road,    |                       | Project No.<br>C2099 |             | Co-ords:     | -                                                                                                                                                                                                                                                                                        | Hole Typ<br>WS                                                            | e                                              |
|        |                  | 01111-0-00               |          |                       | 02000                |             | 1            |                                                                                                                                                                                                                                                                                          | Scale                                                                     |                                                |
| Locat  | lion:            | Clitheroe                |          |                       |                      |             | Level:       |                                                                                                                                                                                                                                                                                          | 1:50                                                                      |                                                |
| Client | :                | Oakmere                  | Home     | S                     |                      |             | Dates:       | -                                                                                                                                                                                                                                                                                        | Logged B                                                                  | 3y                                             |
|        | Water            | Sample                   | s and    | In Situ Testing       | Depth                | Level       |              |                                                                                                                                                                                                                                                                                          |                                                                           | T                                              |
| Well   | Water<br>Strikes | Depth (m)                | Туре     | Results               | (m)                  | (m)         | Legend       | StratumDescription                                                                                                                                                                                                                                                                       |                                                                           |                                                |
| Well   | Strikes          | Depth (m)<br>0.50<br>1.0 | D        | Results               | (m)<br>0.15          | (m)         |              | Turf over dark brown sandy gravell<br>plasticity (field description). Gravel<br>angular to angular fine and medium<br>and mudstone.<br>Firm orangish brown slightly gravell<br>CLAY. High plasticity (field descripti<br>is sub-rounded to angular fine to co<br>sandstone and mudstone. | y CLAY. High<br>is sub-<br>n of sandstone<br>y very sandy<br>ion). Gravel | 1<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |
|        | groundv          |                          |          | red during the drilli |                      |             |              |                                                                                                                                                                                                                                                                                          |                                                                           | 10 -                                           |
| 2. Boi | ehole w          | as terminated            | l at 1.0 | 0m depth due to r     | efusal and b         | ackfilled w | ith arisings | 5.                                                                                                                                                                                                                                                                                       | AGS                                                                       | 9                                              |



## **Appendix III**





# **Appendix IV**

#### SUMMARY OF GEOTECHNICAL TESTING

|                         | Sample details |              |      |                                                                                         |     |     |                 |     |      |    | Densit            | / Tests           | Undrainer        | d Triaxial Co      | mpression       | 0  | hemical Te        | sts       |                                                                                                             |
|-------------------------|----------------|--------------|------|-----------------------------------------------------------------------------------------|-----|-----|-----------------|-----|------|----|-------------------|-------------------|------------------|--------------------|-----------------|----|-------------------|-----------|-------------------------------------------------------------------------------------------------------------|
| Borehole /<br>Trial Pit | Sample Ref     | Depth<br>(m) | Туре | Description                                                                             | мс  | LL  | ification<br>PL | PI  | -41  |    | Bulk              | Dry               | Cell<br>Pressure | Deviator<br>Stress | Shear<br>Stress | рН | 2:1<br>W/S<br>SO4 | W/S<br>Mg | Other tests and comments                                                                                    |
|                         |                |              |      |                                                                                         | (%) | (%) | (%)             | (%) | ) (% | 6) | Mg/m <sup>3</sup> | Mg/m <sup>3</sup> | kPa              | kPa                | kPa             |    | (g/L)             | (mg/L)    | 1                                                                                                           |
| BH1                     |                | 2.80-3.30    | В    | Grey sandy silty CLAY with abundant gravel                                              | 8.4 | 27  | 14              | 13  | 62   | 2  |                   |                   |                  |                    |                 |    |                   |           | 2.5kg Compaction                                                                                            |
| BH2                     |                | 1.00-1.50    | В    | Grey brown gravelly sandy silty CLAY. Gravel is mudstone.                               | 37  | 43  | 23              | 20  | 80   | 0  |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>2.5kg Compaction                                                              |
| BH2                     |                | 1.90-2.35    | U    | Soft to firm brown silty CLAY with abundant gravel and rootlets                         |     |     |                 |     |      |    |                   |                   |                  |                    |                 |    |                   |           | Oedometer consolidation                                                                                     |
| BH2                     |                | 2.70-3.20    | в    | Grey brown gravelly sandy silty CLAY                                                    |     |     |                 |     |      |    |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution                                                                                  |
| BH2                     |                | 3.50-3.80    | В    | Grey brown sandy silty clayey GRAVEL. Gravel is fine to cobble sized limestone.         | 4.9 | 24  | 13              | 11  | 28   | 8  |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>Compaction cancelled - insufficient<br>material                               |
| BH2                     |                | 3.50         | U    | Firm to stiff grey sandy gravelly CLAY                                                  | 9.9 |     |                 |     |      |    | 2.29              | 2.08              | 35               | 196                | 98              |    |                   |           |                                                                                                             |
| BH3                     |                | 1.10-1.60    | В    | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized limestone.              | 14  | 28  | 16              | 12  | 54   | 4  |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>Compaction cancelled - unsuitable<br>material, too much coarse gravel present |
| BH3                     |                | 1.80-2.20    | U    | Firm grey silty CLAY with abundant gravel                                               | 9.5 | 24  | 15              | 9.0 | 60   | 0  |                   |                   |                  |                    |                 |    |                   |           | Oedometer consolidation                                                                                     |
| BH3                     |                | 2.70-3.20    | В    | Dark grey-brown sandy very gravelly silty CLAY.<br>Gravel includes cobble sized gravel. | 10  | 27  | 14              | 13  | 47   | 7  |                   |                   |                  |                    |                 |    |                   |           |                                                                                                             |
| BH3                     |                | 3.70-4.15    | U    | Soft to firm grey brown sandy gravelly silty CLAY. Gravel is fine to medium.            | 12  |     |                 |     |      |    | 2.39              | 2.13              | 37<br>74         | 87<br>90           | 44              |    |                   |           |                                                                                                             |
| TP10                    |                | 0.60         | В    | Brown sandy silty CLAY with rare fine to medium gravel                                  |     |     |                 |     |      |    |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>California Bearing Ratio                                                      |
| TP10                    |                | 1.50         | В    | Brown sandy very gravelly silty CLAY. Gravel includes cobble sized gravel.              | 18  | 36  | 17              | 19  | 56   | 6  |                   |                   |                  |                    |                 |    |                   |           |                                                                                                             |

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

| 101                              | Project Number:<br>GEO / 22476<br>Project Name: |  |
|----------------------------------|-------------------------------------------------|--|
| Operations Manager<br>27/04/2015 | C2099 CLITHEROE                                 |  |

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

Client: HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

### SUMMARY OF GEOTECHNICAL TESTING

|                         |            |              | Sample of | letails                                                                                                       |           | Clas | sificatio | on Test | ts  | Der          | nsity Tests | Undrained               | d Triaxial Co             | mpression              | С  | hemical Te                 | ests                |                                                                                                            |
|-------------------------|------------|--------------|-----------|---------------------------------------------------------------------------------------------------------------|-----------|------|-----------|---------|-----|--------------|-------------|-------------------------|---------------------------|------------------------|----|----------------------------|---------------------|------------------------------------------------------------------------------------------------------------|
| Borehole /<br>Trial Pit | Sample Ref | Depth<br>(m) | Туре      | Description                                                                                                   | MC<br>(%) |      |           |         | μm  | Bull<br>Mg/n |             | Cell<br>Pressure<br>kPa | Deviator<br>Stress<br>kPa | Shear<br>Stress<br>kPa | рН | 2:1<br>W/S<br>SO4<br>(g/L) | W/S<br>Mg<br>(mg/L) | Other tests and comments                                                                                   |
| TP10                    |            | 2.40         | В         | Grey brown sandy gravelly silty CLAY. Gravel is<br>fine to cobble sized.                                      |           |      |           |         |     |              |             |                         |                           |                        |    |                            |                     | Particle Size Distribution                                                                                 |
| TP2                     |            | 0.80         | В         | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized                                               |           |      |           |         |     |              |             |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |
| TP3                     |            | 0.50         | В         | Brown gravelly sandy silty CLAY. Gravel is fine to cobble sized limestone.                                    |           |      |           |         |     |              |             |                         |                           |                        |    |                            |                     | Particle Size Distribution<br>California Bearing Ratio                                                     |
| TP3                     |            | 1.50         | В         | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized limestone.                                    | 17        | 37   | 18        | 19      | 56  |              |             |                         |                           |                        |    |                            |                     | Particle Size Distribution<br>Compaction cancelled - unsuitable<br>material, too much coarse gravel preser |
| TP4                     |            | 0.60         | В         | Grey brown sandy gravelly silty CLAY. Gravel is fine to cobble sized sandstone.                               |           |      |           |         |     |              |             |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |
| TP5                     |            | 0.50         | В         | Brown sandy silty CLAY with rare fine to<br>medium gravel                                                     |           |      |           |         |     |              |             |                         |                           |                        |    |                            |                     | Particle Size Distribution                                                                                 |
| TP5                     |            | 1.60         | В         | Brown mottled orange sandy gravelly silty<br>CLAY. Gravel includes cobble sized gravel with<br>rare rootlets. | 17        | 36   | 20        | 16      | 67  |              |             |                         |                           |                        |    |                            |                     |                                                                                                            |
| TP5                     |            | 1.90         | D         | Brown sandy gravelly silty CLAY.                                                                              | 8.4       | 27   | 13        | 14      | 44  |              |             |                         |                           |                        |    |                            |                     |                                                                                                            |
| TP6                     |            | 0.50         | В         | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized.                                              | 28        | 41   | 19        | 22      | 86  |              |             |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |
| TP6                     |            | 1.50         | В         | Grey brown sandy gravelly silty CLAY. Gravel is fine to cobble sized.                                         |           |      |           |         |     |              |             |                         |                           |                        |    |                            |                     | Particle Size Distribution                                                                                 |
| TP7                     |            | 0.50         | D         | Mottled brown grey and dark orange silty CLAY with rare rootlets.                                             | 28        | 51   | 27        | 24      | 100 |              |             |                         |                           |                        |    |                            |                     |                                                                                                            |
| TP8                     |            | 0.50         | В         | Brown sandy gravelly silty CLAY. Gravel is sandstone.                                                         |           |      |           |         |     |              |             |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |

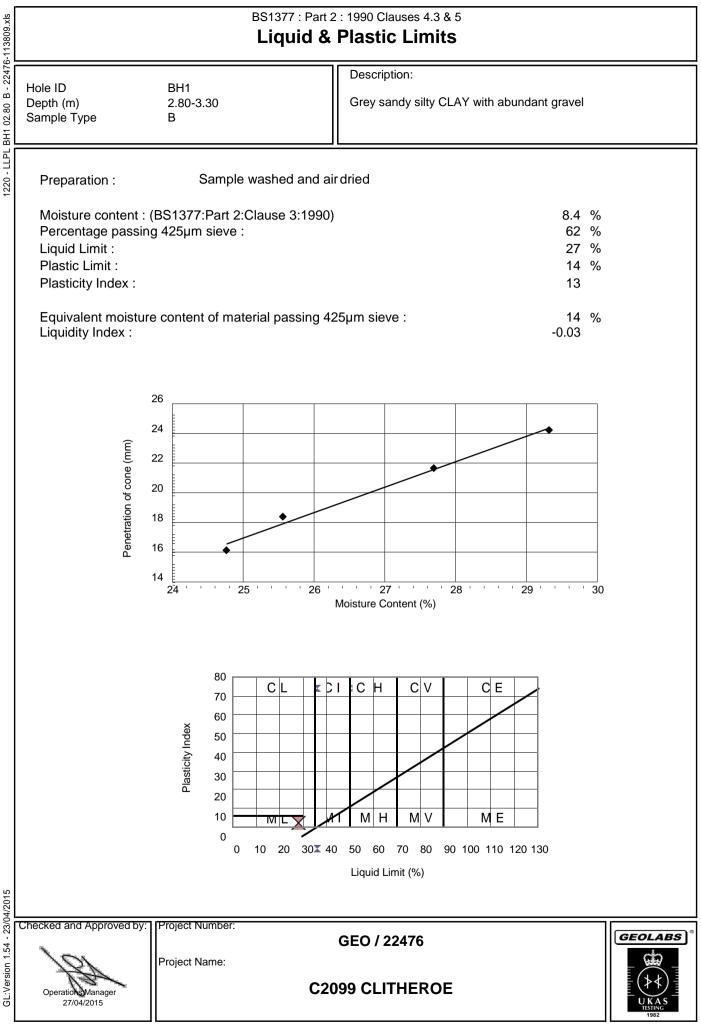
Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

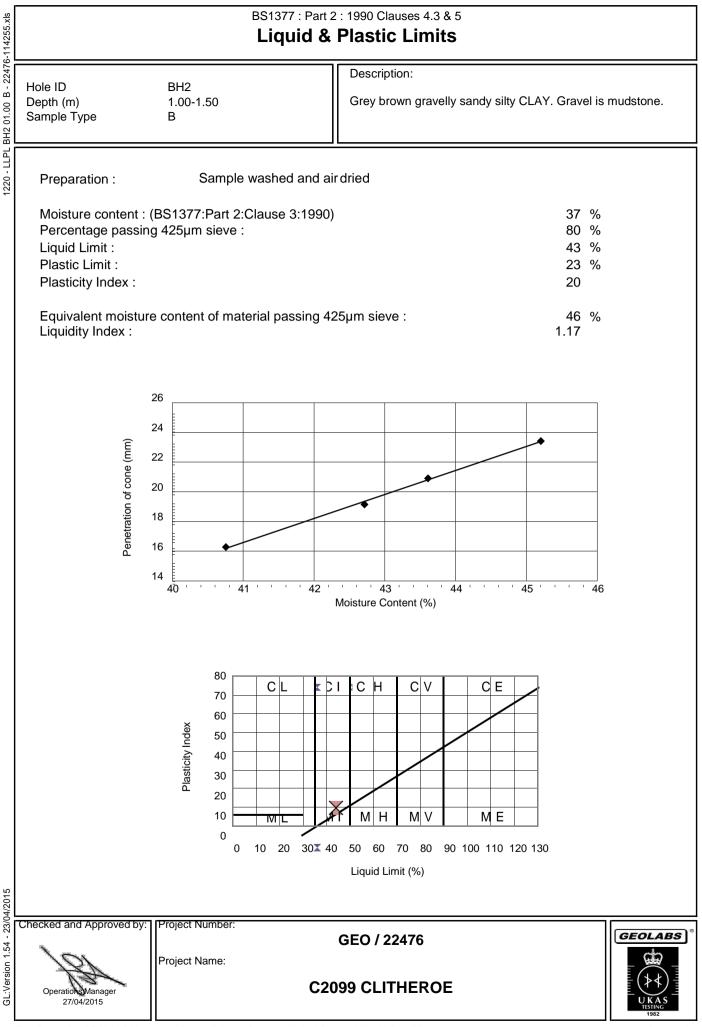
| 101                              | Project Number:<br>GEO / 22476<br>Project Name: |  |
|----------------------------------|-------------------------------------------------|--|
| Operations Manager<br>27/04/2015 | C2099 CLITHEROE                                 |  |

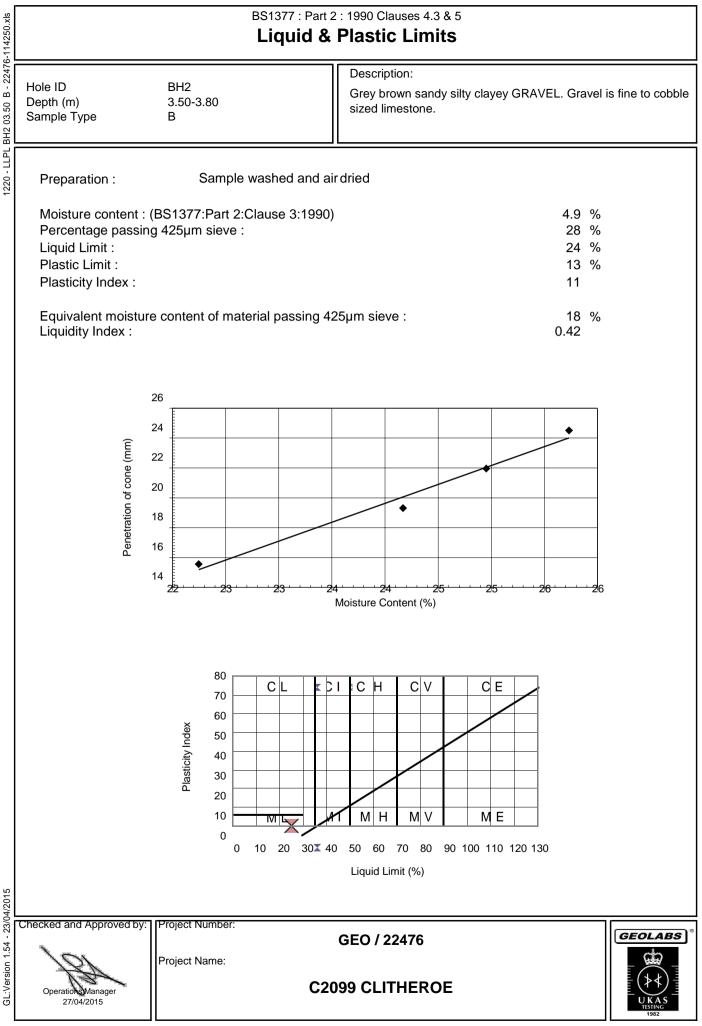
Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

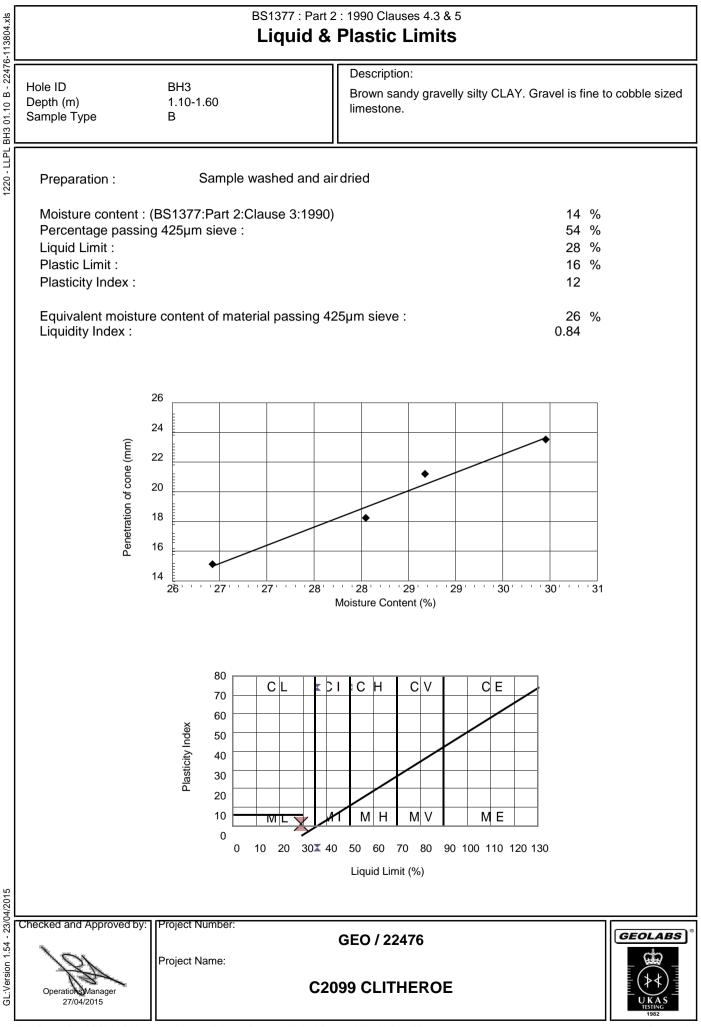
 $Client: {\sf HSPC} on sulting, {\sf Lawrence\,{\sf House},{\sf Meadowbank\,{\sf Way},{\sf Eastwood},{\sf Nottingham}}$ 

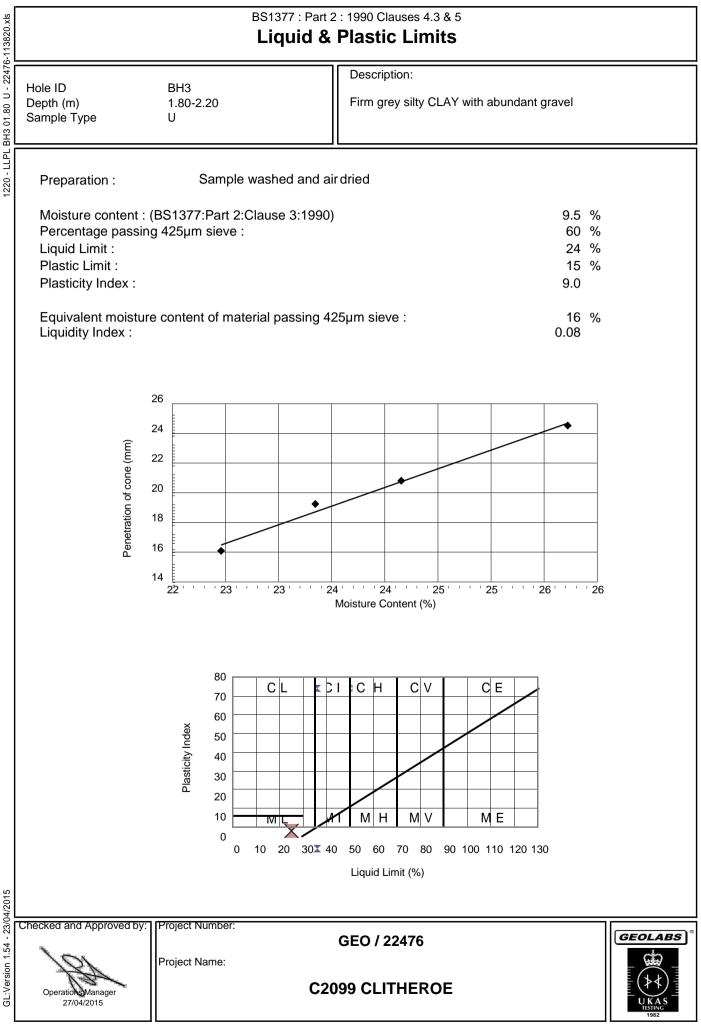
#### SUMMARY OF GEOTECHNICAL TESTING

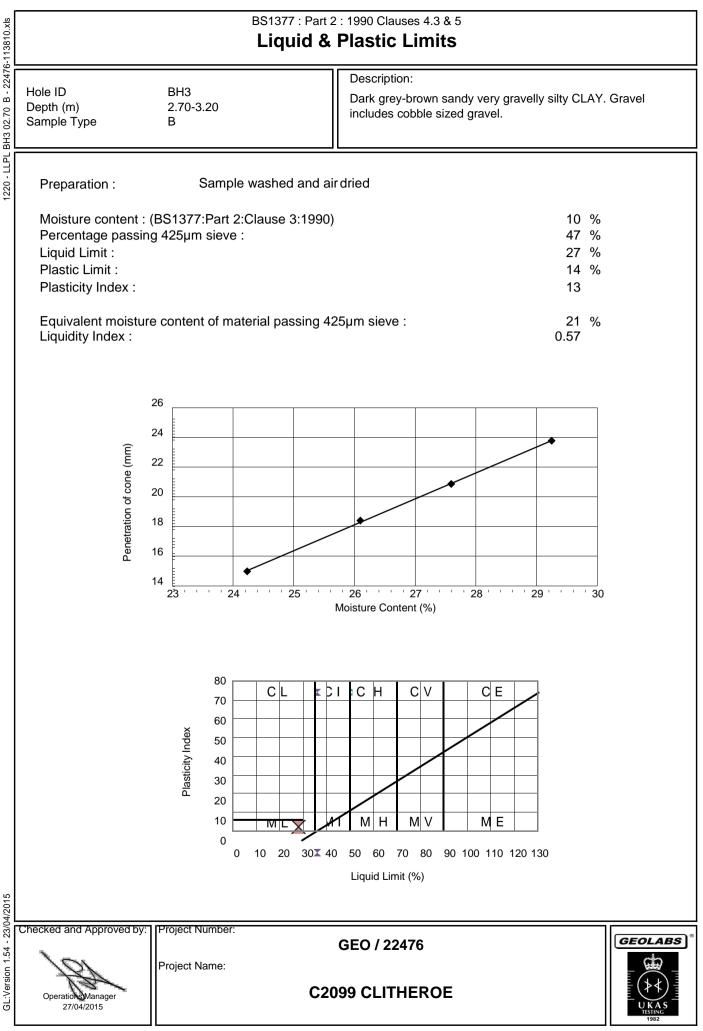

|                         | Classification Tests |              |          |                                                       |           |       |           | I         |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|-------------------------|----------------------|--------------|----------|-------------------------------------------------------|-----------|-------|-----------|-----------|-------------------|------|--------------|-------------------------|---------------------------|------------------------|----|----------------------------|---------------------|------------------------------------------------|
|                         | 1                    | 1            | Sample d | letails                                               |           | Class | ification | n Tests   | 5                 | Dens | ity Tests    | Undrained               | d Triaxial Co             | mpression              | С  | hemical Te                 | ests                |                                                |
| Borehole /<br>Trial Pit | Sample Ref           | Depth<br>(m) | Туре     | Description                                           | MC<br>(%) |       | PL<br>(%) | PI<br>(%) | <425<br>μm<br>(%) | DUIK | Dry<br>Mg/m³ | Cell<br>Pressure<br>kPa | Deviator<br>Stress<br>kPa | Shear<br>Stress<br>kPa | рН | 2:1<br>W/S<br>SO4<br>(g/L) | W/S<br>Mg<br>(mg/L) | Other tests and comments                       |
| TP9                     |                      | 0.60         | В        | Brown gravelly sandy silty CLAY. Gravel is sandstone. | 30        | 39    | 28        | 11        | 73                |      |              |                         |                           |                        |    |                            |                     | Particle Size Distribution<br>2.5kg Compaction |
| TP9                     |                      | 1.50         | В        | Grey brown sandy gravelly silty CLAY.                 |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     | Particle Size Distribution                     |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |
|                         |                      |              |          |                                                       |           |       |           |           |                   |      |              |                         |                           |                        |    |                            |                     |                                                |

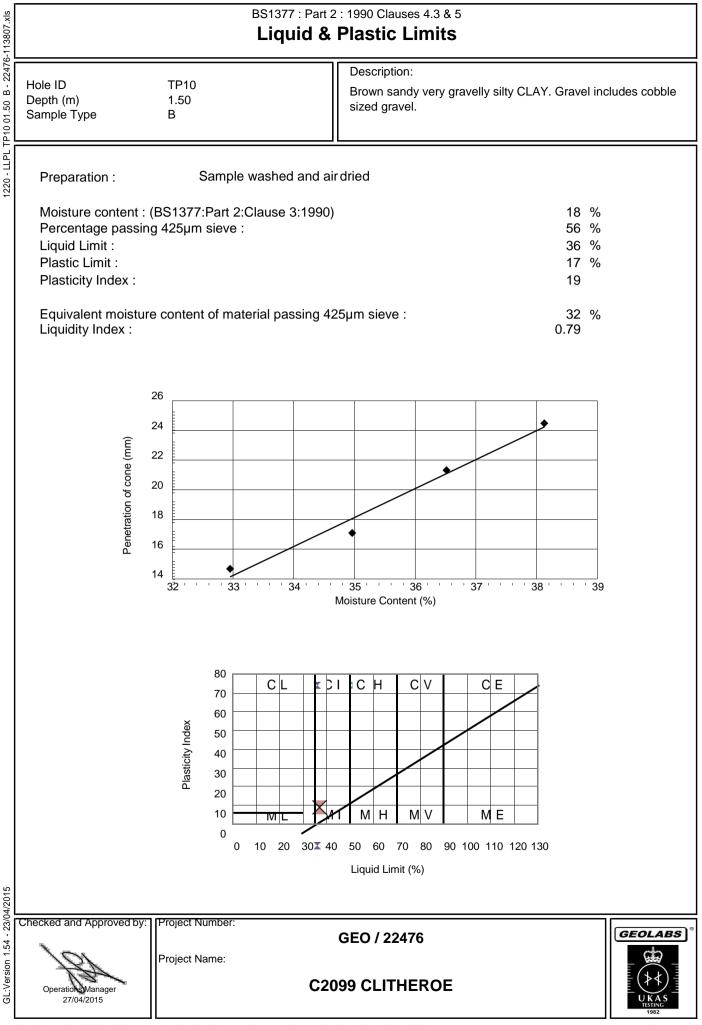

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

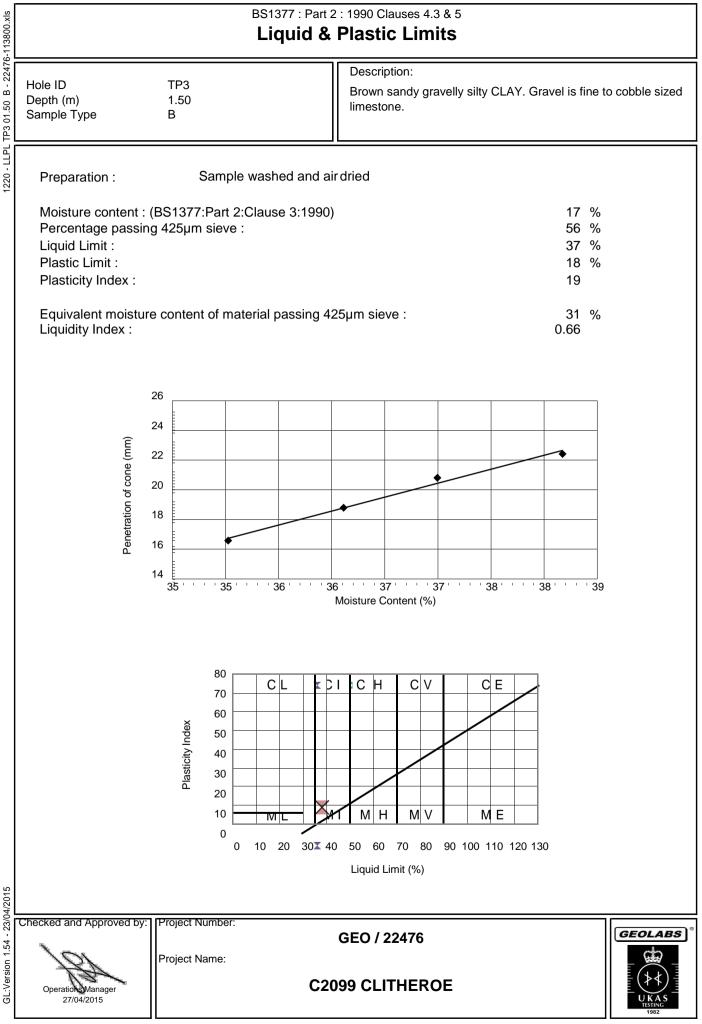

| 101                              | Project Number:<br>GEO / 22476<br>Project Name: |  |
|----------------------------------|-------------------------------------------------|--|
| Operations Manager<br>27/04/2015 | C2099 CLITHEROE                                 |  |

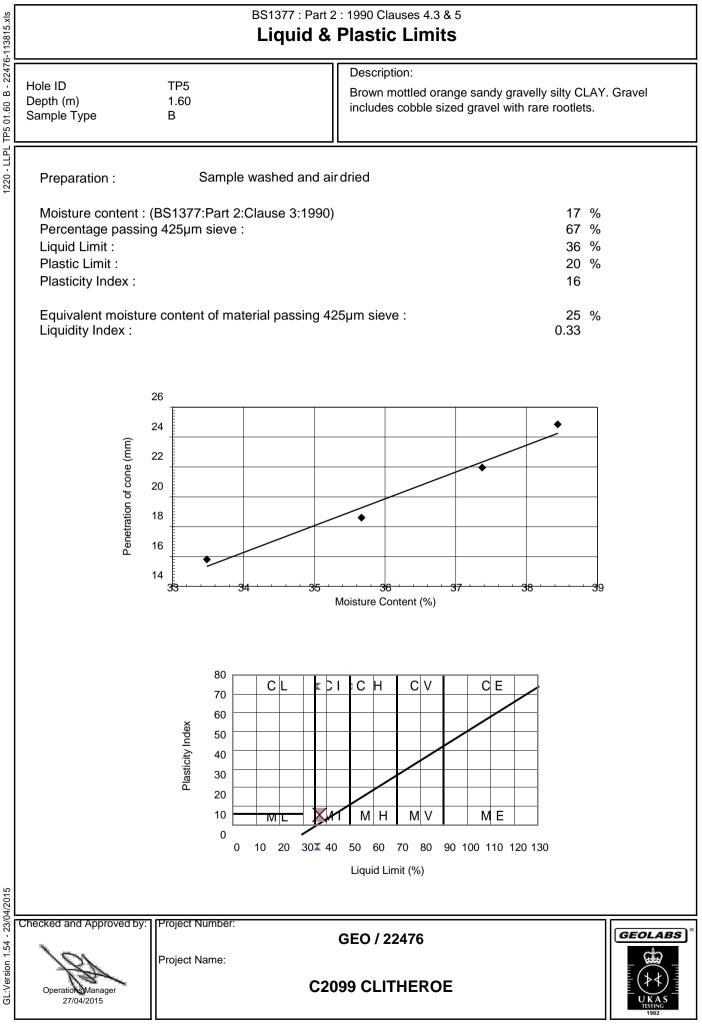

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

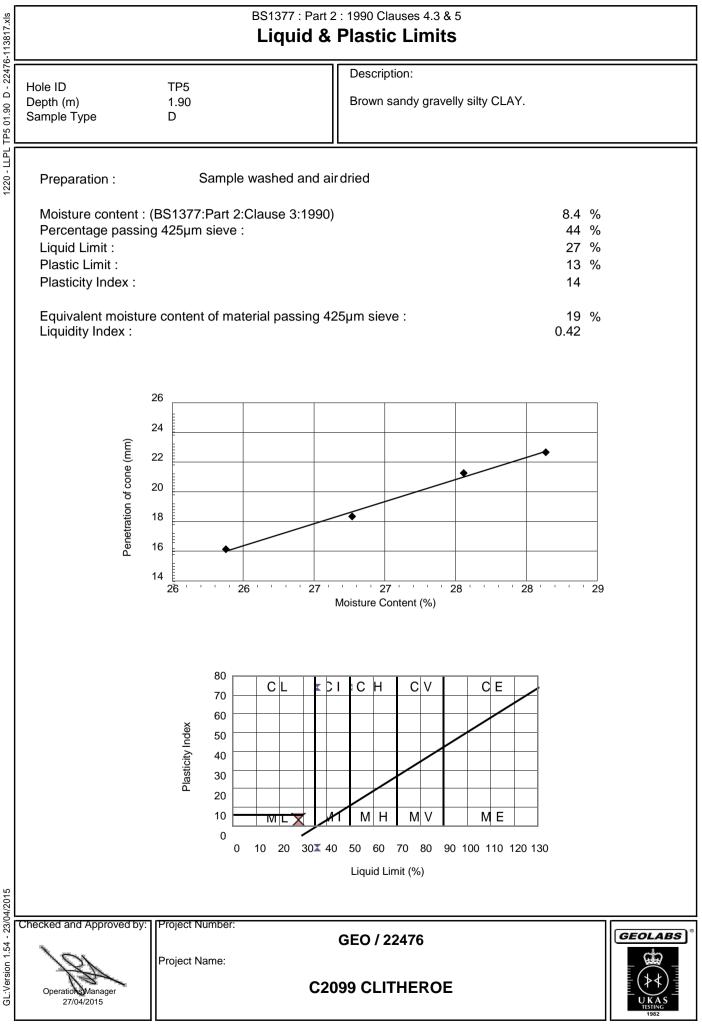

 $Client: {\sf HSPC} on sulting, {\sf Lawrence\,{\sf House},{\sf Meadowbank\,{\sf Way},{\sf Eastwood},{\sf Nottingham}}$ 

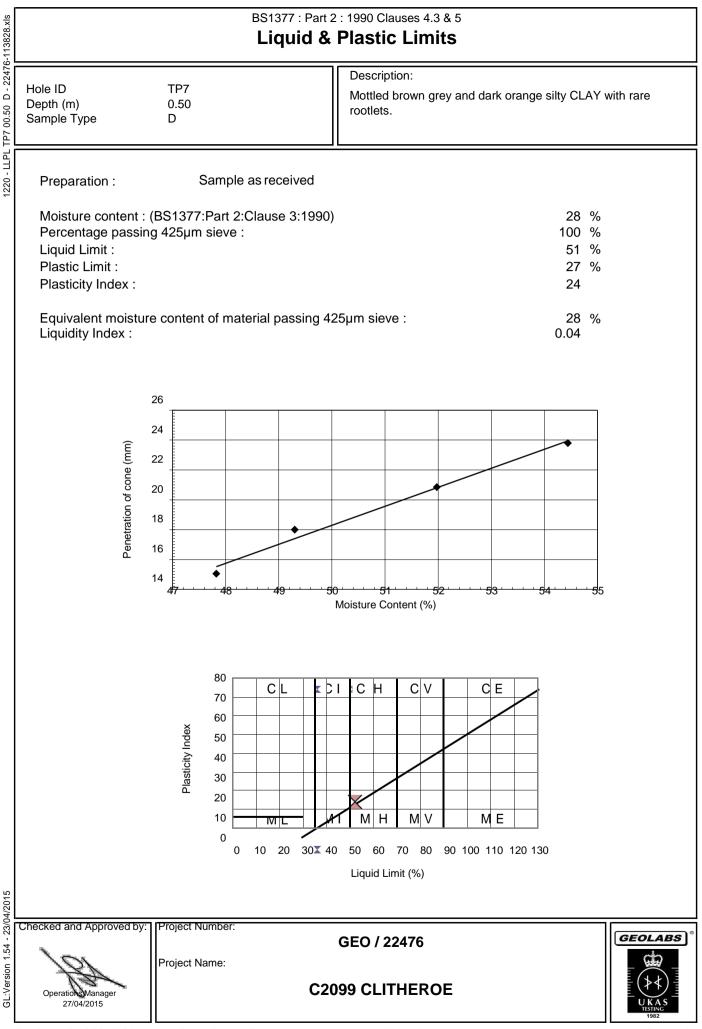


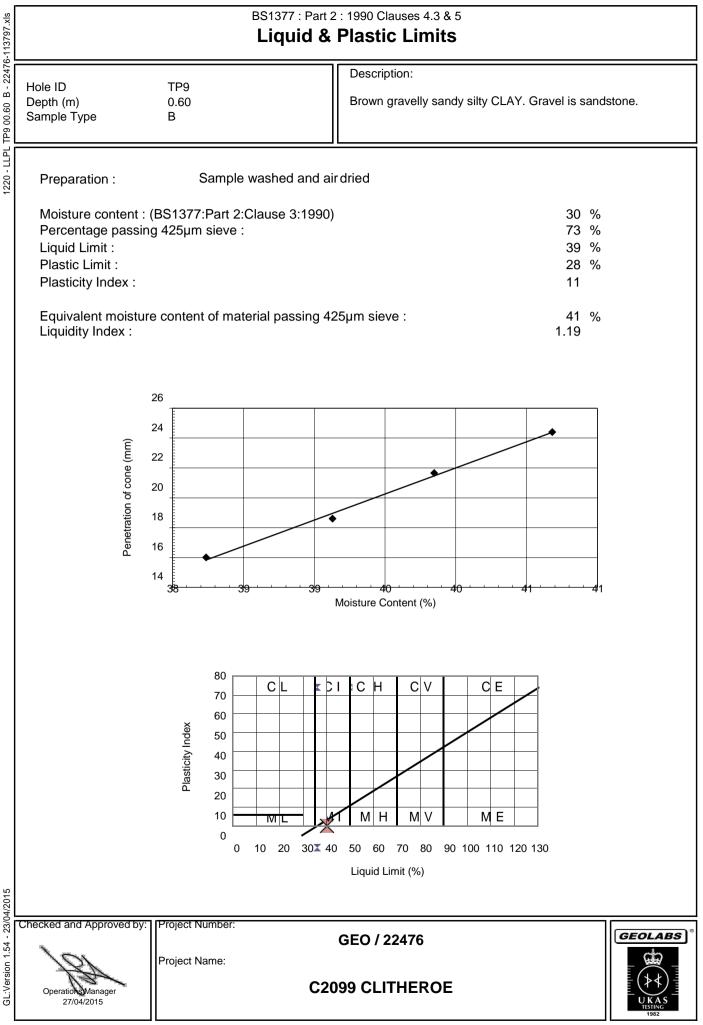



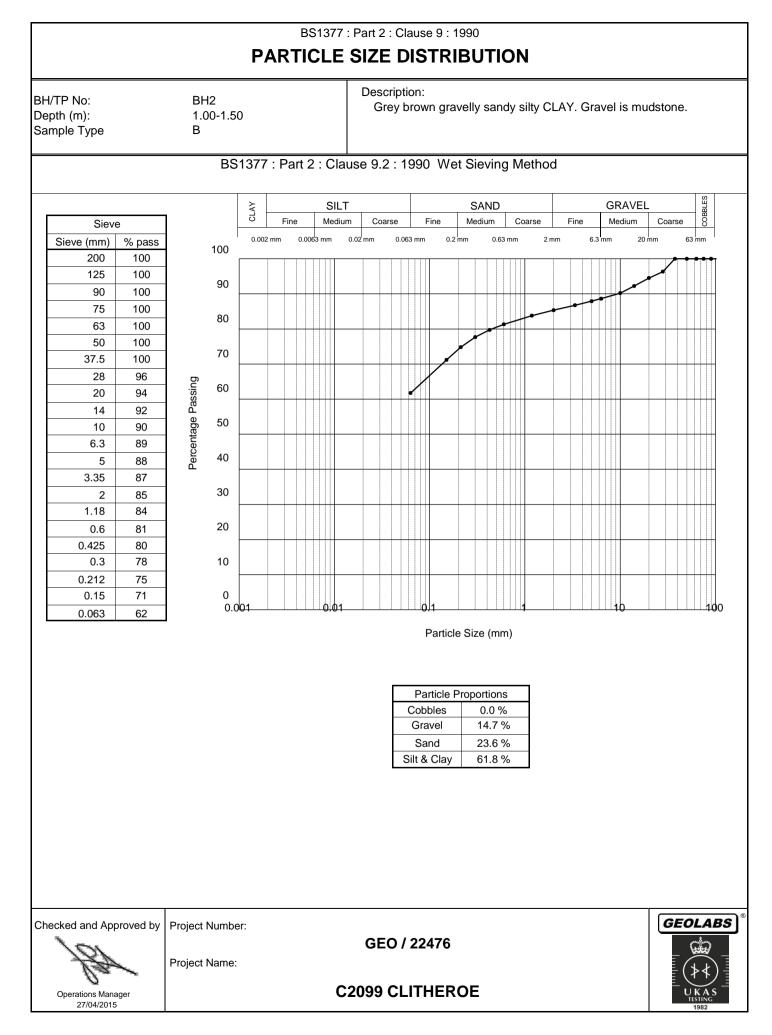



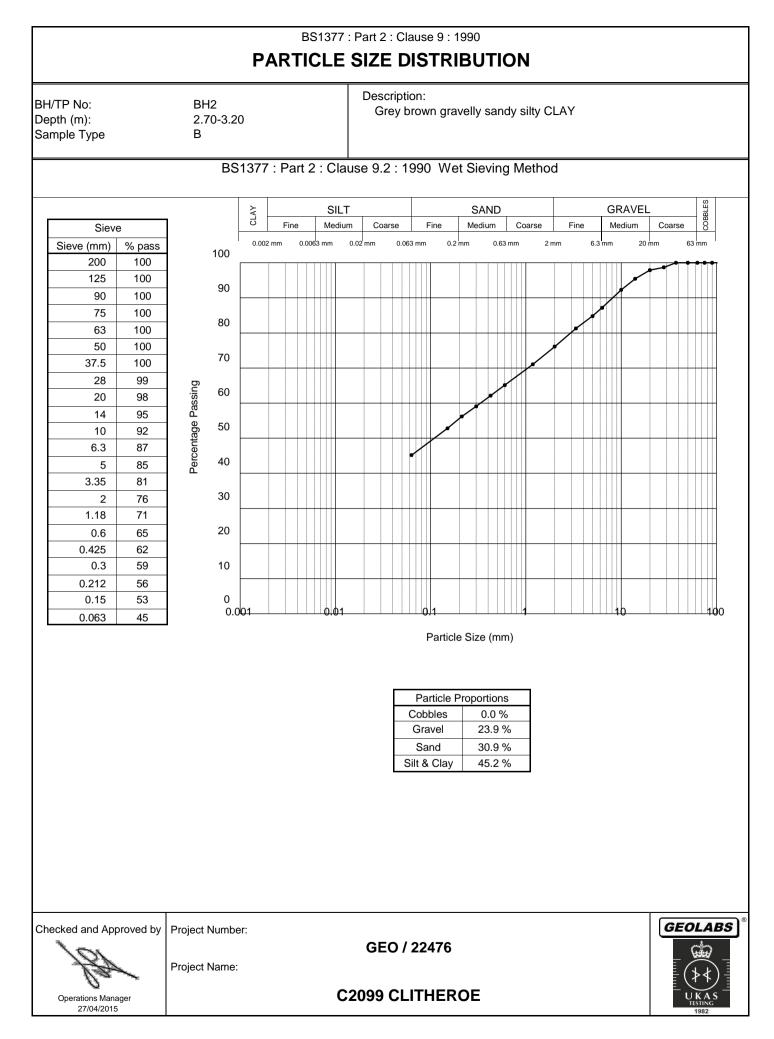



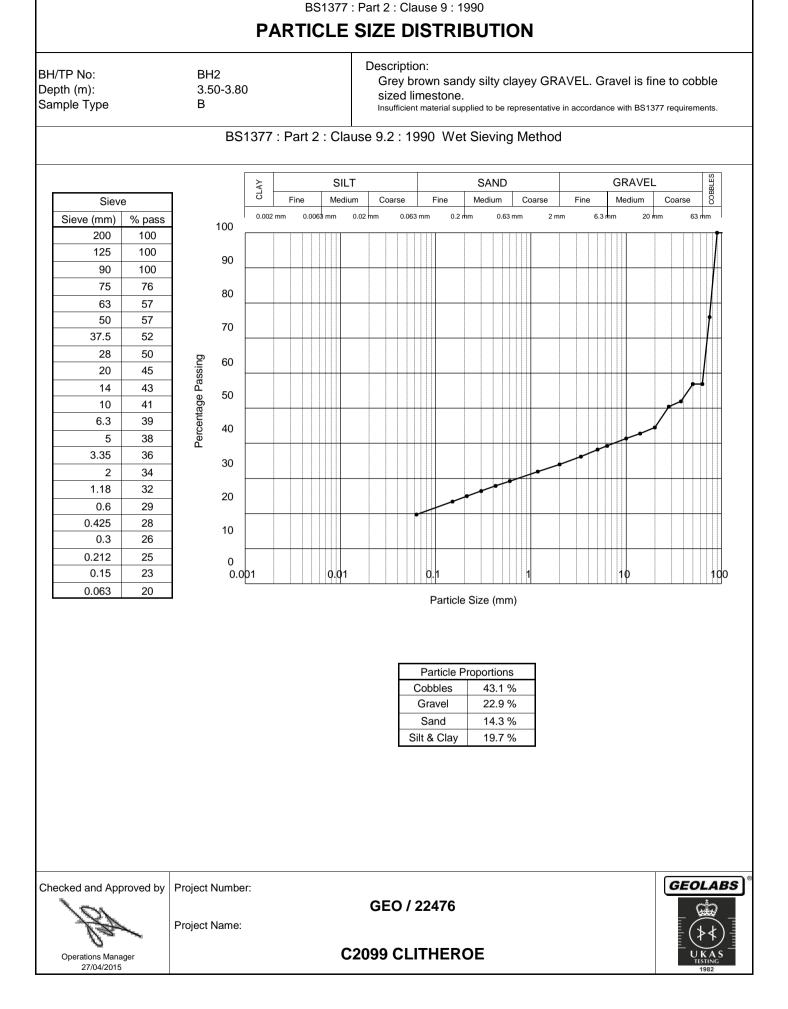



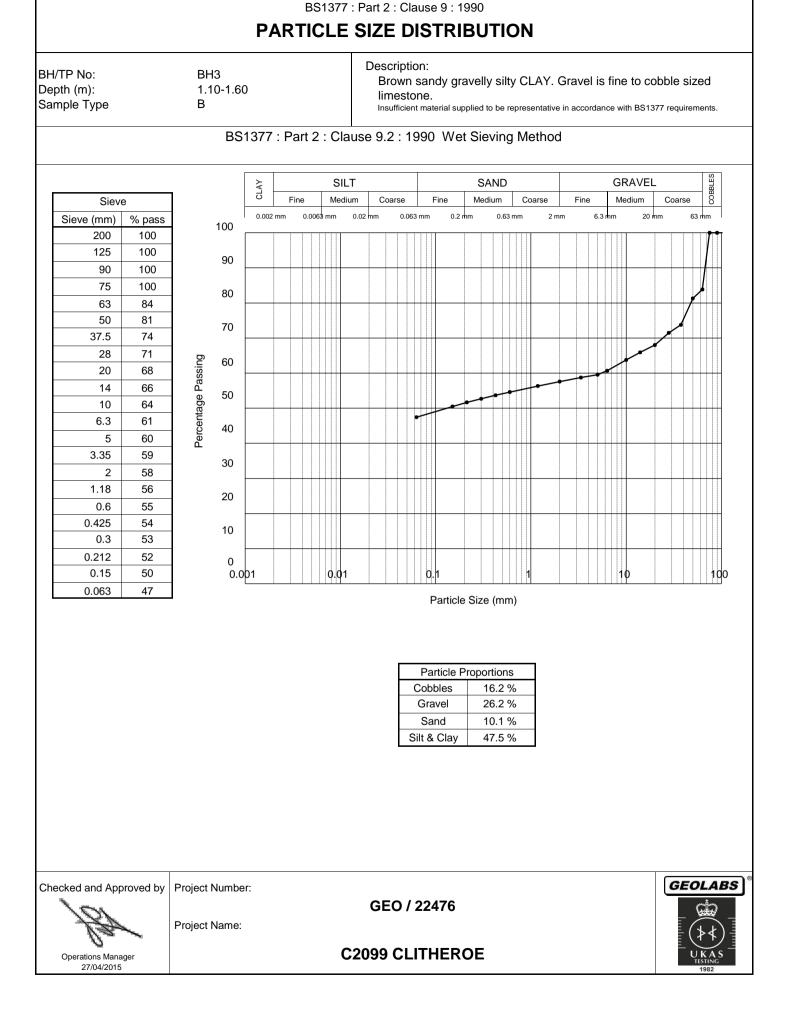



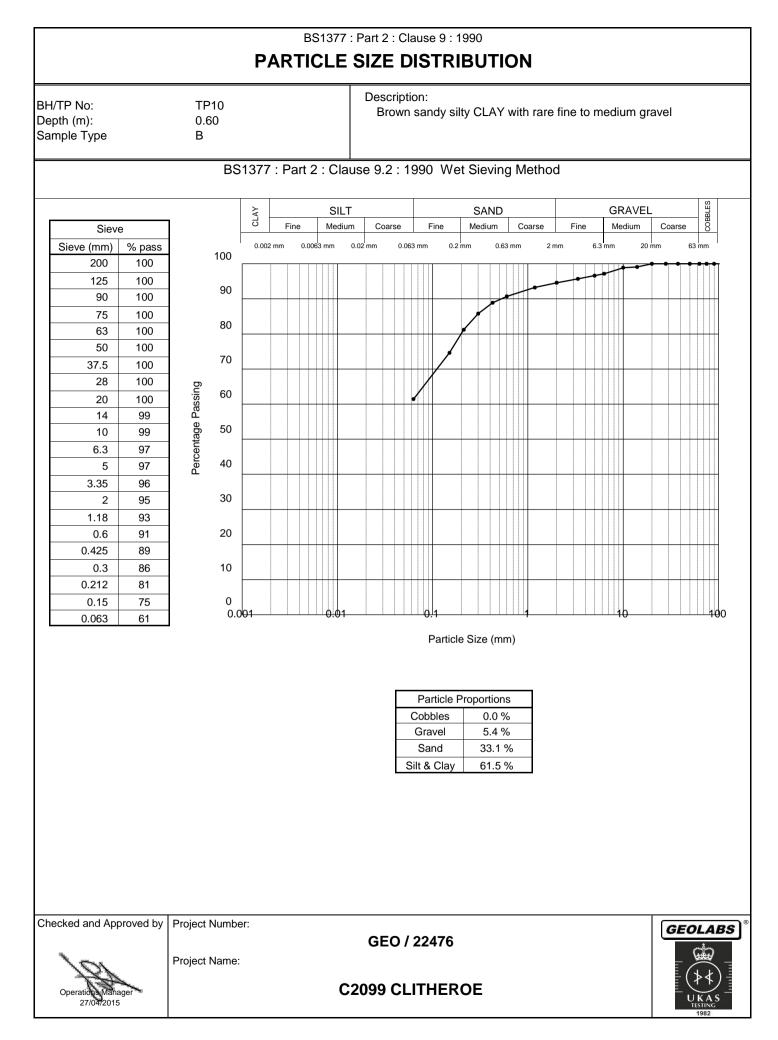



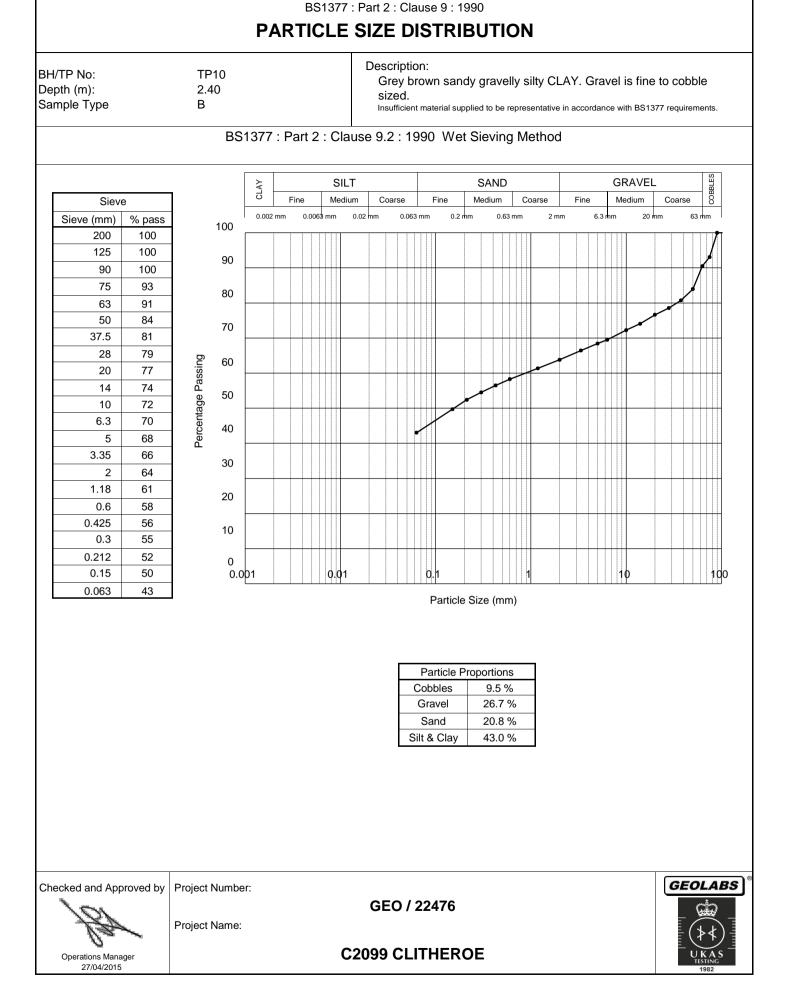



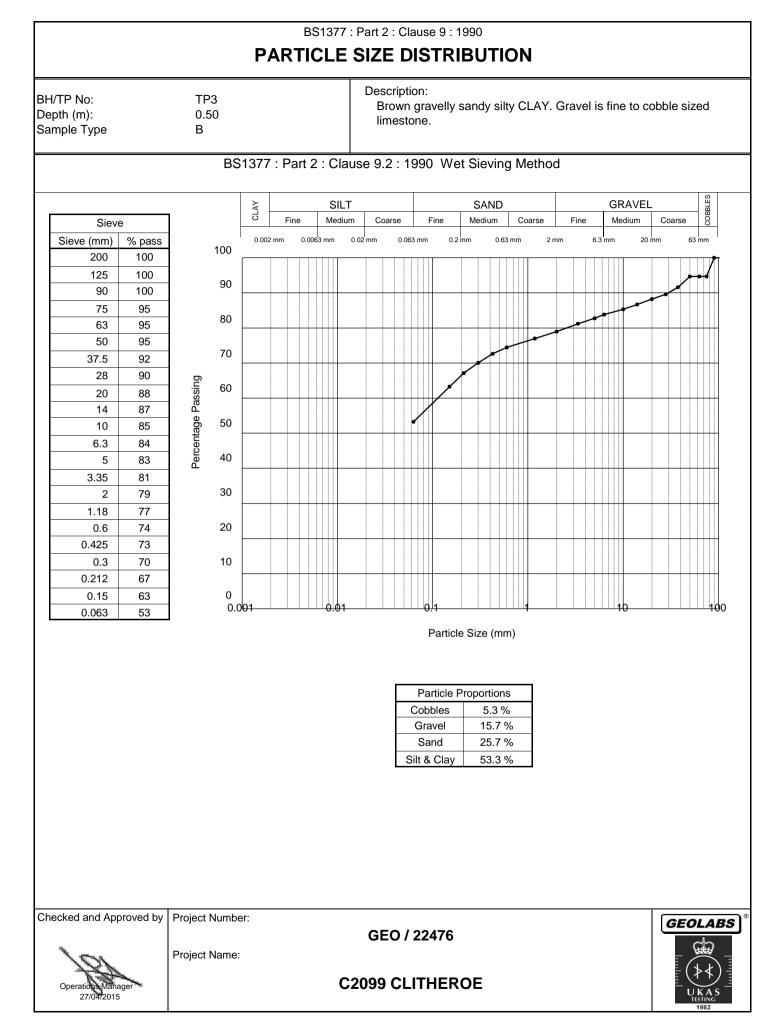



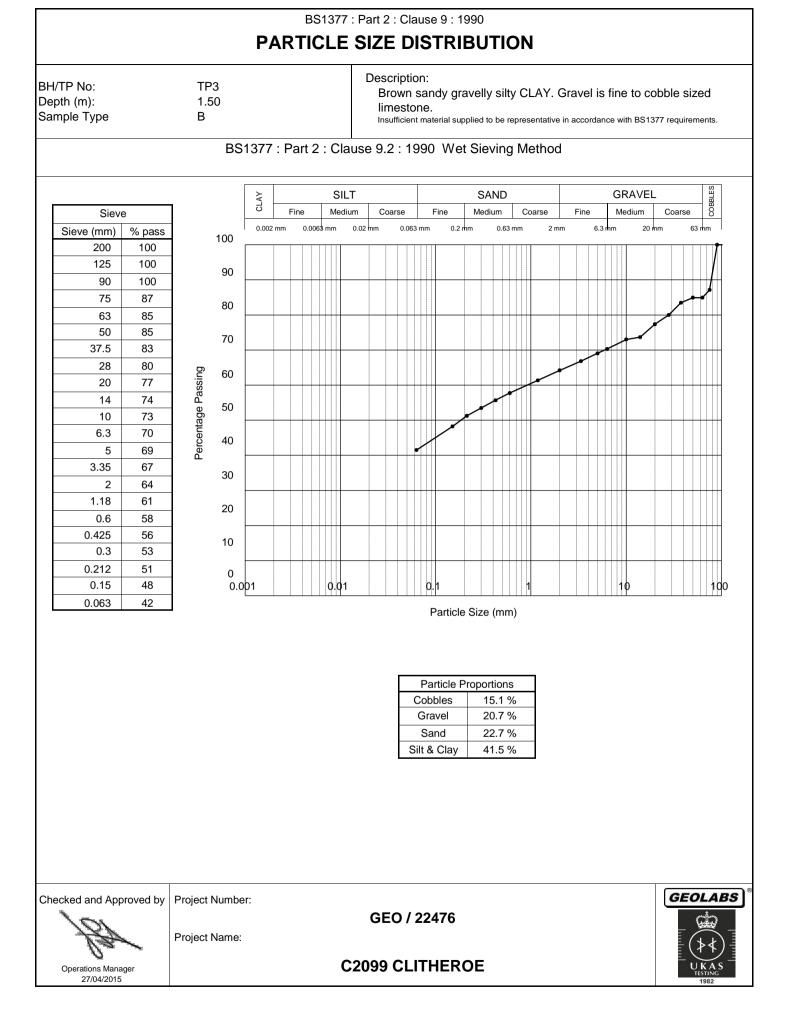



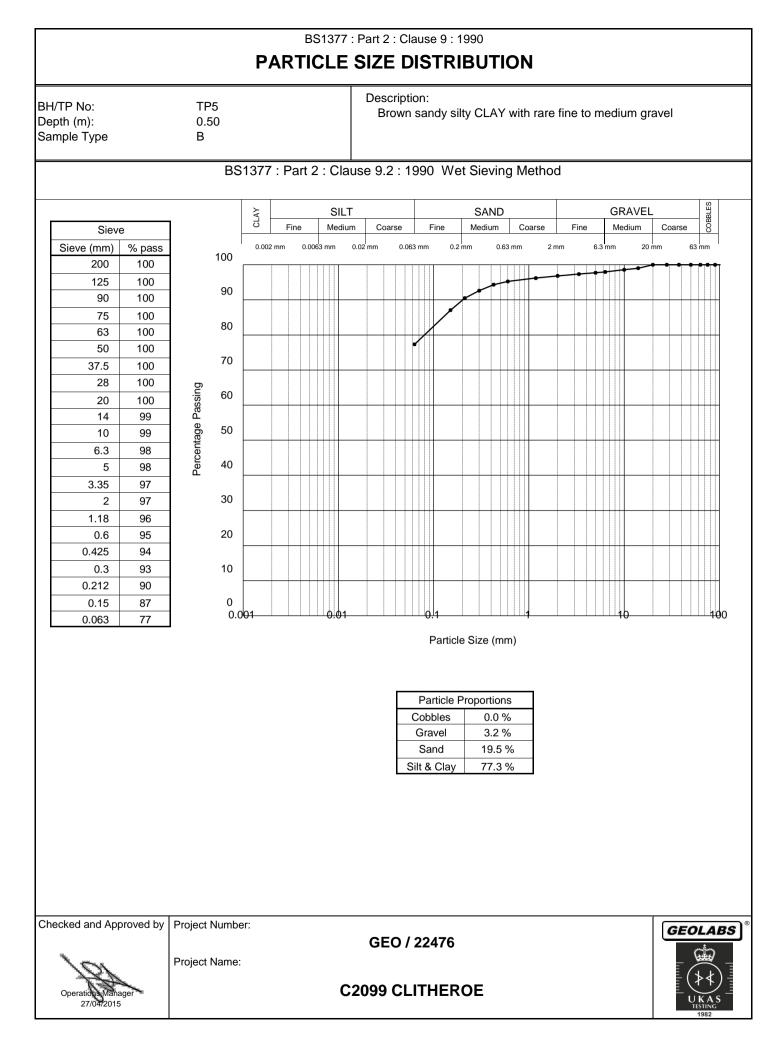



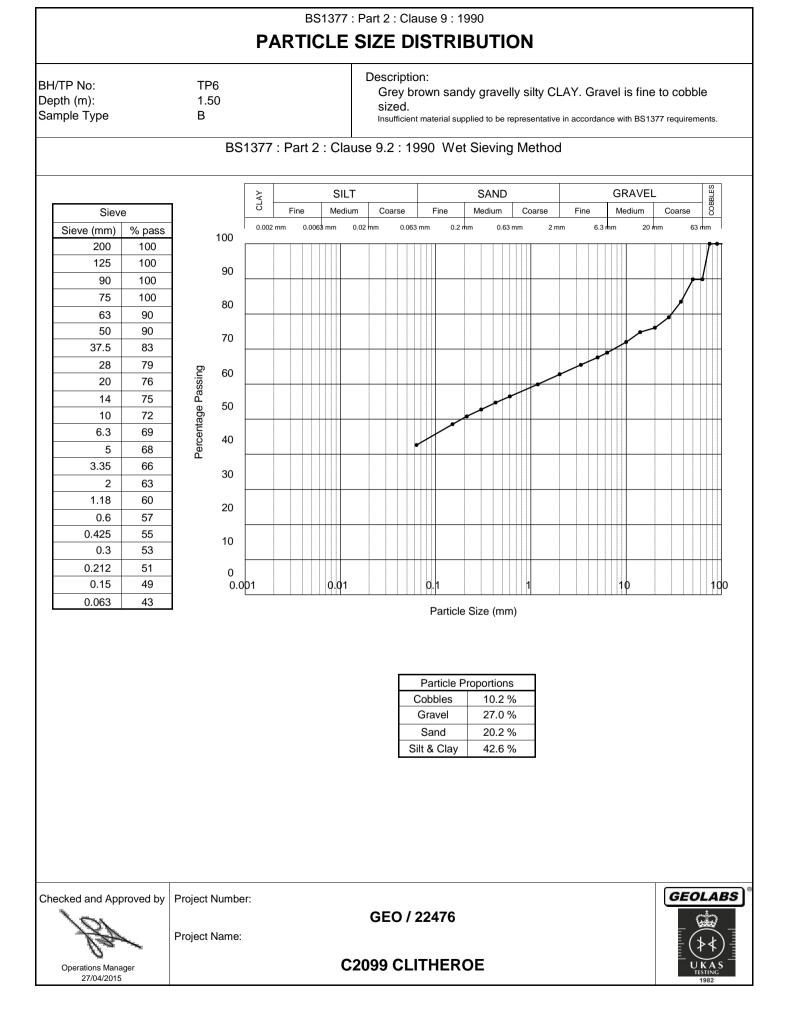



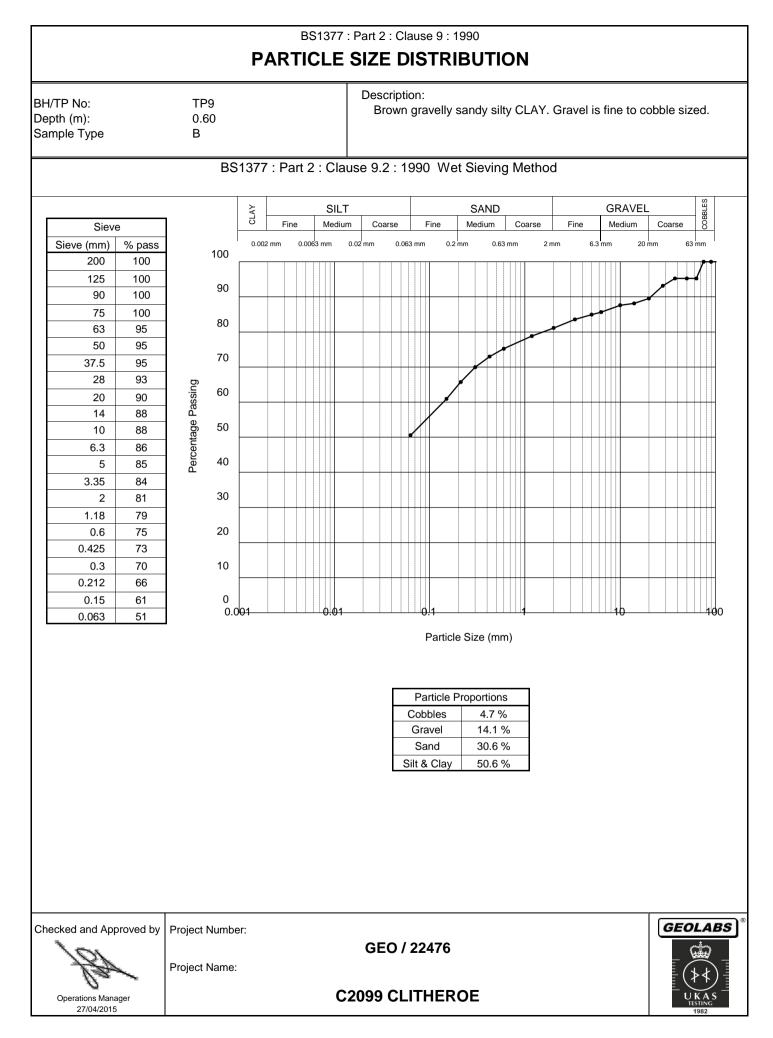



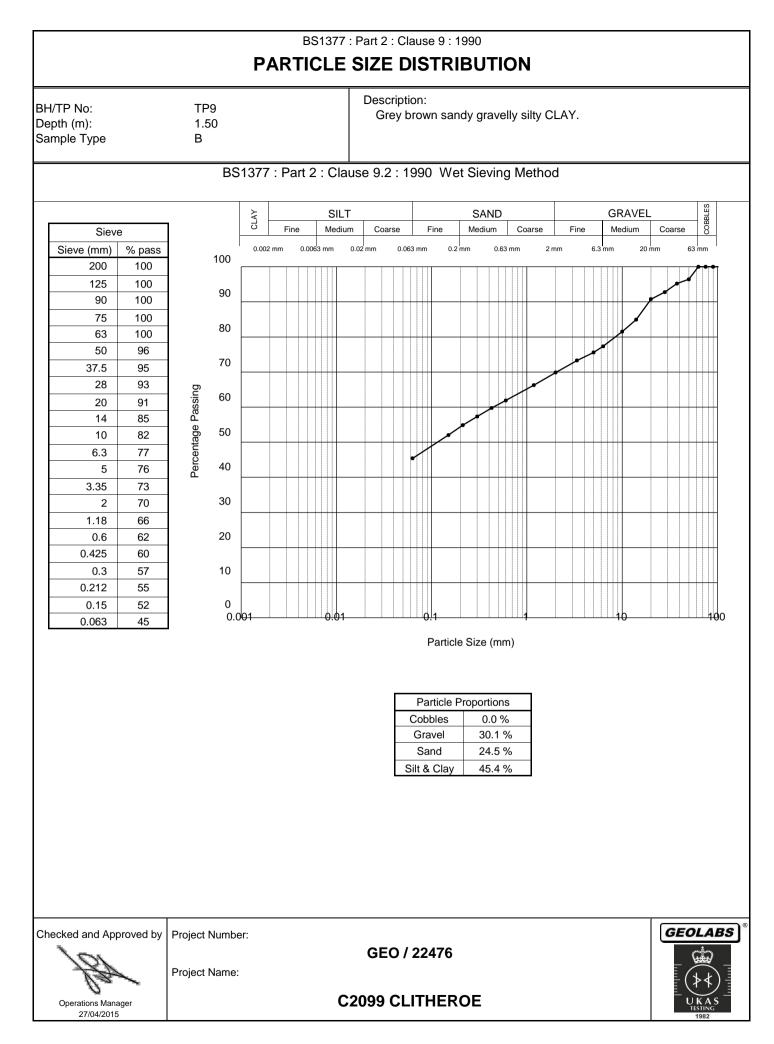



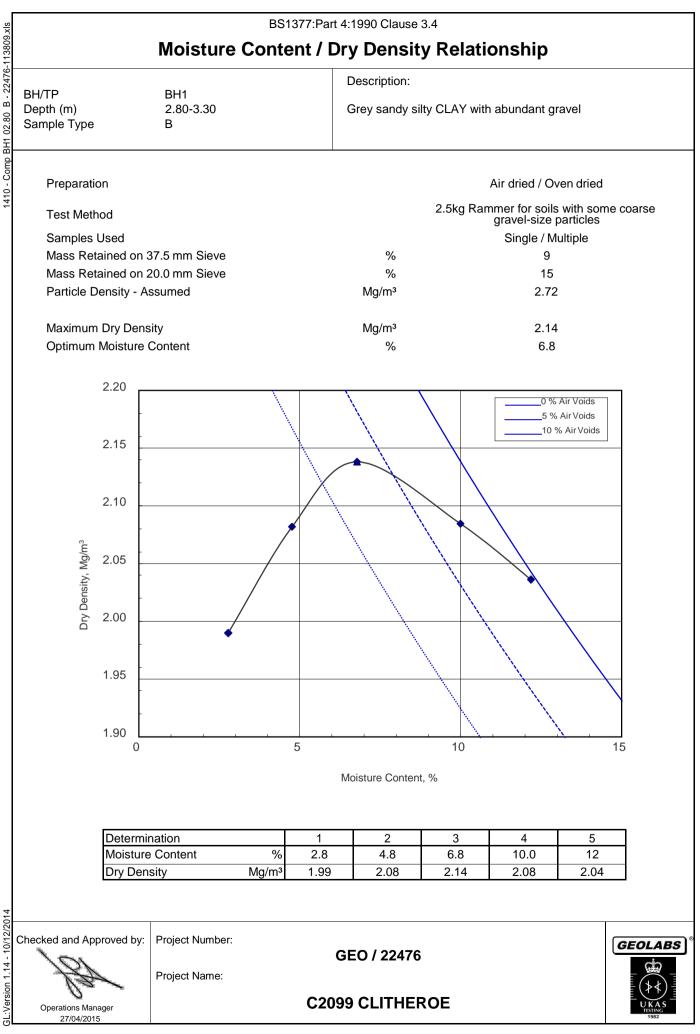




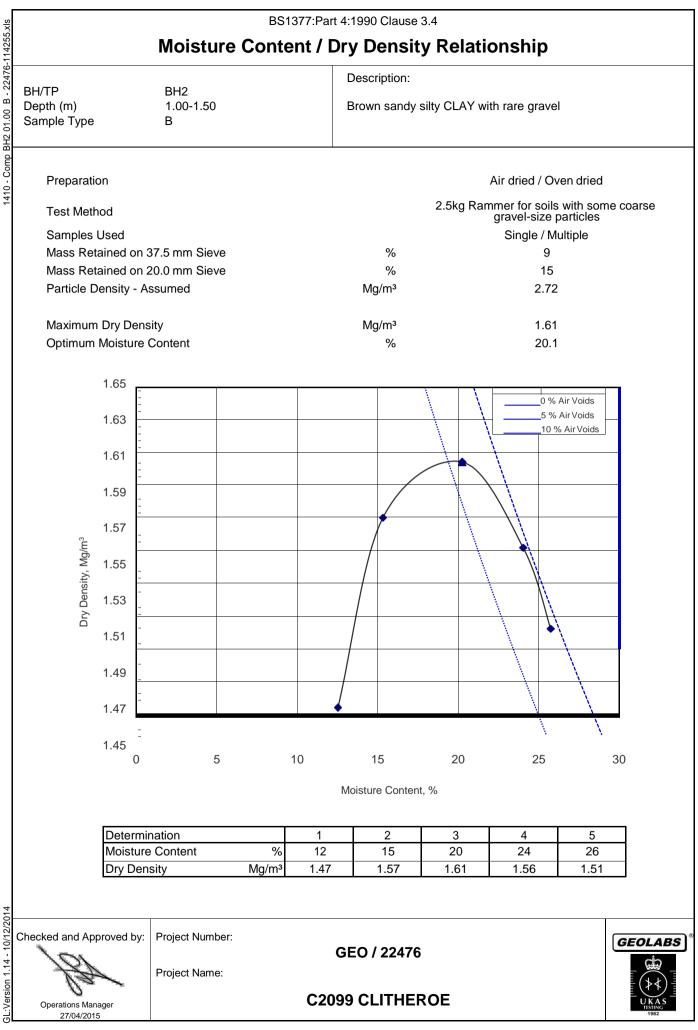





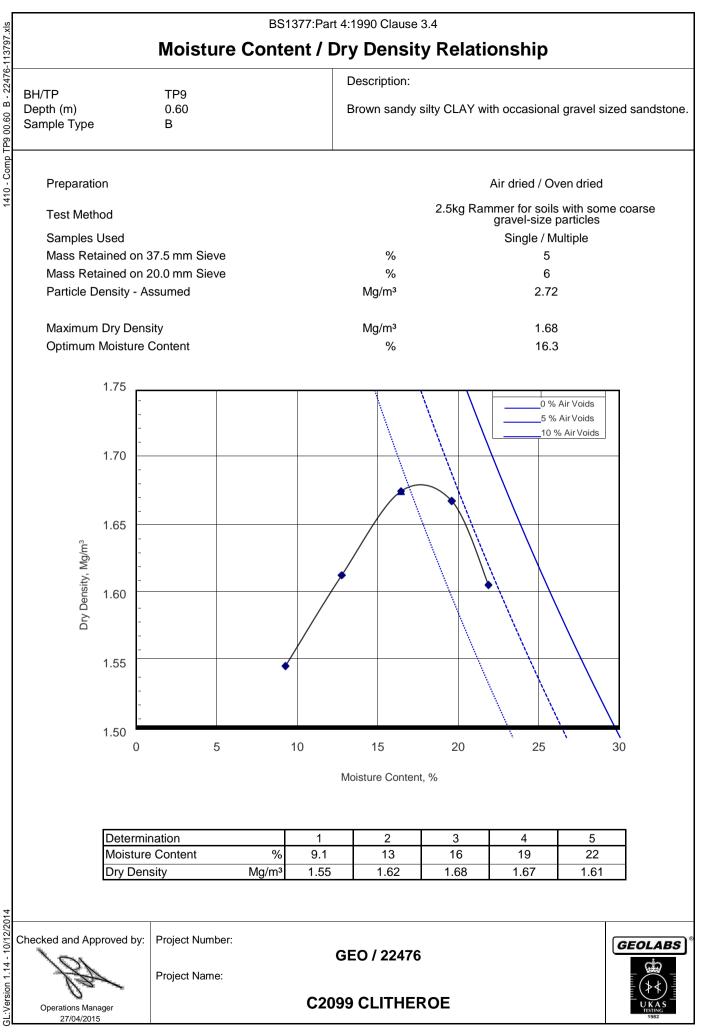




 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

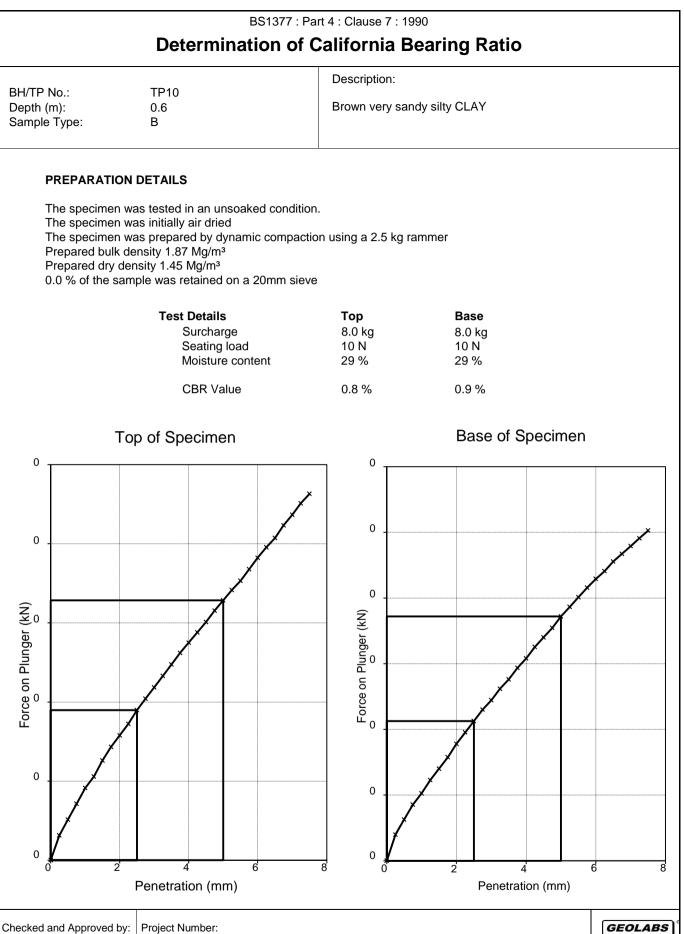
 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

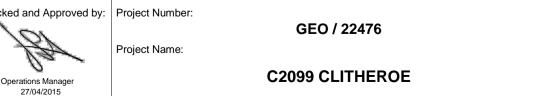



 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX


 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham




Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

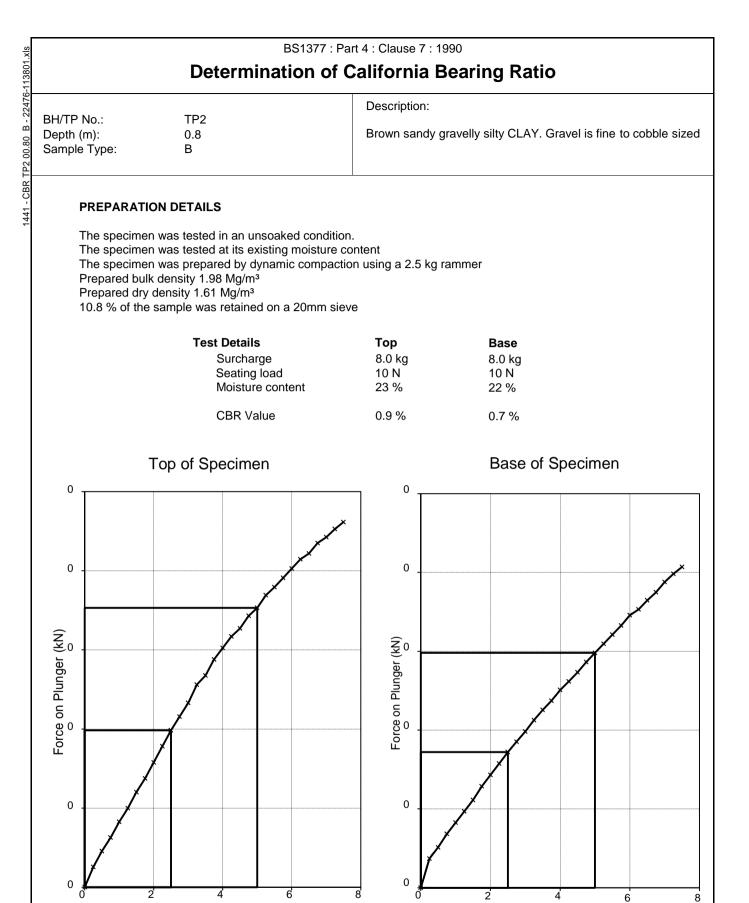



Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham



Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham






 Test Report By
 GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham
 Restriction

B - 22476-113784.xls

1441 - CBR TP10 00.60



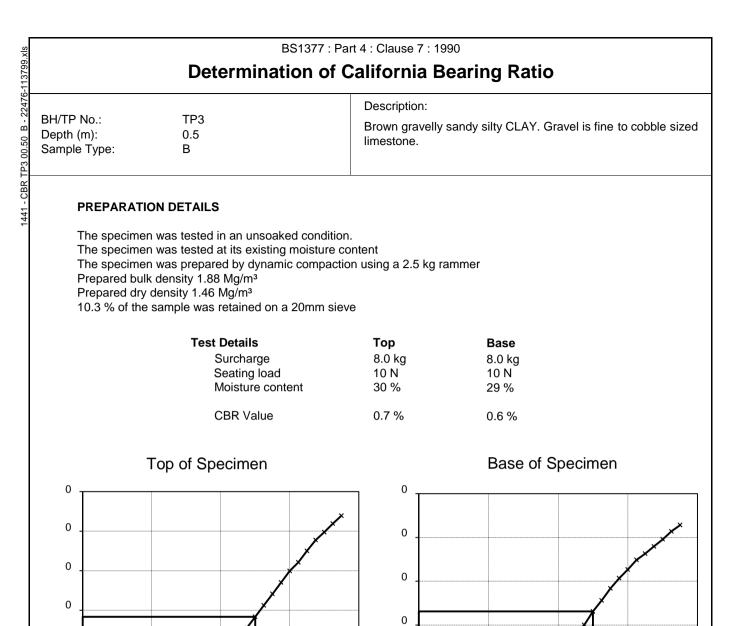
GEO / 22476

C2099 CLITHEROE

Checked and Approved by:

Operations Manager 27/04/2015

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notlingham


Penetration (mm)

Project Number:

Project Name:

GEOLABS

Penetration (mm)



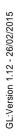
Force on Plunger (kN)

0

0

0

GEO / 22476


**C2099 CLITHEROE** 

2

4

Penetration (mm)

8



Force on Plunger (kN)

0

0

0

0

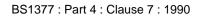
Checked and Approved by:

Operations Manager 27/04/2015 2

 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

4


Penetration (mm)

Project Number:

Project Name:

6

**GEOLABS** 

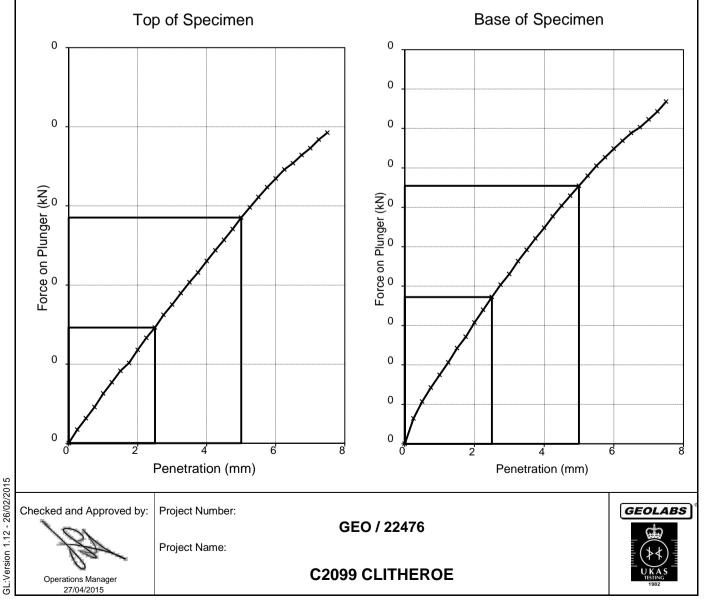


## **Determination of California Bearing Ratio**

| 1      |                                          |                 |                                                                                                    |
|--------|------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------|
| р<br>С | BH/TP No.:<br>Depth (m):<br>Sample Type: | TP4<br>0.6<br>B | Description:<br>Grey brown sandy gravelly silty CLAY. Gravel is fine to cobble<br>sized sandstone. |

#### **PREPARATION DETAILS**

The specimen was tested in an unsoaked condition. The specimen was tested at its existing moisture content


The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.91 Mg/m<sup>3</sup>

Prepared dry density 1.54 Mg/m<sup>3</sup>

14.1 % of the sample was retained on a 20mm sieve

| Test Details     | <b>Top</b> | <b>Base</b> |
|------------------|------------|-------------|
| Surcharge        | 8.0 kg     | 8.0 kg      |
| Seating load     | 10 N       | 10 N        |
| Moisture content | 23 %       | 25 %        |
| CBR Value        | 0.7 %      | 0.7 %       |



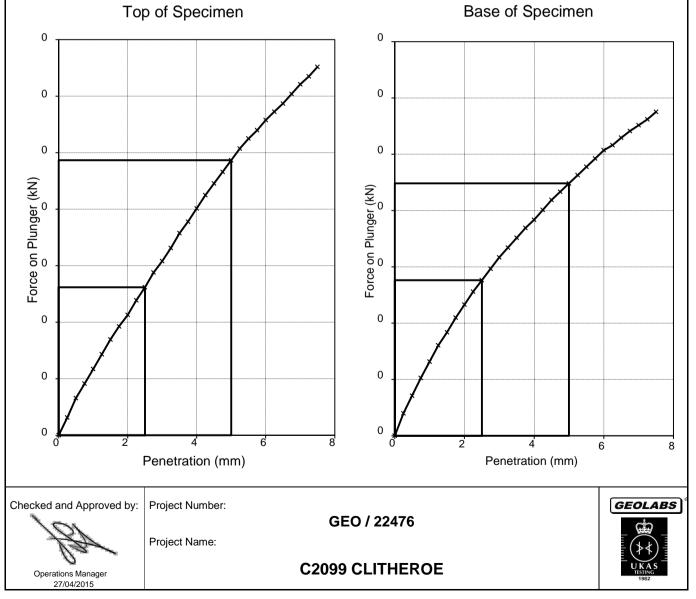
 Test Report By
 GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham
 Nottingham

1441 - CBR TP4 00.60 B - 22476-113814.xls

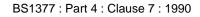
## **Determination of California Bearing Ratio**

| 1                   |                                          |                 |                                                                                  |
|---------------------|------------------------------------------|-----------------|----------------------------------------------------------------------------------|
| TP6 00.50 B - 22476 | BH/TP No.:<br>Depth (m):<br>Sample Type: | TP6<br>0.5<br>B | Description:<br>Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized. |
|                     |                                          |                 |                                                                                  |


#### **PREPARATION DETAILS**

The specimen was tested in an unsoaked condition. The specimen was tested at its existing moisture content The specimen was prepared by dynamic compaction using a 2.5 kg rammer Prepared bulk density 1.87 Mg/m<sup>3</sup>

Prepared dry density 1.46 Mg/m<sup>3</sup>


3.8 % of the sample was retained on a 20mm sieve

| <b>Test Details</b> | <b>Top</b> | <b>Base</b> |
|---------------------|------------|-------------|
| Surcharge           | 8.0 kg     | 8.0 kg      |
| Seating load        | 10 N       | 10 N        |
| Moisture content    | 28 %       | 28 %        |
| CBR Value           | 1.2 %      | 1.1 %       |



Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notingham

1441 - CBR TP6 00.50 B - 22476-113805.xls



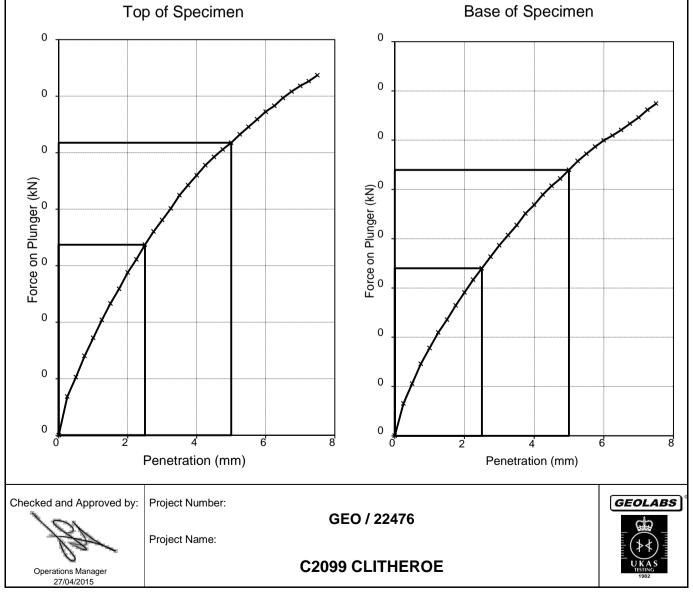
## **Determination of California Bearing Ratio**

| ÷      |              |     |                                                       |
|--------|--------------|-----|-------------------------------------------------------|
| 2241C  |              | TDO | Description:                                          |
| '      | BH/TP No.:   | TP8 |                                                       |
| п<br>Э | Depth (m):   | 0.5 | Brown sandy gravelly silty CLAY. Gravel is sandstone. |
| 0.0    | Sample Type: | В   |                                                       |
| ŝ      |              |     |                                                       |

#### **PREPARATION DETAILS**

1441 - CBR TP8 00.50 B - 22476-113825.xls

The specimen was tested in an unsoaked condition. The specimen was tested at its existing moisture content


The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.84 Mg/m<sup>3</sup>

Prepared dry density 1.41 Mg/m<sup>3</sup>

2.1 % of the sample was retained on a 20mm sieve

| Test Details     | <b>Top</b> | <b>Base</b> |
|------------------|------------|-------------|
| Surcharge        | 8.0 kg     | 8.0 kg      |
| Seating load     | 10 N       | 10 N        |
| Moisture content | 30 %       | 30 %        |
| CBR Value        | 1.3 %      | 1.3 %       |



 Test Report By
 GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham
 Nottingham

BS 1377 : Part 7 : 1990 Clause 8

## **Quick Undrained Triaxial Compression Test**

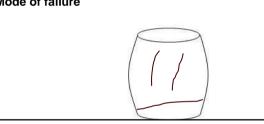
**BH/TP No** Depth (m) Sample Type

BH2

3.50

U

Description:


Firm to stiff grey sandy gravelly CLAY

Remarks : Sample reached 20% strain on first stage of multistage test

#### **Specimen Details**

|         | امعاسية مالعمال                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------|
|         | Undisturbed                                                                                           |
| (mm)    | 201.6                                                                                                 |
| (mm)    | 102.1                                                                                                 |
| (%)     | 9.9                                                                                                   |
| (Mg/m³) | 2.29                                                                                                  |
| (Mg/m³) | 2.08                                                                                                  |
|         |                                                                                                       |
| (mm)    | 0.3                                                                                                   |
| (kPa)   | 1.1                                                                                                   |
| (%/min) | 2.0                                                                                                   |
| (kPa)   | 35                                                                                                    |
| (%)     | 20.8                                                                                                  |
| (kPa)   | 196                                                                                                   |
| (kPa)   | 98                                                                                                    |
|         | (mm)<br>(%)<br>(Mg/m <sup>3</sup> )<br>(Mg/m <sup>3</sup> )<br>(mm)<br>(kPa)<br>(kPa)<br>(%)<br>(kPa) |





| C | Drientation of the sample    | Vertical |
|---|------------------------------|----------|
| Ľ | Distance from top of tube mm | 50       |

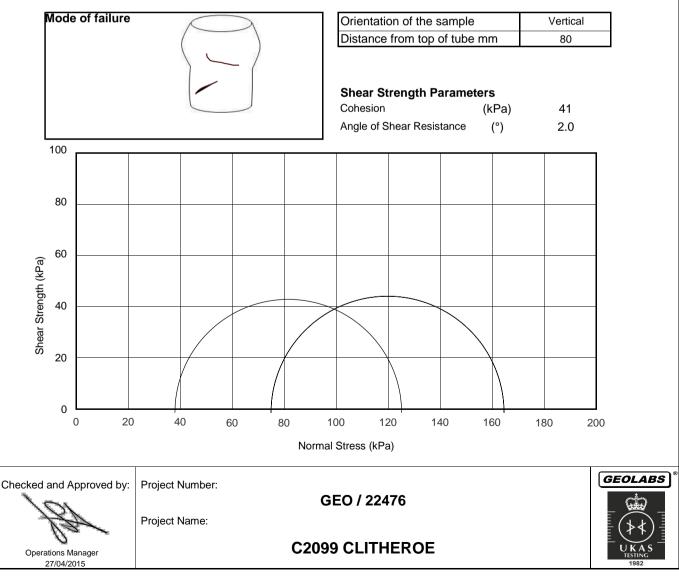


Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

#### BS 1377 : Part 7 : 1990 Clause 9

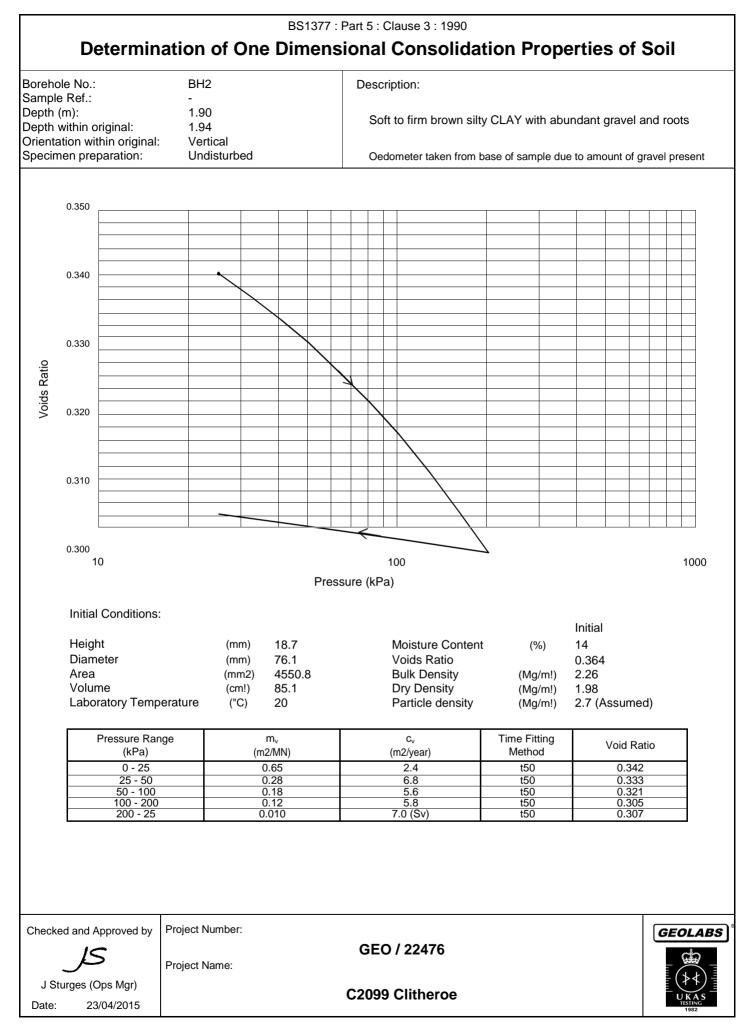
## **Quick Undrained Triaxial Compression Test**

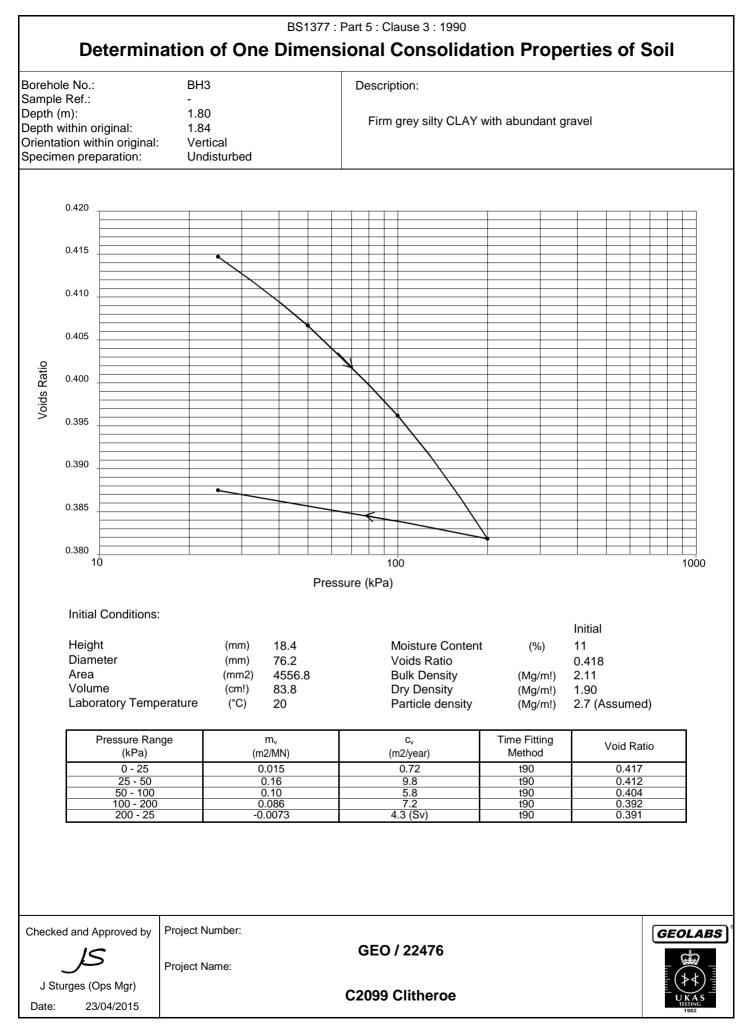
BH/TP No Depth (m) Sample Type


BH3 3.70-4.15 U Description:

Soft to firm grey brown sandy gravelly silty CLAY. Gravel is fine to medium.

Remarks : Sample went to 20% on second stage of multistage test


#### **Specimen Details**


| Specimen conditions      |         | Undisturbed |      |
|--------------------------|---------|-------------|------|
| Length                   | (mm)    | 202.5       |      |
| Diameter                 | (mm)    | 101.7       |      |
| Moisture Content         | (%)     | 12          |      |
| Bulk Density             | (Mg/m³) | 2.39        |      |
| Dry Density              | (Mg/m³) | 2.13        |      |
| Test Details             |         | 1           | 2    |
| Latex membrane thickness | (mm)    | 0.3         | 0.3  |
| Membrane correction      | (kPa)   | 1.0         | 1.1  |
| Axial displacement rate  | (%/min) | 1.0         | 1.0  |
| Cell pressure            | (kPa)   | 37          | 74   |
| Strain at failure        | (%)     | 17.3        | 20.7 |
| Maximum Deviator Stress  | (kPa)   | 87          | 90   |
| Shear Stress Cu          | (kPa)   | 44          | 45   |



Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

GL:Version 1.44 - 16/03/2015







# Appendix V





| Report Number:         | 15-06828 Issue-1                                                            |                   |             |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------|-------------------|-------------|--|--|--|--|--|
| Initial Date of Issue: | 31-Mar-2015                                                                 |                   |             |  |  |  |  |  |
| Client:                | HSP Consulting Engineers Limited                                            |                   |             |  |  |  |  |  |
| Client Address:        | Lawrence House<br>Meadowbank Way<br>Eastwood<br>Nottinghamshire<br>NG16 3SB |                   |             |  |  |  |  |  |
| Contact(s):            | LukeBradley                                                                 |                   |             |  |  |  |  |  |
| Project:               | C2099 - Clitheroe                                                           |                   |             |  |  |  |  |  |
| Quotation No.:         |                                                                             | Date Received:    | 25-Mar-2015 |  |  |  |  |  |
| Order No.:             |                                                                             | Date Instructed:  | 25-Mar-2015 |  |  |  |  |  |
| No. of Samples:        | 15                                                                          |                   |             |  |  |  |  |  |
| Turnaround: (Wkdays)   | 5                                                                           | Results Due Date: | 31-Mar-2015 |  |  |  |  |  |
| Date Approved:         | 31-Mar-2015                                                                 |                   |             |  |  |  |  |  |
| Approved By:           |                                                                             |                   |             |  |  |  |  |  |
| (CT) Shes              |                                                                             |                   |             |  |  |  |  |  |

**Details:** 

Keith Jones, Technical Manager

## Chemtest The right chemistry to deliver results

| Client: HSP Consulting Engineers Limited |         | Chem   | ntest Jo | b No.:  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  |
|------------------------------------------|---------|--------|----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Quotation No.:                           | С       | hemtes | st Samp  | le ID.: | 120111    | 120112    | 120113    | 120114    | 120115    | 120116    | 120117    | 120118    |
| Order No.:                               |         | Clien  | t Sample | e Ref.: |           |           |           |           |           |           |           |           |
|                                          |         | Clier  | nt Samp  | le ID.: | WS1       | WS2       | WS3A      | WS6       | WS7       | WS8       | WS5       | WS5       |
|                                          |         |        | Sample   | Type:   | SOIL      |
|                                          |         | ٦      | op Dep   | th (m): | 0.5       | 0.5       | 0.1       | 0.5       | 0.5       | 0.6       | 0.5       | 0.1       |
|                                          |         | Bot    | tom Dep  | oth(m): |           |           |           |           |           |           |           |           |
|                                          |         | [      | Date Sar | mpled:  | 17-Mar-15 |
| Determinand                              | Accred. | SOP    | Units    | LOD     |           |           |           |           |           |           |           |           |
| Moisture                                 | N       | 2030   | %        | 0.02    | 17        | 26        | 44        | 21        | 19        | 24        | 22        | 31        |
| Soil Colour                              | N       |        |          |         | Brown     |
| Other Material                           | N       |        |          |         | Stones    |
| Soil Texture                             | Ν       |        |          |         | Clay      | Clay      | Sand      | Clay      | Clay      | Clay      | Clay      | Clay      |
| рН                                       | М       | 2010   |          |         | 6.9       | 7.2       | 5.7       | 7.4       | 6.5       | 7.5       | 7.0       | 6.2       |
| Boron (Hot Water Soluble)                | М       | 2120   | mg/kg    | 0.4     | < 0.40    | 0.41      | 1.9       | 0.66      | 0.51      | 0.52      | < 0.40    | 1.8       |
| Sulphate (2:1 Water Soluble) as SO4      | М       | 2120   | g/l      | 0.01    | 0.017     | 0.032     | 0.082     | 0.036     | 0.023     | 0.085     | 0.028     | 0.21      |
| Total Sulphur                            | М       | 2175   | %        | 0.01    | < 0.010   |           | 0.070     | < 0.010   |           | < 0.010   |           |           |
| Sulphur (Elemental)                      | М       | 2180   | mg/kg    | 1       | < 1.0     | < 1.0     | 4.2       | 4.0       | < 1.0     | < 1.0     | < 1.0     | 6.5       |
| Cyanide (Total)                          | М       | 2300   | mg/kg    | 0.5     | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    |
| Cyanide (Free)                           | М       | 2300   | mg/kg    | 0.5     | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    |
| Sulphide (Easily Liberatable)            | М       | 2325   | mg/kg    | 0.5     | 1.6       | 1.7       | 1.3       | 1.8       | 1.4       | 0.96      | 1.3       | 1.1       |
| Sulphate (Acid Soluble)                  | М       | 2430   | %        | 0.01    | 0.021     |           | 0.17      | 0.046     |           | 0.080     |           |           |
| Arsenic                                  | М       | 2450   | mg/kg    | 1       | 54        | 10        | 13        | 4.2       | 8.8       | 6.9       | 15        | 9.9       |
| Cadmium                                  | М       | 2450   | mg/kg    | 0.1     | < 0.10    | 0.21      | 0.77      | 0.41      | 0.85      | 0.42      | 2.3       | 0.50      |
| Chromium                                 | М       | 2450   | mg/kg    | 1       | 28        | 29        | 33        | 19        | 26        | 23        | 29        | 25        |
| Copper                                   | М       | 2450   | mg/kg    | 0.5     | 54        | 20        | 32        | 4.1       | 14        | 11        | 23        | 21        |
| Mercury                                  | М       | 2450   | mg/kg    | 0.1     | 0.15      | < 0.10    | 0.20      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.13      |
| Nickel                                   | М       | 2450   | mg/kg    | 0.5     | 15        | 31        | 22        | 8.6       | 21        | 16        | 55        | 18        |
| Lead                                     | М       | 2450   | mg/kg    | 0.5     | 85        | 27        | 100       | 23        | 45        | 31        | 56        | 65        |
| Selenium                                 | М       | 2450   | mg/kg    | 0.2     | 0.52      | 0.25      | 0.72      | 0.27      | 0.38      | 0.23      | 1.0       | 0.34      |
| Zinc                                     | М       | 2450   | mg/kg    | 0.5     | 75        | 80        | 130       | 68        | 130       | 95        | 280       | 100       |
| Chromium (Hexavalent)                    | N       | 2490   | mg/kg    | 0.5     | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    |
| Organic Matter                           | М       | 2625   | %        | 0.4     | 0.90      | 1.7       | 15        | 1.5       | 1.1       | 1.7       | 1.1       | 7.8       |
| Aliphatic TPH >C5-C6                     | N       | 2675   | mg/kg    | 0.1     | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    |
| Aliphatic TPH >C6-C8                     | N       | 2675   | mg/kg    | 0.1     | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    |
| Aliphatic TPH >C8-C10                    | М       |        | 0 0      | 0.1     | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    |
| Aliphatic TPH >C10-C12                   | М       | 2675   | mg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Aliphatic TPH >C12-C16                   | М       | 2675   | mg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Aliphatic TPH >C16-C21                   | М       | 2675   | mg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Aliphatic TPH >C21-C35                   | М       | 2675   | mg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Aliphatic TPH >C35-C44                   | М       | 2675   | mg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Total Aliphatic Hydrocarbons             | М       | 2675   | mg/kg    | 5       | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0     |

## Chemtest The right chemistry to deliver results

| Client: HSP Consulting Engineers Limited |         |        | ntest Jo |         | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  |
|------------------------------------------|---------|--------|----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Quotation No.:                           | C       | hemtes | st Samp  | le ID.: | 120111    | 120112    | 120113    | 120114    | 120115    | 120116    | 120117    | 120118    |
| Order No.:                               |         | Clien  | t Sample | e Ref.: |           |           |           |           |           |           |           |           |
|                                          |         | Clier  | nt Samp  | le ID.: | WS1       | WS2       | WS3A      | WS6       | WS7       | WS8       | WS5       | WS5       |
|                                          |         |        | Sample   |         | SOIL      |
|                                          |         |        | Fop Dep  | th (m): | 0.5       | 0.5       | 0.1       | 0.5       | 0.5       | 0.6       | 0.5       | 0.1       |
|                                          |         | Bot    | tom Dep  | oth(m): |           |           |           |           |           |           |           |           |
|                                          |         |        | Date Sa  | mpled:  | 17-Mar-15 |
| Determinand                              | Accred. | SOP    | Units    |         |           |           |           |           |           |           |           |           |
| Aromatic TPH >C5-C7                      | N       | 2675   | mg/kg    | 0.1     | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    |
| Aromatic TPH >C7-C8                      | N       | 2675   | mg/kg    | 0.1     | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    |
| Aromatic TPH >C8-C10                     | М       | 2675   | mg/kg    | 0.1     | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    |
| Aromatic TPH >C10-C12                    | М       | 2675   |          | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Aromatic TPH >C12-C16                    | М       | 2675   |          | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Aromatic TPH >C16-C21                    | М       | 2675   |          | 1       | < 1.0     | < 1.0     | 3.9       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | 2.6       |
| Aromatic TPH >C21-C35                    | М       | 2675   |          | 1       | < 1.0     | < 1.0     | 11        | < 1.0     | < 1.0     | < 1.0     | < 1.0     | 11        |
| Aromatic TPH >C35-C44                    | N       | 2675   |          | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Total Aromatic Hydrocarbons              | М       | 2675   | mg/kg    | 5       | < 5.0     | < 5.0     | 15        | < 5.0     | < 5.0     | < 5.0     | < 5.0     | 15        |
| Total Petroleum Hydrocarbons             | М       | 2675   | mg/kg    | 10      | < 10      | < 10      | 15        | < 10      | < 10      | < 10      | < 10      | 15        |
| Naphthalene                              | М       | 2700   |          | 0.1     | < 0.10    | < 0.10    | 0.44      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.48      |
| Acenaphthylene                           | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 0.34      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.39      |
| Acenaphthene                             | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 0.16      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.34      |
| Fluorene                                 | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 0.15      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.45      |
| Phenanthrene                             | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 1.3       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 3.5       |
| Anthracene                               | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 0.33      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    |
| Fluoranthene                             | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 3.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 5.5       |
| Pyrene                                   | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 3.2       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 5.5       |
| Benzo[a]anthracene                       | М       | 2700   |          | 0.1     | < 0.10    | < 0.10    | 1.6       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 2.6       |
| Chrysene                                 | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 2.3       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 3.3       |
| Benzo[b]fluoranthene                     | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 1.9       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 3.5       |
| Benzo[k]fluoranthene                     | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 0.34      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 2.0       |
| Benzo[a]pyrene                           | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 1.7       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 2.3       |
| Indeno(1,2,3-c,d)Pyrene                  | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 0.54      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.78      |
| Dibenz(a,h)Anthracene                    | М       | 2700   | mg/kg    | 0.1     | < 0.10    | < 0.10    | 0.44      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.43      |
| Benzo[g,h,i]perylene                     | М       | 2700   |          |         | < 0.10    | < 0.10    | 0.45      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.47      |
| Total Of 16 PAH's                        | М       | 2700   | mg/kg    | 2       | < 2.0     | < 2.0     | 18        | < 2.0     | < 2.0     | < 2.0     | < 2.0     | 32        |
| Benzene                                  | М       | 2760   | µg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Toluene                                  | М       | 2760   | µg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Ethylbenzene                             | М       | 2760   |          | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| m & p-Xylene                             | М       | 2760   | µg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| o-Xylene                                 | М       | 2760   | µg/kg    | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |
| Methyl Tert-Butyl Ether                  | М       | 2760   |          | 1       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     |



## **Results Summary - Soil**

| Client: HSP Consulting Engineers Limited |         | Cherr  | ntest Jo | b No.:  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  |
|------------------------------------------|---------|--------|----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Quotation No.:                           | C       | hemtes | st Samp  | le ID.: | 120111    | 120112    | 120113    | 120114    | 120115    | 120116    | 120117    | 120118    |
| Order No.:                               |         | Clien  | t Sampl  | e Ref.: |           |           |           |           |           |           |           |           |
|                                          |         | Clier  | nt Samp  | le ID.: | WS1       | WS2       | WS3A      | WS6       | WS7       | WS8       | WS5       | WS5       |
|                                          |         |        | Sample   | Type:   | SOIL      |
|                                          |         | Т      | Гор Dep  | th (m): | 0.5       | 0.5       | 0.1       | 0.5       | 0.5       | 0.6       | 0.5       | 0.1       |
|                                          |         | Bot    | tom Dep  | oth(m): |           |           |           |           |           |           |           |           |
|                                          |         | [      | Date Sa  | mpled:  | 17-Mar-15 |
| Determinand                              | Accred. | SOP    | Units    | LOD     |           |           |           |           |           |           |           |           |
| Total Phenols                            | M       | 2920   | mg/kg    | 0.3     | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    |



#### **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at our Coventry laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

## If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk





| Report Number:         | 15-06833 Issue-1                                                            |                   |             |
|------------------------|-----------------------------------------------------------------------------|-------------------|-------------|
| Initial Date of Issue: | 31-Mar-2015                                                                 |                   |             |
| Client:                | HSP Consulting Engineers Limited                                            |                   |             |
| Client Address:        | Lawrence House<br>Meadowbank Way<br>Eastwood<br>Nottinghamshire<br>NG16 3SB |                   |             |
| Contact(s):            | LukeBradley                                                                 |                   |             |
| Project:               | C2099 - Clitheroe                                                           |                   |             |
| Quotation No.:         |                                                                             | Date Received:    | 25-Mar-2015 |
| Order No.:             |                                                                             | Date Instructed:  | 25-Mar-2015 |
| No. of Samples:        | 2                                                                           |                   |             |
| Turnaround: (Wkdays)   | 5                                                                           | Results Due Date: | 31-Mar-2015 |
| Date Approved:         | 31-Mar-2015                                                                 |                   |             |
| Approved By:           |                                                                             |                   |             |
| Details:               | Darrell Hall, Laboratory Director                                           |                   |             |



## **Results Summary - 2 Stage WAC**

| Chemtest Job No: 15-06833    |      |         |          |          |         |            | Landfill Wa  | aste Acceptar  | ce Criteria    |
|------------------------------|------|---------|----------|----------|---------|------------|--------------|----------------|----------------|
| Chemtest Sample ID: 120134   |      |         |          |          |         |            |              | Limits         |                |
| Sample Ref:                  |      |         |          |          |         |            |              | Stable Non-    |                |
| Sample ID: WS2               |      |         |          |          |         |            |              | reactive       | Hazardous      |
| Top Depth(m): 0.5            |      |         |          |          |         |            | Inert Waste  | Hazardous      | Waste          |
| Bottom Depth(m):             |      |         |          |          |         |            | Landfill     | waste in       | Landfill       |
| Sampling Date: 17-Mar-2015   |      |         |          |          |         |            |              | non-           | Lanam          |
| Determinand                  | SOP  | Accred. | Units    |          |         |            |              | hazardous      |                |
| Total Organic Carbon         | 2625 | U       | %        |          |         | 0.92       | 3            | 5              | 6              |
| Loss on Ignition             | 2610 | U       | %        |          |         | 4.3        |              |                | 10             |
| Total BTEX                   | 2760 | U       | mg/kg    |          |         | < 0.01     | 6            |                |                |
| Total PCBs (7 congeners)     | 2815 | U       | mg/kg    |          |         | < 0.10     | 1            |                |                |
| TPH Total WAC (Mineral Oil)  | 2670 | U       | mg/kg    |          |         | < 10       | 500          |                |                |
| Total (of 17) PAHs           | 2700 | N       | mg/kg    |          |         | < 2.0      | 100          |                |                |
| рН                           | 2010 | U       |          |          |         | 7.1        |              | >6             |                |
| Acid Neutralisation Capacity | 2015 | N       | mol/kg   |          |         | 0.003      |              | To evaluate    | To evaluate    |
|                              |      |         |          |          |         | Cumulative | 1.1.1.1      |                |                |
| Eluate Analysis              |      |         | 2:1      | 8:1      | 2:1     | 10:1       |              | s for compliar | •              |
|                              |      |         | mg/l     | mg/l     | mg/kg   | mg/kg      | test using B | S EN 12457-3   | at L/S 10 l/kg |
| Arsenic                      | 1450 | U       | < 0.001  | 0.002    | < 0.050 | < 0.050    | 0.5          | 2              | 25             |
| Barium                       | 1450 | U       | 0.003    | 0.008    | < 0.50  | < 0.50     | 20           | 100            | 300            |
| Cadmium                      | 1450 | U       | 0.00068  | 0.0035   | < 0.010 | 0.033      | 0.04         | 1              | 5              |
| Chromium                     | 1450 | U       | 0.004    | 0.011    | < 0.050 | 0.11       | 0.5          | 10             | 70             |
| Copper                       | 1450 | U       | 0.003    | 0.011    | < 0.050 | < 0.050    | 2            | 50             | 100            |
| Mercury                      | 1450 | U       | < 0.0005 | < 0.0005 | < 0.001 | < 0.005    | 0.01         | 0.2            | 2              |
| Molybdenum                   | 1450 | U       | < 0.001  | < 0.001  | < 0.050 | < 0.050    | 0.5          | 10             | 30             |
| Nickel                       | 1450 | U       | 0.002    | 0.006    | < 0.050 | 0.054      | 0.4          | 10             | 40             |
| Lead                         | 1450 | U       | 0.001    | 0.005    | < 0.010 | 0.048      | 0.5          | 10             | 50             |
| Antimony                     | 1450 | U       | < 0.001  | < 0.001  | < 0.010 | < 0.010    | 0.06         | 0.7            | 5              |
| Selenium                     | 1450 | U       | 0.001    | < 0.001  | < 0.010 | < 0.010    | 0.1          | 0.5            | 7              |
| Zinc                         | 1450 | U       | 0.033    | 0.14     | < 0.50  | 1.3        | 4            | 50             | 200            |
| Chloride                     | 1220 | U       | 4.6      | 1.3      | < 10    | 14         | 800          | 15000          | 25000          |
| Fluoride                     | 1220 | U       | 0.19     | 0.14     | < 1.0   | 1.4        | 10           | 150            | 500            |
| Sulphate                     | 1220 | U       | 4.9      | < 1.0    | < 10    | < 10       | 1000         | 20000          | 50000          |
| Total Dissolved Solids       | 1020 | N       | 48       | 17       | 93      | 180        | 4000         | 60000          | 100000         |
| Phenol Index                 | 1920 | U       | < 0.030  | < 0.030  | < 0.30  | < 0.50     | 1            | -              | -              |
| Dissolved Organic Carbon     | 1610 | U       | 31       | 18       | 60      | 190        | 500          | 800            | 1000           |

| Soild Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.175 |
| Moisture (%)                | 23    |

| Leachate Test Information           |       |  |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|--|
| Leachant volume 1st extract/l       | 0.296 |  |  |  |  |  |  |
| Leachant volume 2nd extract/l       | 1.4   |  |  |  |  |  |  |
| Eluant recovered from 1st extract/l | 0.084 |  |  |  |  |  |  |



## **Results Summary - 2 Stage WAC**

| Chemtest Job No: 15-06833    |      |         |             |             |              |               | Landfill Wa | aste Acceptar | ce Criteria |
|------------------------------|------|---------|-------------|-------------|--------------|---------------|-------------|---------------|-------------|
| Chemtest Sample ID: 120135   |      |         |             |             |              |               |             | Limits        |             |
| Sample Ref:                  |      |         |             |             |              |               |             | Stable Non-   |             |
| Sample ID: WS4               |      |         |             |             |              |               |             | reactive      | Hazardous   |
| Top Depth(m): 0.1            |      |         |             |             |              |               | Inert Waste | Hazardous     | Waste       |
| Bottom Depth(m):             |      |         |             |             |              |               | Landfill    | waste in      | Landfill    |
| Sampling Date: 17-Mar-2015   |      |         |             |             |              |               |             | non-          | Lanam       |
| Determinand                  | SOP  | Accred. | Units       |             |              |               |             | hazardous     |             |
| Total Organic Carbon         | 2625 | U       | %           |             |              | 3.5           | 3           | 5             | 6           |
| Loss on Ignition             | 2610 | U       | %           |             |              | 9.4           |             |               | 10          |
| Total BTEX                   | 2760 | U       | mg/kg       |             |              | < 0.01        | 6           |               |             |
| Total PCBs (7 congeners)     | 2815 | U       | mg/kg       |             |              | < 0.10        | 1           |               |             |
| TPH Total WAC (Mineral Oil)  | 2670 | U       | mg/kg       |             |              | 37            | 500         |               |             |
| Total (of 17) PAHs           | 2700 | N       | mg/kg       |             |              | 34            | 100         |               |             |
| рН                           | 2010 | U       |             |             |              | 7.2           |             | >6            |             |
| Acid Neutralisation Capacity | 2015 | N       | mol/kg      |             |              | 0.003         |             | To evaluate   | To evaluate |
|                              |      |         | 0.4         | 0.4         | 0-4          | Cumulative    |             | s for complia |             |
| Eluate Analysis              |      |         | 2:1<br>mg/l | 8:1<br>mg/l | 2:1<br>mg/kg | 10:1<br>mg/kg |             | S EN 12457-3  | -           |
| Arsenic                      | 1450 | U       | 0.002       | 0.001       | < 0.050      | < 0.050       | 0.5         | 2             | 25          |
| Barium                       | 1450 | U       | 0.014       | 0.019       | < 0.50       | < 0.50        | 20          | 100           | 300         |
| Cadmium                      | 1450 | U       | 0.0021      | 0.0015      | < 0.010      | 0.015         | 0.04        | 1             | 5           |
| Chromium                     | 1450 | U       | 0.005       | 0.007       | < 0.050      | 0.064         | 0.5         | 10            | 70          |
| Copper                       | 1450 | U       | 0.01        | 0.012       | < 0.050      | < 0.050       | 2           | 50            | 100         |
| Mercury                      | 1450 | U       | < 0.0005    | < 0.0005    | < 0.001      | < 0.005       | 0.01        | 0.2           | 2           |
| Molybdenum                   | 1450 | U       | < 0.001     | < 0.001     | < 0.050      | < 0.050       | 0.5         | 10            | 30          |
| Nickel                       | 1450 | U       | 0.005       | 0.004       | < 0.050      | < 0.050       | 0.4         | 10            | 40          |
| Lead                         | 1450 | U       | 0.01        | 0.012       | 0.019        | 0.12          | 0.5         | 10            | 50          |
| Antimony                     | 1450 | U       | < 0.001     | < 0.001     | < 0.010      | < 0.010       | 0.06        | 0.7           | 5           |
| Selenium                     | 1450 | U       | 0.001       | 0.001       | < 0.010      | 0.011         | 0.1         | 0.5           | 7           |
| Zinc                         | 1450 | U       | 0.077       | 0.05        | < 0.50       | 0.51          | 4           | 50            | 200         |
| Chloride                     | 1220 | U       | 4.1         | 2           | < 10         | 21            | 800         | 15000         | 25000       |
| Fluoride                     | 1220 | U       | 0.13        | 0.085       | < 1.0        | < 1.0         | 10          | 150           | 500         |
| Sulphate                     | 1220 | U       | 15          | 2.2         | 29           | 28            | 1000        | 20000         | 50000       |
| Total Dissolved Solids       | 1020 | N       | 60          | 19          | 120          | 210           | 4000        | 60000         | 100000      |
| Phenol Index                 | 1920 | U       | < 0.030     | < 0.030     | < 0.30       | < 0.50        | 1           | -             | -           |
| Dissolved Organic Carbon     | 1610 | U       | 83          | 22          | 160          | 250           | 500         | 800           | 1000        |

| Soild Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.175 |
| Moisture (%)                | 18    |

| Leachate Test Information           |       |  |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|--|
| Leachant volume 1st extract/l       | 0.313 |  |  |  |  |  |  |
| Leachant volume 2nd extract/l       | 1.4   |  |  |  |  |  |  |
| Eluant recovered from 1st extract/l | 0.086 |  |  |  |  |  |  |



#### **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at our Coventry laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

## If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk



# **Appendix VI**

| h S<br>consulti                                                         | O<br>n g                                                                                                                                                             |                                    |                                                                                                                                                           |                                     | Во       | reho     | ole Log                                                                                                                                                       | Borehole N<br>CP1<br>Sheet 1 of         | f 1                                           |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Project Name:                                                           | Chatburn R                                                                                                                                                           | Road,                              |                                                                                                                                                           | roject No.<br>2099                  |          | Co-ords: | -                                                                                                                                                             | Hole Typ<br>CP                          | e                                             |
| Location:                                                               | Clitheroe                                                                                                                                                            |                                    |                                                                                                                                                           |                                     |          | Level:   |                                                                                                                                                               | Scale<br>1:50                           |                                               |
| Client:                                                                 | Oakmere H                                                                                                                                                            | lomes                              | s Ltd                                                                                                                                                     |                                     |          | Dates:   | 17/03/2015 - 17/03/2015                                                                                                                                       | Logged B<br>Driller                     | Зу                                            |
| Well Water<br>Strikes                                                   | Samples                                                                                                                                                              | and                                | In Situ Testing                                                                                                                                           | Depth                               | Level    | Legend   | Stratum Descriptior                                                                                                                                           | n                                       |                                               |
| Strikes                                                                 | Depth (m)<br>0.00 - 0.20<br>0.10<br>0.20<br>0.50 - 1.00<br>1.00<br>1.00 - 1.50<br>1.60<br>1.70 - 1.80<br>1.80 - 2.30<br>2.80<br>2.80<br>2.80<br>3.80<br>3.80<br>3.80 | Type<br>B<br>D<br>B<br>B<br>B<br>B | Results           50 (7,16/50 for 270mm)           50 (25 for 85mm/50 for 290mm)           50 (9,12/50 for 265mm)           50 (25 for 95mm/50 for 275mm) | (m)<br>0.20<br>1.60<br>4.10<br>4.20 | (m)      |          | Grass overyling brown clayey TOP3<br>Soft to firm orange brown mottled s<br>CLAY.<br>Stiff dark grey CLAY.<br>LIMESTONE boulder.<br>End of borehole at 4.20 m | SOIL<br>ilty sandy<br>d a little coarse | 1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 - |
|                                                                         |                                                                                                                                                                      |                                    |                                                                                                                                                           |                                     |          |          |                                                                                                                                                               |                                         | 9                                             |
| Cemarks . No groundwater was encounter . Borehole was terminated at 4.2 | 20m due to refusal.                                                                                                                                                  |                                    |                                                                                                                                                           |                                     | <u> </u> |          |                                                                                                                                                               | AGS                                     | I                                             |

| h S                    | p                               |           |                                  |              | Bo    | reho                                  | ole Log                                      | Borehole N<br>CP2<br>Sheet 1 o |          |
|------------------------|---------------------------------|-----------|----------------------------------|--------------|-------|---------------------------------------|----------------------------------------------|--------------------------------|----------|
| Project Name:          | 0                               | Road,     |                                  | oject No.    |       | Co-ords:                              | -                                            | Hole Typ                       |          |
| ocation:               | Clitheroe                       |           | C                                | 2099         |       | Level:                                |                                              | CP<br>Scale                    |          |
|                        | Ciltheroe                       |           |                                  |              |       | Levei.                                |                                              | 1:50<br>Logged E               | 2.7      |
| lient:                 | Oakmere                         | Homes     | s Ltd                            |              |       | Dates:                                | 18/03/2015 - 19/03/2015                      | Driller                        | <u>у</u> |
| Well Strikes           |                                 | 1         | n Situ Testing                   | Depth        | Level | Legend                                | Stratum Descriptior                          | ı                              |          |
| Well Strikes           | Depth (m)<br>0.00 - 0.25        | Type<br>B | Results                          | (m)          | (m)   |                                       | Grass overlying silty TOPSOIL.               |                                | _        |
|                        | 0.10<br>0.30                    | D<br>D    |                                  | 0.25         |       | 2009/0002<br>Z                        | Ornage brown mottled silty sandy C           | CLAY.                          | -        |
|                        | 0.50 - 1.00                     | В         |                                  |              |       | ×                                     |                                              |                                |          |
|                        | 1.00                            |           | N=19 (1,1/3,4,6,6)               |              |       | ×                                     |                                              |                                |          |
|                        | 1.00 - 1.50                     | В         |                                  |              |       | ~×                                    |                                              |                                |          |
|                        |                                 |           |                                  |              |       | ×                                     | with sandstone gravel and occasional co      | obbles.                        |          |
|                        | 1.80<br>1.90 - 2.35             | DU        |                                  | 1.80         |       | ×                                     | Firm to stiff brown grey mottled CL/         | AY.                            | -        |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        | 2.40<br>2.60                    | D<br>D    |                                  | 2.40<br>2.60 |       |                                       | Firm to stiff brown grey mottled CL/         | AY.                            | -        |
|                        | 2.70<br>2.70 - 3.20             | В         | N=42 (4,9/14,11,8,9)             | 2.00         |       |                                       | Grey brown very sandy CLAY with and cobbles. |                                | 1        |
|                        | 2.1.0 0.20                      |           |                                  |              |       |                                       |                                              |                                |          |
|                        | 3.40<br>3.50 - 3.65             | DU        |                                  | 3.40         |       |                                       |                                              |                                |          |
|                        | 3.50 - 3.80<br>3.80 - 4.20      | BU        |                                  |              |       |                                       | Stiff grey gravelly CLAY. Gravel is o        | of limestone.                  |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        | 4.20                            | D         |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        | 4.80                            |           | 50 (25 for 90mm/50<br>for 295mm) |              |       | · · · · · · · · · · · · · · · · · · · |                                              |                                |          |
| _                      | 4.80 - 5.20<br>5.30             | B<br>D    |                                  | 5.30         |       |                                       |                                              |                                |          |
|                        | 5.30                            |           | 50 (25 for 85mm/50<br>for 245mm) |              |       |                                       | Grey sandy CLAY.                             |                                | 1        |
|                        | 5.30 - 5.50                     | D         |                                  | 5.80         |       |                                       | with limestone gravets, boulder and cob      | bles.                          |          |
| * .                    | 5.30 - 5.80<br>5.80             | B<br>D    |                                  | 6.00         |       |                                       | LIMESTONE                                    | 1                              |          |
|                        | 5.80                            |           | 50 (25 for 90mm/50<br>for 250mm) |              |       |                                       |                                              |                                |          |
|                        | 6.00                            |           | 50 (25 for 80mm/50<br>for 225mm) |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                |          |
|                        |                                 |           |                                  |              |       |                                       |                                              |                                | 1        |
| emarks                 | tered during the drilling proce | <br>ss.   |                                  |              |       | 1                                     |                                              |                                | ŀ        |
| proundwater was encoun |                                 |           |                                  |              |       |                                       |                                              |                                |          |

| h<br>on | S<br>sult        | p                                      |             |                                   |                    | Borehole No.<br>CP3<br>Sheet 1 of 1 |                                              |                                             |                  |   |
|---------|------------------|----------------------------------------|-------------|-----------------------------------|--------------------|-------------------------------------|----------------------------------------------|---------------------------------------------|------------------|---|
| rojec   | t Name:          | Chatburn                               | Road,       |                                   | roject No.<br>2099 |                                     | Co-ords:                                     | -                                           | Hole Typ<br>CP   |   |
| ocatio  | on:              | Clitheroe                              |             | 10                                | 2033               |                                     | Level:                                       |                                             | Scale            |   |
| lient:  |                  | Oakmere                                | Homes       | s Ltd                             |                    |                                     | Dates:                                       | 18/03/2015 - 18/03/2015                     | 1:50<br>Logged E |   |
| ,       | Water            |                                        |             | In Situ Testing                   | Depth              |                                     | Legend                                       | Stratum Description                         | Driller          | Т |
| /ell    | Water<br>Strikes | Depth (m)                              | Type<br>B   | Results                           | (m)                | (m)                                 | V//AV//AV                                    | Grass overyling brown clayey TOP            |                  |   |
|         |                  | 0.10                                   | D<br>U      |                                   | U.2U               |                                     |                                              | Orange brown mottled silty sandy (          |                  | - |
|         |                  | 0.20 - 0.70<br>0.70<br>0.70 - 1.00     | B<br>D<br>B |                                   | 0.70               |                                     | ×                                            | Grey brown mottled silty sandy CL           | AY with some     |   |
|         |                  | 0.80<br>1.00                           | W<br>D      |                                   | 1.00               |                                     | ××                                           | gravel and cobbles.<br>Brown clayey GRAVEL. |                  |   |
|         |                  | 1.10<br>1.10 - 1.60                    | в           | N=41 (4,5/8,11,14,8)              |                    |                                     |                                              |                                             |                  |   |
|         |                  | 1.70<br>1.80 - 2.20                    | D<br>U      |                                   | 1.70               |                                     | · · · · · · · · · · · · · · · · · · ·        | Firm to stiff brown grey mottled CL         | AY.              |   |
|         |                  | 2.20                                   | D           |                                   |                    |                                     |                                              |                                             |                  |   |
|         |                  | 2.40<br>2.50 - 2.70                    | D<br>B      |                                   | 2.40               |                                     |                                              | Stiff grey CLAY with many limestor          | ne cobbles and   |   |
|         |                  | 2.70. <del>7</del> 0.15<br>2.70 - 3.20 | D<br>B      | N=33 (4,7/6,8,8,11)               |                    |                                     | <u>~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | boulders.                                   |                  |   |
|         |                  |                                        |             |                                   |                    |                                     | <u> </u>                                     |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     | <u>~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                             |                  |   |
|         |                  | 3.70 - 4.15                            | U           |                                   |                    |                                     | <u>~</u>                                     |                                             |                  |   |
|         |                  | 4.20                                   | D           |                                   |                    |                                     | <br>                                         |                                             |                  |   |
|         |                  | 4.20                                   |             |                                   |                    |                                     | <u>~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                             |                  |   |
| _       |                  | 4.70                                   |             | 50 (25 for 80mm/50<br>for 250mm)  |                    |                                     | <u> </u>                                     |                                             |                  |   |
|         |                  | 4.70 - 5.20                            | В           | ,                                 |                    |                                     |                                              |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     | <u>~</u>                                     |                                             |                  |   |
|         |                  | 5.70 - 5.85<br>5.70 - 6.20             | U<br>B      |                                   |                    |                                     |                                              |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     | <u>_~</u>                                    |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     | <u>~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     | <u></u>                                      |                                             |                  |   |
|         |                  | 6.70                                   | _           | 50 (25 for 135mm/50<br>for 228mm) | 6.70               |                                     |                                              | LIMESTONE                                   |                  | 1 |
|         |                  | 6.70 - 6.80<br>7.00                    | D           | 50 (25 for 85mm/50<br>for 225mm)  | 7.00               |                                     |                                              | End of borehole at 7.00 r                   | n                |   |
|         |                  |                                        |             |                                   |                    |                                     |                                              |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     |                                              |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     |                                              |                                             |                  |   |
|         |                  |                                        |             |                                   |                    |                                     |                                              |                                             |                  |   |
| mar     |                  | torod during the dates                 |             |                                   |                    |                                     |                                              |                                             |                  |   |
|         |                  | tered during the drilling proce        | 55.         |                                   |                    |                                     |                                              |                                             |                  |   |

|                 |               |            |                        |                |             |                                                  |                                                                   | Trialpit I        | No  |
|-----------------|---------------|------------|------------------------|----------------|-------------|--------------------------------------------------|-------------------------------------------------------------------|-------------------|-----|
| n               | SP            |            |                        |                |             | Tr                                               | ial Pit Log                                                       | TP1               |     |
| con             | sulting       |            |                        |                |             |                                                  | _                                                                 | Sheet 1 o         |     |
| Projec<br>Name  | ct Chatbur    | n Road,    |                        | Projec<br>C209 |             |                                                  | Co-ords: -                                                        | Date              |     |
|                 |               |            |                        | 0209           | 9           |                                                  | Level:<br>Dimensions                                              | 18/03/20<br>Scale |     |
| Locati          | on: Clitheroe | e          |                        |                |             |                                                  | (m):                                                              | 1:25              |     |
| Client          | : Oakmer      | e Home     | s Ltd                  |                |             |                                                  | Depth<br>1.30                                                     | Logged<br>LEB     | d   |
| 50              | Sample        | es and li  | n Situ Testing         | Depth          | Level       |                                                  |                                                                   |                   |     |
| Water<br>Strike | Depth         | Туре       | Results                | (m)            | (m)         | Legend                                           | Stratum Description<br>Grass overlying brown sandy clayey TOPSOIL | Hiah              |     |
|                 |               |            |                        |                |             |                                                  | plasticity.                                                       | C                 | -   |
|                 |               |            |                        | 0.25           |             |                                                  | Grey slightly clayey sandy GRAVEL & COBBLE                        | S. Gravel         | -   |
|                 |               |            |                        |                |             | ہ <u>م</u> ے ہے                                  | and cobbles is fine to coarse angular to sub an sandstone.        | gular             | -   |
|                 |               |            |                        |                |             |                                                  | a<br>                                                             |                   | -   |
|                 |               |            |                        |                |             | ، <u>ب</u> ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، |                                                                   |                   | -   |
|                 | 0.80          | В          |                        |                |             | نې کې د.<br>د چې ه                               | 2<br>7<br>7                                                       |                   | -   |
|                 |               |            |                        |                |             | <u>م</u> ہ 'مہ<br>ر جد ہ                         | 5<br>7<br>1                                                       |                   | 1 — |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 | 1.20          | В          |                        | 1.30           |             |                                                  | TEnd of pit at 1.30 m                                             |                   | -   |
|                 |               |            |                        |                |             |                                                  | End or pit at 1.30 m                                              |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | 2   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | 3   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   |     |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | 4   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   |     |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   |     |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | -   |
|                 |               |            |                        |                |             |                                                  |                                                                   |                   | 5—  |
| Rema            | rks: 1. No    | groundw    | ater was encountered d | uring the e    | excavatio   | n proces                                         | 5.                                                                |                   |     |
| 1               | 2. Tria       | ıl pit was | terminated at 1.30m de | pth and ba     | ackfilled v | vith arisir                                      | igs.                                                              | AC                | S   |
| Stabil          | ity:          |            |                        |                |             |                                                  |                                                                   | <u>ne</u>         |     |

|                 | 0      | 0        |         |                           |                   |              |        |                                                                                                                                                                                                                                                                                                                       | Trialpit         | No      |
|-----------------|--------|----------|---------|---------------------------|-------------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|
| n               | S      | р        |         |                           |                   |              | Tr     | ial Pit Log                                                                                                                                                                                                                                                                                                           | TP1              | В       |
| con             | sult   | ing      |         |                           |                   |              |        |                                                                                                                                                                                                                                                                                                                       | Sheet 1          |         |
| Projec<br>Name  | ct C   | hatburr  | n Road, |                           | Projec            |              |        | Co-ords: -                                                                                                                                                                                                                                                                                                            | Date             |         |
| Iname           |        |          |         |                           | C2099             | 9            |        | Level:<br>Dimensions                                                                                                                                                                                                                                                                                                  | 18/03/20<br>Scal |         |
| Locat           | ion: C | litheroe | )       |                           |                   |              |        | (m):                                                                                                                                                                                                                                                                                                                  | 1:25             |         |
| Client          | t: O   | akmere   | e Home  | s Ltd                     |                   |              |        | Depth                                                                                                                                                                                                                                                                                                                 | Logge            |         |
|                 |        |          |         |                           |                   |              | T      | 0.50                                                                                                                                                                                                                                                                                                                  | LB               |         |
| Water<br>Strike | De     |          | Type    | n Situ Testing<br>Results | Depth<br>(m)      | Level<br>(m) | Legend | d Stratum Description                                                                                                                                                                                                                                                                                                 |                  |         |
|                 |        |          |         |                           | 0.15              |              |        | Grass overlying blackish brown slightly gravelly<br>sandy clayey TOPSOIL. High plasticity. Gravel<br>medium angular to sub angular of sandstone.<br>Firm orange brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>angular of sandstone and mudstone.<br>End of pit at 0.50 m | is fine to CLAY. |         |
| Rema            | arks:  | 1. No (  | groundw | ater was encountered of   | l<br>durina the c | drillina pr  | ocess. | 1                                                                                                                                                                                                                                                                                                                     |                  |         |
| Stabi           |        |          |         | terminated at 0.50m de    |                   |              |        | filled with arisings.                                                                                                                                                                                                                                                                                                 | A                | I<br>is |

|                  | C 10         |            |                        |                |              |           |                                                                                                                                                                                                                                                                                                                       | Trialpit No                   | )                |
|------------------|--------------|------------|------------------------|----------------|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|
|                  | S P          |            |                        |                |              | Tri       | al Pit Log                                                                                                                                                                                                                                                                                                            | TP1A                          |                  |
| con              | 0            |            |                        | Decla          | 4 NI -       |           |                                                                                                                                                                                                                                                                                                                       | Sheet 1 of                    | 1                |
| Project<br>Name: | t Chatbu     | rn Road,   |                        | Projec<br>C209 |              |           | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                  | Date<br>18/03/2015            |                  |
|                  |              |            |                        | 0209           | 5            |           | Dimensions                                                                                                                                                                                                                                                                                                            | Scale                         |                  |
| Locatio          | on: Clithero | be         |                        |                |              |           | (m):                                                                                                                                                                                                                                                                                                                  | 1:25                          |                  |
| Client:          | Oakme        | re Homes   | s Ltd                  |                |              |           | Depth<br>0.50                                                                                                                                                                                                                                                                                                         | Logged<br>LB                  |                  |
| 5 0              | Samp         | les and In | Situ Testing           | Depth          |              |           | ]                                                                                                                                                                                                                                                                                                                     | LD                            |                  |
| Water<br>Strike  | Depth        | Туре       | Results                | (m)            | Level<br>(m) | Legend    |                                                                                                                                                                                                                                                                                                                       |                               |                  |
| Remar            | *ks: 1. No   | groundwa   | ater seepage was enco  | 0.15<br>0.50   | ring the e   | excavatio | Grass overlying blackish brown slightly gravelly<br>andy clayey TOPSOIL. High plasticity. Gravel<br>medium angular to sub angular of sandstone.<br>Firm orange brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>angular of sandstone and mudstone.<br>Tend of pit at 0.50 m | is fine to<br>CLAY.<br>to sub | 1<br>2<br>3<br>5 |
|                  |              |            | terminated at 0.50m de |                |              |           |                                                                                                                                                                                                                                                                                                                       |                               |                  |
| Stabili          |              |            |                        | uuo io         | 2001001      |           |                                                                                                                                                                                                                                                                                                                       | AGS                           | 6                |

|                 |               |            |                         |                |             |             |                                                                                                                                                                                                                                                                                                                                                   | Trialpit No         | ,               |
|-----------------|---------------|------------|-------------------------|----------------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|
|                 | SP            |            |                         |                |             | Tr          | ial Pit Log                                                                                                                                                                                                                                                                                                                                       | TP2                 |                 |
|                 | sulting       |            |                         | Decise         | 4 1.1.2     |             |                                                                                                                                                                                                                                                                                                                                                   | Sheet 1 of          | 1               |
| Projec<br>Name: | t Chatbur     | n Road,    |                         | Projec<br>C209 |             |             | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                                              | Date<br>18/03/2015  |                 |
|                 |               |            |                         | 0200           | 0           |             | Dimensions                                                                                                                                                                                                                                                                                                                                        | Scale               |                 |
| Locati          | on: Clitheroe | 9          |                         |                |             |             | (m):                                                                                                                                                                                                                                                                                                                                              | 1:25                |                 |
| Client          | : Oakmer      | e Homes    | s Ltd                   |                |             |             | 2.00                                                                                                                                                                                                                                                                                                                                              | Logged<br>LEB       |                 |
| 50              | Sample        | es and Ir  | n Situ Testing          | Depth          | Level       |             |                                                                                                                                                                                                                                                                                                                                                   |                     |                 |
| Water<br>Strike | Depth         | Туре       | Results                 | (m)            | (m)         | Legend      | Stratum Description<br>Grass overlying blackish brown sandy clayey 1                                                                                                                                                                                                                                                                              | OPSOIL              |                 |
| Rema            | 0.80<br>1.60  | B          | ater was encountered du | 0.15<br>2.00   | drilling pr |             | Low plasticity.       Firm orange brown slightly gravelly sandy CLAY plasticity. Gravel is fine to coarse angular to su of sandstone and mudstone.         HSV - 24 kPa at 0.50m depth.        with medium sub angular to sub rounded boulder of sand 1.50m depth.         HSV - 32 kPa at 1.50m depth.         End of pit at 2.00 m <sup>-</sup> | . High<br>b rounded | 1<br>2<br>3<br> |
|                 |               | al pit was | terminated at 2.00m dep | oth and ba     | ackfilled v | vith arisin | gs.                                                                                                                                                                                                                                                                                                                                               | AGS                 | 5               |
| Stabili         | ity:          |            |                         |                |             |             |                                                                                                                                                                                                                                                                                                                                                   | hield               | 4               |

| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sp            |           |                                      |              |              | Tr     | ial Pit Log                                                                                                                                                                                                                                | Trialpit I     |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--------------------------------------|--------------|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|
| con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sulting       |           |                                      |              |              |        |                                                                                                                                                                                                                                            | Sheet 1        | of 1    |
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | n Road.   |                                      | Projec       |              |        | Co-ords: -                                                                                                                                                                                                                                 | Date           |         |
| Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | ,         |                                      | C209         | 9            |        | Level:                                                                                                                                                                                                                                     | 18/03/20       |         |
| Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on: Clitheroe | е         |                                      |              |              |        | Dimensions<br>(m):                                                                                                                                                                                                                         | Scale<br>1:25  |         |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oakmer        | e Homes L | td                                   |              |              |        | Depth                                                                                                                                                                                                                                      | Logge          | d       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           | itu Testing                          |              |              | 1      | 1.70                                                                                                                                                                                                                                       | LEB            |         |
| Water<br>Strike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 1 I       |                                      | Depth<br>(m) | Level<br>(m) | Legend | Stratum Description                                                                                                                                                                                                                        |                |         |
| Stringer 1 | 0.50<br>1.50  | B         | Results                              | (m)<br>0.15  | (m)          |        | Grass overlying blackish brown sandy clayey T<br>High plasticity.<br>Firm orangish brown sandy gravelly CLAY. Hig<br>plasticity. Gravel is fine to coarse angular to sub<br>of sandstone and mudstone.<br>HSV - 48 kPa at 0.60m depth.<br> | h<br>o rounded | 2-      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |           |                                      |              |              |        |                                                                                                                                                                                                                                            |                | 4       |
| Remar<br>Stabili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2. Tria       |           | ater seepage was<br>minated at 1.70m |              |              |        | l<br>tion process at 1.30m depth.<br>ıgs.                                                                                                                                                                                                  | AC             | J<br>iS |

| b               | 2                  |           |                          |                 |             |             |                                                                                                                                                                                                                                                                                                                                                                         | Trialpit         | No |
|-----------------|--------------------|-----------|--------------------------|-----------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
|                 | SP                 |           |                          |                 |             | Tri         | al Pit Log                                                                                                                                                                                                                                                                                                                                                              | TP4              |    |
|                 | sulting            |           |                          | During          |             |             |                                                                                                                                                                                                                                                                                                                                                                         | Sheet 1          |    |
| Projec<br>Name  | ct Chatbur         | n Road,   |                          | Projec<br>C2099 |             |             | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                                                                    | Date<br>18/03/20 |    |
|                 |                    |           |                          | 0203            | 5           |             | Dimensions                                                                                                                                                                                                                                                                                                                                                              | Scale            |    |
| Locati          | ion: Clitheroe     | •         |                          |                 |             |             | (m):                                                                                                                                                                                                                                                                                                                                                                    | 1:25             | 5  |
| Client          | : Oakmer           | e Home    | s Ltd                    |                 |             |             | Depth<br>1.90                                                                                                                                                                                                                                                                                                                                                           | Logge<br>LB      | d  |
| 50              | Sample             | es and li | n Situ Testing           | Depth           | Level       |             | 1                                                                                                                                                                                                                                                                                                                                                                       |                  |    |
| Water<br>Strike | Depth              | Туре      | Results                  | (m)             | (m)         | Legend      |                                                                                                                                                                                                                                                                                                                                                                         |                  |    |
| Rema            | 0.60<br>rks: 1. No | B         | ater was encountered dur | 0.15<br>1.90    | rilling pro |             | Grass overlying blackish brown sandy gravelly<br>TOPSOIL. High plasticity. Gravel is fine to mee<br>angular to sub angular of sandstone.<br>Firm orangish brown sandy gravelly CLAY. Hig<br>plasticity. Gravel is fine to coarse angular to sub<br>of sandstone and mudstone.<br><i>HSV - 38 kPa at 0.50m depth.</i><br>with a medium sub rounded boulder of sandstone. | lium<br>/        |    |
| 1               | 2. Tria            | l pit was | terminated at 2.00m dept | h and ba        | ckfilled w  | vith arisin | gs.                                                                                                                                                                                                                                                                                                                                                                     | AC               | 2  |
| Stabil          | ity:               |           |                          |                 |             |             |                                                                                                                                                                                                                                                                                                                                                                         |                  | .0 |

| 6               | 6 0          |              |                         |                 |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trialpit No             |
|-----------------|--------------|--------------|-------------------------|-----------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                 | SP           |              |                         |                 |             | Tri         | ial Pit Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TP5                     |
|                 | sulting      |              |                         | Draiaa          | 4 1 1 -     |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheet 1 of 1            |
| Projec<br>Name: | t Chatbur    | n Road,      |                         | Projec<br>C2099 |             |             | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date<br>18/03/2015      |
|                 |              |              |                         | 02000           | ,<br>,      |             | Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scale                   |
| Location        | on: Clithero | e            |                         |                 |             |             | (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1:25                    |
| Client          | : Oakmer     | e Homes      | s Ltd                   |                 |             |             | Depth<br>2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Logged<br>LB            |
| л ө             | Sample       | es and In    | Situ Testing            | Depth           | Level       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| Water<br>Strike | Depth        | Туре         | Results                 | (m)             | (m)         | Legend      | Stratum Description<br>Grass overlying blackish brown sandy gravelly                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|                 | 0.50         | в            |                         | 0.15            |             |             | TOPSOIL. High plasticity. Gravel is fine to mediangular to sub angular of sandstone.         Firm orange brown slightly gravelly very sandy High plasticity. Gravel is fine to coarse angular rounded of sandstone and mudstone.         HSV - 63 kPa at 0.50m.        with medium sub angular to sub rounded at 0.80m.         HSV - 46 kPa at 1.10m depth.        with medium angular to sub rounded sandstone.         Greyish brown clayey sandy GRAVEL. Gravel coarse angular to rounded of sandstone. | dium<br>CLAY.<br>to sub |
| Rema            | rks: 1. No   | groundwa     | ter was encountered dur | ing the e       | excavatio   | n process   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| Stabili         |              | al pit was t | erminated at 2.10m dept | h and ba        | ickfilled v | vith arisin | igs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGS                     |

|                 |               |           |                         |                      |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                      | Trialpit No              |
|-----------------|---------------|-----------|-------------------------|----------------------|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| n               | sρ            |           |                         |                      |             | Tr          | ial Pit Log                                                                                                                                                                                                                                                                                                                                                                                                          | TP6                      |
| con             | sulting       |           |                         |                      |             |             | -                                                                                                                                                                                                                                                                                                                                                                                                                    | Sheet 1 of 1             |
| Projec<br>Name  |               | n Road,   |                         | Projec<br>C209       |             |             | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                                                                                                                 | Date<br>18/03/2015       |
|                 |               |           |                         | 0209                 | 9           |             | Dimensions                                                                                                                                                                                                                                                                                                                                                                                                           | Scale                    |
| Locati          | on: Clitheroe | ;         |                         |                      |             |             | (m):                                                                                                                                                                                                                                                                                                                                                                                                                 | 1:25                     |
| Client          | : Oakmere     | e Home    | s Ltd                   |                      |             |             | Depth<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                        | Logged<br>LB             |
| 50              | Sample        | s and li  | n Situ Testing          | Depth                | Level       |             |                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| Water<br>Strike | Depth         | Туре      | Results                 | (m)                  | (m)         | Legend      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| •               | 0.50          | В         |                         | 0.10                 |             |             | Grass overlying blackish brown sandy gravelly<br>TOPSOIL. High plasticity. Gravel is fine to med<br>angular to sub angular of sandstone.<br>Firm orange brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>angular ofsandstone.<br>HSV - 56 kPa at 0.60m.<br>Firm greyish brown sandy gravelly CLAY. High p<br>Gravel is fine to coarse angular to sub rounded<br>sandstone. | cLAY.<br>clay.<br>to sub |
|                 | 2.20          | В         |                         | 2.10<br>2.30<br>2.50 |             |             | Stiff dark grey silty sandy gravelly CLAY. Low p<br>Gravel is fine to coarse angular to sub rounded<br>sandstone.<br>Dark grey sandy very clayey GRAVEL. Gravel is<br>coarse angular to sub rounded of sandstone.                                                                                                                                                                                                    | of                       |
|                 |               |           |                         |                      |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                      | 345                      |
| Rema            |               |           | ater was encountered du |                      |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| Stabil          |               | l pit was | terminated at 2.50m dep | th and ba            | ackfilled v | vith arisir | ngs                                                                                                                                                                                                                                                                                                                                                                                                                  | AGS                      |

| b               | <b>c b</b>     |         |                         |                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trialpit No                             |
|-----------------|----------------|---------|-------------------------|-----------------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| П               | SP             |         |                         |                 |       | Tr     | ial Pit Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TP7                                     |
| con             | sulting        |         |                         |                 |       |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sheet 1 of 1                            |
| Projec<br>Name  |                | n Road, |                         | Projec<br>C2099 |       |        | Co-ords: -<br>Level:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date<br>18/03/2015                      |
|                 |                |         |                         | 02098           | 9     |        | Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scale                                   |
| Locati          | ion: Clitheroe | 9       |                         |                 |       |        | (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:25                                    |
| Client          | t: Oakmer      | e Home  | s Ltd                   |                 |       |        | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Logged<br>LB                            |
| e e             | Sample         | s and l | n Situ Testing          | Depth           | Level |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| Water<br>Strike | Depth          | Туре    | Results                 | (m)             | (m)   | Legend |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|                 | 0.50           | В       |                         | 0.30            |       |        | Grass overlying blackish brown slightly graveling<br>sandy clayey TOPSOIL. High plasticity. Gravelic<br>coarse sub angular to sub rounded of sandstor<br>Firm light grey to orangish brown slightly grave<br>sandy CLAY. High plasticity. Gravel is fine to m<br>angular to sub angular of sandstone and mudst<br>HSV-32 kPa at 0.60m depth.<br>becoming softer and very garvelly from 0.70m depth.<br>becoming softer and very garvelly from 0.70m depth.<br>becoming softer and very garvelly from 0.70m depth. | is fine to<br>ne.<br>Illy very<br>edium |
|                 |                |         |                         |                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|                 |                |         |                         |                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-                                      |
| Rema<br>Stabil  | 2. Tria        |         | dwater seepage was enco |                 |       |        | ation process at 0.70m depth.<br>ckfilled with arisings.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGS                                     |

| h                 | S P           |            |                  |              |              | Tr     | ial Pit Log                                                                                                                                                                                                                                              | Trialpit I<br>TP8          | 3  |
|-------------------|---------------|------------|------------------|--------------|--------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|
| Project           |               |            |                  | Projec       | ct No.       |        | Co-ords: -                                                                                                                                                                                                                                               | Sheet 1 o                  |    |
| Name:             |               | n Road,    |                  | C209         | 9            |        | Level:                                                                                                                                                                                                                                                   | 18/03/20                   | 15 |
| Locatio           | on: Clitheroe | Э          |                  |              |              |        | Dimensions<br>(m):                                                                                                                                                                                                                                       | Scale                      |    |
|                   |               |            |                  |              |              |        | Depth                                                                                                                                                                                                                                                    | 1:25<br>Logge              |    |
| Client:           |               | e Homes Li |                  |              | 1            |        | 2.50                                                                                                                                                                                                                                                     | LB                         |    |
| Water<br>Strike   |               | 1 1        | itu Testing      | Depth<br>(m) | Level<br>(m) | Legend | d Stratum Description                                                                                                                                                                                                                                    |                            |    |
| ŏ≤                | Depth         | Туре       | Results          | 0.25         |              |        | Grass overlying blackish brown slightly gravely<br>sandy clayey TOPSOIL. High plasticity. Gravel<br>coarse sub angular to sub rounded of sandstor<br>Firm greyish brown slightly gravely very sandy<br>High plasticity. Gravel is fine to coarse angular | is fine to<br>ne.<br>CLAY. |    |
|                   | 0.50          | В          |                  |              |              |        | rounded of sandstone and mudstone.<br>HSV - 48 kPa at 0.50m depth.                                                                                                                                                                                       | 0.90m                      |    |
|                   |               |            |                  |              |              |        | depth.<br>HSV - 38 kPa at 1.30m depth.                                                                                                                                                                                                                   |                            | 1  |
|                   | 1.50          | В          |                  |              |              |        | becoming softer with increased depth.                                                                                                                                                                                                                    |                            |    |
|                   | 2.40          | В          |                  | 2.50         |              |        |                                                                                                                                                                                                                                                          |                            | 2  |
|                   |               |            |                  | 2.00         |              |        | End of pit at 2:50 m                                                                                                                                                                                                                                     |                            | 3_ |
|                   |               |            |                  |              |              |        |                                                                                                                                                                                                                                                          |                            |    |
|                   |               |            |                  |              |              |        |                                                                                                                                                                                                                                                          |                            | 4  |
|                   |               |            |                  |              |              |        |                                                                                                                                                                                                                                                          |                            |    |
|                   |               |            |                  |              |              |        |                                                                                                                                                                                                                                                          |                            |    |
| Remar<br>Stabilit | 2. Tria       |            | nter seepage was |              |              |        | ation process at 0.80m depth.<br>ngs.                                                                                                                                                                                                                    | AG                         | IS |

| h                 | S P          |              |                                      |        |       | Tri    | ial Pit Log                                                                                                                                                                                                                                                                                                                  | Trialpit I<br><b>TP9</b><br>Sheet 1 | )              |
|-------------------|--------------|--------------|--------------------------------------|--------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|
| Project           |              | n Road       |                                      | Projec | t No. |        | Co-ords: -                                                                                                                                                                                                                                                                                                                   | Date                                |                |
| Name:             | Chatbur      | n Road,      |                                      | C209   | 9     |        | Level:                                                                                                                                                                                                                                                                                                                       | 18/03/20                            |                |
| Locatio           | n: Clitheroe | Э            |                                      |        |       |        | Dimensions<br>(m):                                                                                                                                                                                                                                                                                                           | Scale<br>1:25                       |                |
| Client:           | Oakmer       | e Homes Li   | td                                   |        |       |        | Depth<br>2.50                                                                                                                                                                                                                                                                                                                | Logge<br>LB                         | d              |
| гə                | Sample       | es and In Si | itu Testing                          | Depth  | Level |        |                                                                                                                                                                                                                                                                                                                              | LD                                  |                |
| Water<br>Strike   | Depth        | Туре         | Results                              | (m)    | (m)   | Legenc |                                                                                                                                                                                                                                                                                                                              |                                     |                |
| T                 | 0.60         | В            |                                      | 0.20   |       |        | Grass overlying blackish brown slightly gravell<br>sandy clayey TOPSOIL. High plasticity. Grave<br>medium angular to sub angular of sandstone.<br>Firm greyish brown slightly gravelly very sandy<br>High plasticity. Gravel is fine to coarse angular<br>angular of sandstone and mudstone.<br>HSV - 61 kPa at 0.40m depth. | is fine to                          |                |
|                   | 1.50         | В            |                                      | 1.20   |       |        | becoming less gravelly at 1.00m depth.     Firm dark grey slightly sandy gravelly CLAY. L     plasticity. Gravel is fine to coarse angular to su     of sandstone.     HSV - 28 kPa at 1.40m depth.    with a low sub rounded boulder content of sandstone at 1     depth.                                                   | ıb angular                          |                |
|                   | 2.20         | В            |                                      | 2.50   |       |        |                                                                                                                                                                                                                                                                                                                              |                                     | 2              |
|                   |              |              |                                      |        |       |        | 'End ofpit af 2.50'm                                                                                                                                                                                                                                                                                                         |                                     | 3-<br>4-<br>5- |
| Remar<br>Stabilit | 2. Tria      |              | iter seepage was<br>ninated at 2.50m |        |       |        | ution process at 1.00m depth.<br>Igs.                                                                                                                                                                                                                                                                                        | AG                                  | u<br>iS        |

| h                 | S P           |              |                 |              |              | Tri    |                                                                                                                                                                  | oit No<br><b>10</b><br>1 of 1 |
|-------------------|---------------|--------------|-----------------|--------------|--------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Project           | Chatbur       | n Road.      |                 | Projec       | t No.        |        |                                                                                                                                                                  | ate                           |
| Name:             |               | ,            |                 | C209         | 9            |        | Level: 18/03                                                                                                                                                     |                               |
| Locatio           | on: Clitheroe | Э            |                 |              |              |        |                                                                                                                                                                  | ale<br>:25                    |
| Client:           | Oakmer        | e Homes Lt   | td              |              |              |        | Depth Log                                                                                                                                                        | ged                           |
|                   |               | es and In Si |                 |              |              |        | 2.60 L                                                                                                                                                           | В                             |
| Water<br>Strike   | Depth         | Туре         | Results         | Depth<br>(m) | Level<br>(m) | Legend |                                                                                                                                                                  |                               |
|                   |               |              |                 | 0.25         |              |        | Grass overlying blackish brown slightly gravelly very<br>sandy clayey TOPSOIL. High plasticity. Gravel is fine to<br>medium angular to sub angular of sandstone. |                               |
|                   |               |              |                 | 0.25         |              |        | Firm orangish brown slightly gravelly very sandy CLAY.<br>High plasticity. Gravel is fine to coarse angular to sub<br>rounded of sandstone.                      |                               |
|                   | 0.60          | В            |                 |              |              |        | HSV - 52 kPa at 0.50m depth.                                                                                                                                     | -                             |
|                   |               |              |                 |              |              |        | with medium angular to sub rounded content of sandstone at 0.80m depth.                                                                                          |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | 1-                            |
|                   |               |              |                 |              |              |        | with low angular to sub rounded content of sandstone at 1.20m depth.                                                                                             | -                             |
|                   | 1.50          | в            |                 |              |              |        | HSV - 40 kPa at 1.40m depth.                                                                                                                                     | -                             |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | -                             |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | 2-                            |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  |                               |
|                   | 2.40          | В            |                 |              |              |        |                                                                                                                                                                  |                               |
|                   |               |              |                 | 2.60         |              |        | a<br>TEnd of pit at 2:60 m                                                                                                                                       |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | 3-                            |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | -                             |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | 4-                            |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | -                             |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  |                               |
|                   |               |              |                 |              |              |        |                                                                                                                                                                  | 5-                            |
| Remar<br>Stabilit | 2. Tria       |              | was encountered |              |              |        |                                                                                                                                                                  | GS                            |

|        |         | -             |         |                     |              |             |              |                                                                             | Borehole N      | ۱o.  |
|--------|---------|---------------|---------|---------------------|--------------|-------------|--------------|-----------------------------------------------------------------------------|-----------------|------|
| n      | S       | р             |         |                     |              | Bo          | reho         | ole Log                                                                     | WS1             |      |
| con    | sult    | ing           |         |                     |              |             |              | 6                                                                           | Sheet 1 of      |      |
| Projec | ct Name | : Chatburn    | Road,   |                     | Project No.  |             | Co-ords      | : -                                                                         | Hole Type       | е    |
|        |         |               |         |                     | C2099        |             |              |                                                                             | WS<br>Scale     |      |
| Locat  | ion:    | Clitheroe     |         |                     |              |             | Level:       |                                                                             | 1:50            |      |
| Client | :       | Oakmere       | Home    | s Ltd               |              |             | Dates:       | 17/04/2015 - 17/04/2015                                                     | Logged B<br>LEB | Зу   |
|        | Water   | Sample        | s and   | In Situ Testing     | Depth        | Level       |              |                                                                             |                 | Τ    |
| Well   | Strikes |               | Туре    | 1                   | (m)          | (m)         | Legend       | StratumDescription                                                          |                 |      |
| X      |         | 0.15          | D       |                     | 0.15         |             |              | MADE GROUND - blackish brown<br>clayey TOPSOIL. Low plasticity.             | very sandy      |      |
| SSS)   |         | 0.50          |         |                     |              |             |              | Firm orangish brown slightly gravelly                                       | very sandy      |      |
| Si Si  |         | 0.50          | D       |                     |              |             |              | CLAY. High plasticity. Gravel is fine<br>subangular to angular of sandstone | to coarse       | -    |
| SASS.  |         |               |         |                     |              |             |              | HSV - 46 kPa at 0.70m depth.                                                |                 |      |
| HA H   |         | 1.00          |         | N=12 (0,0/1,2,3,6   | 5)           |             |              |                                                                             |                 | 1 -  |
| YS     |         |               |         |                     |              |             |              |                                                                             |                 |      |
| H      |         | 1.50<br>1.75  | D<br>ES |                     | 1.75         |             |              |                                                                             |                 | -    |
|        |         | 1.75          | E3      |                     | 1.80         |             |              | Grey SANDSTONE. Recovered as                                                | a coarse        | -    |
|        |         |               |         |                     |              |             |              | End of borehole at 1.80 m                                                   |                 | 2 –  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | -    |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | 3 -  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | 4 _  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | 5 -  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | -    |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | 6 -  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | -    |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | 7 _  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | -    |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | 8 -  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 | 9 _  |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
|        |         |               |         |                     |              |             |              |                                                                             |                 |      |
| Rema   | rke     |               |         |                     |              |             |              |                                                                             |                 | 10 - |
|        |         | vater was enc | ounter  | ed during the drill | ing process. |             |              |                                                                             |                 |      |
|        |         |               |         | 0m depth due to r   |              | ackfilled w | ith arisings | 5.                                                                          | AGS             | S    |

| n s                  | р                                  |       |                                   |           | Во    | reho     | ole Log                                                                        | Borehole N<br>WS2       |   |
|----------------------|------------------------------------|-------|-----------------------------------|-----------|-------|----------|--------------------------------------------------------------------------------|-------------------------|---|
| onsul                |                                    |       | Pr                                | oject No. |       |          |                                                                                | Sheet 1 of<br>Hole Type |   |
| roject Nan           | ne: Chatburn                       | Road, |                                   | 2099      |       | Co-ords: | -                                                                              | WS                      |   |
| ocation:             | Clitheroe                          |       |                                   |           |       | Level:   |                                                                                | Scale<br>1:50           |   |
| Client:              | Oakmere                            | Home  | s Ltd                             |           |       | Dates:   | 17/04/2015 - 17/04/2015                                                        | Logged By               | y |
| Wato                 | Sample                             | s and | In Situ Testing                   | Depth     | Level |          |                                                                                |                         |   |
| Vell Water<br>Strike | Depth (m)                          | Туре  | Results                           | (m)       | (m)   | Legend   | StratumDescription                                                             |                         |   |
|                      | 0.10                               | D     |                                   | 0.20      |       |          | Grass overlying blackish brown ver<br>clayey TOPSOIL. Low plasticity.          |                         |   |
|                      | 0.50                               | D     |                                   |           |       |          | Firm orangish brown slightly gravelly<br>CLAY. High plasticity. Gravel is fine | very sandy (            |   |
|                      |                                    |       |                                   |           |       |          | angular to angular of sandstone.<br>HSV - 42 kPa at 0.80m depth.               |                         |   |
|                      | 1.00                               |       | N=10(1,1/2,2,3,3)                 |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      | 1.50                               | D     |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          | HSV - 62 kPa at 1.80m depth                                                    |                         |   |
|                      | 2.00                               |       | N=16(2,3/4,4,4,4)                 | 2.10      |       |          | Firm greyish brown sandy gravelly                                              | CLAY. High              |   |
|                      | 2.50                               | D     |                                   |           |       |          | plasticity. Gravel is fine to coarse su<br>angular of sandstone and mudstone   | ub rounded to<br>e.     |   |
|                      | 2.50                               |       | 50 (25 for 105mm/50<br>for 255mm) |           |       |          | HSV - 52 kPa at 2.40m depth.                                                   |                         |   |
|                      |                                    |       | 10125511111)                      | 2.80      |       |          | End of borehole at 2.80 m                                                      |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
|                      |                                    |       |                                   |           |       |          |                                                                                |                         |   |
| morko                |                                    |       |                                   |           |       |          |                                                                                |                         |   |
| groundwater was en   | countered during the drilling proc | ess.  |                                   |           |       |          |                                                                                |                         | Ì |
| rehole was terminate | at 2.50m depth due to refusal.     |       |                                   |           |       |          |                                                                                | AGS                     | 3 |
| and water monitorin  | g standpipe installed to 2.50m de  | epth. |                                   |           |       |          |                                                                                |                         | 4 |

|          | C                | 5                 |          |                     |                      |              |             |                                                                        | Borehole N                    | ۱o.      |
|----------|------------------|-------------------|----------|---------------------|----------------------|--------------|-------------|------------------------------------------------------------------------|-------------------------------|----------|
|          | S                | ρ                 |          |                     |                      | Bo           | reho        | ole Log                                                                | WS3                           |          |
|          | ISUIT<br>ct Name | ing<br>: Chatburn | Road,    |                     | Project No.<br>C2099 |              | Co-ords:    | -                                                                      | Sheet 1 of<br>Hole Type<br>WS |          |
| Locat    | ion <sup>.</sup> | Clitheroe         |          |                     |                      |              | Level:      |                                                                        | Scale                         |          |
| Loout    |                  | Ontheree          |          |                     |                      |              | 20101.      |                                                                        | 1:50                          | <u>.</u> |
| Client   | :                | Oakmere           | Home     | s Ltd               |                      |              | Dates:      | 17/04/2015 - 17/04/2015                                                | Logged B<br>LEB               | .y       |
| Well     | Water<br>Strikes | -                 | 1        | In Situ Testing     | Depth<br>(m)         | Level<br>(m) | Legend      | StratumDescription                                                     |                               |          |
| tiv hote | Stilkes          | Dopti (iii)       | Туре     | Results             |                      | (11)         |             | Grass overlying blackish brown ver                                     | y sandy clay                  | -        |
|          |                  | 0.20              | D        |                     | 0.20                 |              |             | TOPSOIL. Lowplasticity.<br>Firm light grey and oranish brown sa        | andv gravelly                 | 1 3      |
|          |                  | 0.50<br>0.60      | D        |                     |                      |              |             | CLAY. High plasticity. Gravel is fine angular to rounded of sandstone. | to coarse                     | -        |
|          |                  |                   |          |                     |                      |              |             | HSV - 44 kPa at 0.50m depth.                                           |                               |          |
|          |                  | 1.00              |          | N=9 (1,2/1,2,3,3    | )                    |              |             | becoming soft from 1.10m depth.                                        |                               | 1-       |
|          |                  | 1.50              | D        |                     |                      |              |             |                                                                        |                               |          |
|          |                  | 1.50              |          | 50 (25 for 145mm    | /50                  |              |             | with a cobble of sandstone.                                            |                               | -        |
|          |                  |                   |          | for 295mm)          | 1.80                 |              |             | End of borehole at 1.80 m                                              |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 2 -      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 3 -      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 4 -      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 5 -      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 6 -      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 7 –      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 8 -      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | 9 -      |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               | -        |
|          |                  |                   |          |                     |                      |              |             |                                                                        |                               |          |
| Rema     | rks              |                   |          |                     |                      |              |             |                                                                        |                               | 10 -     |
|          |                  | vater was enc     | ounter   | ed during the drill | ing process.         |              |             |                                                                        |                               |          |
| 2. Bor   | ehole w          | as terminated     | l at 1.8 | Om depth due to r   | efusal and b         | ackfilled wi | th arisings | ð.                                                                     | AGS                           | S        |

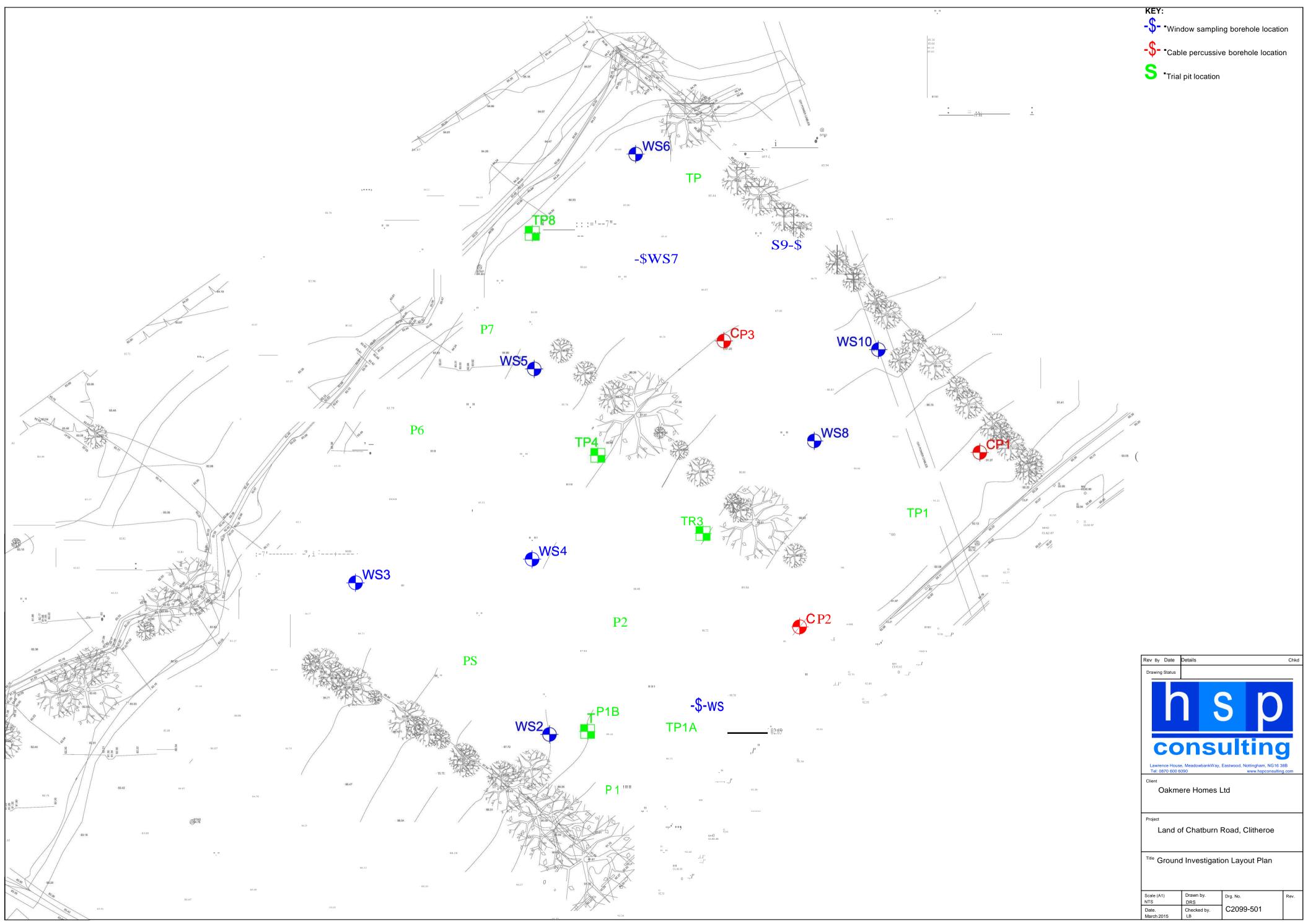
|          | C                | 5          |       |                                              |                 |              |             |                                                                                | Borehole No.      |
|----------|------------------|------------|-------|----------------------------------------------|-----------------|--------------|-------------|--------------------------------------------------------------------------------|-------------------|
|          | 2                | ρ          |       |                                              |                 | Bo           | reho        | ole Log                                                                        | WS3A              |
| con      | sult             | ing        |       |                                              | <b></b>         |              |             |                                                                                | Sheet 1 of 1      |
| Projec   | t Name           | : Chatburn | Road, |                                              | Project No.     |              | Co-ords:    | -                                                                              | Hole Type         |
| <u> </u> |                  | 0          |       |                                              | C2099           |              | <br>        |                                                                                | WS<br>Scale       |
| Locat    | ion:             | Clitheroe  |       |                                              |                 |              | Level:      |                                                                                | 1:50              |
| Client   | :                | Oakmere    |       |                                              |                 |              | Dates:      | 17/04/2015 - 17/04/2015                                                        | Logged By<br>LEB  |
| Well     | Water<br>Strikes |            | r     | In Situ Testing                              | Depth           | Level        | Legend      | StratumDescription                                                             |                   |
| SURSU    | Strikes          | Depth (m)  | Туре  | Results                                      | (m)             | (m)          |             | Grass overlying blackish brown sar                                             | ndv clavev        |
|          |                  | 0.10       | D     |                                              | 0.15            |              |             | TOPSOIL. High plasticity.<br>Firm light grey and oragnish brown                | slightly          |
| H        |                  | 0.50       | D     |                                              |                 |              |             | gravelly sandy CLAY. High plasticit<br>to medium sub rounded to angular        | y. Gravel is fine |
|          |                  | 1.00       |       | N=16 (1,1/3,4,5,4                            | )               |              |             | and mudstone.                                                                  | 1 -               |
|          |                  | 1.40       | D     |                                              |                 |              |             |                                                                                |                   |
| H)       |                  | 1.60       |       | 50 (25 for 135mm/<br>for 235mm)              | 50 1.60<br>1.70 |              |             | with a cobble of sandstone at 1.50m depth.<br>Extremely weak grey medium grain | ed                |
|          |                  |            |       |                                              |                 |              |             | SANDSTONE recovered as angula                                                  | r coarse          |
|          |                  |            |       |                                              |                 |              |             | End of borehole at 1.70 m                                                      |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 3 -               |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 5                 |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 4 -               |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 5 -               |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 6 -               |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 7 -               |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 8 -               |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 8-                |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 9 -               |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                |                   |
|          |                  |            |       |                                              |                 |              |             |                                                                                | 10 -              |
|          | groundv          |            |       | red during the drilli<br>'Om depth due to re |                 | ackfilled wi | th arisings | <br>5.                                                                         | AGS               |

|        | C                | 5                    |               |                                               |              |              |              |                                                                                                                           | Borehole No.              | - |
|--------|------------------|----------------------|---------------|-----------------------------------------------|--------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|---|
|        | 5                |                      |               |                                               |              | Bo           | reho         | ole Log                                                                                                                   | WS4                       |   |
|        | ISUIt            | 0                    |               |                                               | Project No.  |              |              |                                                                                                                           | Sheet 1 of 1<br>Hole Type |   |
| Proje  | ct Name          | : Chatburn           | Road,         |                                               | C2099        |              | Co-ords:     | -                                                                                                                         | WS                        |   |
| Locat  | tion:            | Clitheroe            |               |                                               |              |              | Level:       |                                                                                                                           | Scale                     |   |
| LUCA   | lion.            | Cillineide           |               |                                               |              |              | Level.       |                                                                                                                           | 1:50                      |   |
| Client | :                | Oakmere              |               |                                               |              | 1            | Dates:       | 17/04/2015 - 17/04/2015                                                                                                   | Logged By<br>LEB          |   |
| Well   | Water<br>Strikes | Sample:<br>Depth (m) | s and<br>Type | In Situ Testing<br>Results                    | Depth<br>(m) | Level<br>(m) | Legend       | StratumDescription                                                                                                        |                           |   |
|        |                  | 0.10                 | D             |                                               | 0.20         |              |              | Grass overlying blackish brown slig<br>sandy clay TOSPOIL. High plasticit                                                 | y. Gravel is              |   |
|        |                  | 0.50                 | D             |                                               |              |              |              | fine to medium angular to sub angu<br>sandstone<br>Firm orangish brown slightly gravelly                                  | /                         | - |
|        |                  | 1.00                 |               | N=5(1,1/1,2,1,1)                              |              |              |              | CLAY. High plasticity. Gravel is fine<br>angular to sub angular of sandstone<br>mudstone.<br>HSV - 44 kPa at 0.80m depth. | e to medium               | - |
|        |                  | 1.50                 | D             |                                               |              |              |              | risv - 44 kra at 0.ouin deptin.                                                                                           |                           |   |
|        |                  | 2.00                 |               | N=31 (4,6/5,7,8,11)                           | 2.30         |              |              | Stiff dark grey silty sandy gravelly C                                                                                    | 2                         |   |
|        |                  | 2.50<br>2.70         | D             | 35 (25 for 115mm/3<br>for 245mm)              | 2.70         |              |              | plasticity. Gravel is fine to coarse a<br>rounded of sandstone and mudstor<br>HSV - 102 kPa at 2.40m depth.               | ngular to sub             |   |
|        |                  |                      |               |                                               |              |              |              | End of borehole at 2.70 m                                                                                                 | 3                         |   |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           | 4                         | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           |                           |   |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           | 5 .                       | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           |                           | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           | 6                         |   |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           |                           | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           | 7.                        | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           |                           | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           | 8                         | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           |                           | - |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           | 9.                        |   |
|        |                  |                      |               |                                               |              |              |              |                                                                                                                           | 10 .                      |   |
| Rema   | arks             |                      |               |                                               |              |              |              |                                                                                                                           | 10.                       | _ |
| 1. No  | groundv          |                      |               | red during the drillir<br>'Om depth due to re |              |              | ith arisings |                                                                                                                           | AGS                       |   |

| h      | S                | р          |           |                                           |                      | Bo           | reho     | ole Log                                                                    | Borehole N<br>WS5        |        |
|--------|------------------|------------|-----------|-------------------------------------------|----------------------|--------------|----------|----------------------------------------------------------------------------|--------------------------|--------|
| con    | sult             | ing        |           |                                           |                      |              |          |                                                                            | Sheet 1 of               |        |
| Projec | ct Name          | : Chatburn | Road,     |                                           | Project No.<br>C2099 |              | Co-ords: | -                                                                          | Hole Type<br>WS          |        |
| Locat  | ion:             | Clitheroe  |           |                                           | 02000                |              | Level:   |                                                                            | Scale                    |        |
| Local  | 1011.            | Ontricide  |           |                                           |                      |              |          |                                                                            | 1:50<br>Logged B         |        |
| Client | :                | Oakmere    |           |                                           |                      |              | Dates:   | 17/04/2015 - 17/04/2015                                                    | Logged B<br>LB           | у<br>Т |
| Well   | Water<br>Strikes |            | 1         | In Situ Testing<br>Results                | Depth<br>(m)         | Level<br>(m) | Legend   | StratumDescription                                                         | I                        |        |
| XXXX   |                  | Depth (m)  | Type<br>D | Results                                   |                      | ()           |          | Grass overlying brown slightly sand                                        | ly gravelly              |        |
|        |                  | 0.10       |           |                                           | 0.20                 |              |          | very clayey TOPSOIL. High plastici fine to medium angular to sub angu      | ty. Gravel is<br>Ilar of |        |
| S S    |                  | 0.50       | D         |                                           |                      |              |          | sandstone.<br>Firm yellowish brown and grey slight                         | tly gravelly             | -      |
| H)     | _                | 1.00       |           | N=5(3,2/2,1,1,1)                          |                      |              |          | very sandy CLAY. High plasticity. Gr<br>coarse angular to sub rounded ofsa | avel is fine to          | 1 _    |
| Ŵ      |                  | 1.00       |           | 11-0 (0,2/2, 1, 1, 1)                     |                      |              |          | mudstone.<br>HSV - 19 kPa at 0.90m depth.                                  |                          |        |
|        |                  | 1.50       | D         |                                           |                      |              |          | becoming soft from 1.20m depth.                                            |                          |        |
| UNU)   |                  |            |           |                                           | 1.70                 |              |          | End of borehole at 1.70 m                                                  |                          |        |
|        |                  | 2.00       |           | 50 (25 for 135mm/s                        | 50                   |              |          |                                                                            |                          | 2 -    |
|        |                  |            |           | for 275mm)                                |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | -      |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 3 -    |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 3 -    |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 4      |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | -      |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 5 -    |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 6 -    |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | -      |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 7 –    |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 8 -    |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | -      |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 9 _    |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          |        |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | -      |
|        |                  |            |           |                                           |                      |              |          |                                                                            |                          | 10 -   |
| Rema   | irks             |            |           |                                           |                      |              |          |                                                                            |                          |        |
| 1. Gro | oundwate         |            |           | during the drilling<br>Om depth due to re |                      |              |          |                                                                            | AGS                      | 5      |

|        | S<br>sult | p         |         |                               |                    | Bo    | reho     | ole Log                                                                                                       | Borehole N                             | ,  |
|--------|-----------|-----------|---------|-------------------------------|--------------------|-------|----------|---------------------------------------------------------------------------------------------------------------|----------------------------------------|----|
|        | t Name:   |           | Road,   |                               | roject No.<br>2099 |       | Co-ords: | -                                                                                                             | Sheet 1 of<br>Hole Type<br>WS<br>Scale |    |
| ocatio | on:       | Clitheroe |         |                               |                    |       | Level:   |                                                                                                               | 1:50                                   |    |
| lient: |           | Oakmere I | Homes   | s Ltd                         |                    |       | Dates:   | 17/04/2015 - 17/04/2015                                                                                       | Logged B<br>LB                         | 3y |
|        | Water     | Samples   | s and l | In Situ Testing               | Depth              | Level | Legend   | StratumDescription                                                                                            |                                        | Τ  |
| Vell   | Strikes   | Depth (m) | Туре    | Results                       | (m)                | (m)   | Legenu   |                                                                                                               |                                        |    |
|        |           | 0.10      | D       |                               | 0.15               |       |          | Grass overlying blackish brown slig<br>sandy clayey TOPSOIL. High plast<br>fine to medium sub angular of sand | icity. Gravel is                       |    |
|        |           | 0.50      | D       |                               |                    |       |          | mudstone.<br>Soft light grey to orangish brown sli                                                            |                                        | /  |
|        |           | 1.00      |         | N=14(1,2/2,3,4,5)             |                    |       |          | very sandy CLAY. High plasticity. C<br>coarse angular to sub angular ofsa<br>mudstone.                        | Gravel is fine to                      |    |
|        |           |           |         |                               | 1.20               |       |          | HSV - 32 kPa at 0.60m depth.<br>Dark grey gravelly clayey SAND. S                                             | and is fine to                         | 1  |
|        |           | 1.50      | D       |                               |                    |       |          | coarse. Gravel is fine to coarse angular of sandstone and mudston                                             | gular to sub                           |    |
|        |           | 1.90      |         | 50 (25 for<br>85mm/24,12,14,) | 1.90               |       |          | End of borehole at 1.90 m                                                                                     |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |
|        |           |           |         |                               |                    |       |          |                                                                                                               |                                        |    |

| n s                  | р              |          |                       |             | Во          | reho          | ole Log                                                                     | Borehole N             |    |
|----------------------|----------------|----------|-----------------------|-------------|-------------|---------------|-----------------------------------------------------------------------------|------------------------|----|
| onsul<br>oject Nam   |                | Road     | P                     | roject No.  |             | Co-ords:      |                                                                             | Sheet 1 of<br>Hole Typ |    |
|                      | c. Onatburn    | ittoau,  | C                     | 2099        |             | 00 0103.      |                                                                             | WS<br>Scale            |    |
| cation:              | Clitheroe      |          |                       |             |             | Level:        |                                                                             | 1:50                   |    |
| ent:                 | Oakmere        | Homes    | s Ltd                 |             |             | Dates:        | 17/04/2015 - 17/04/2015                                                     | Logged B<br>LB         | iy |
| ell Water<br>Strikes |                |          | In Situ Testing       | Depth       | Level       | Legend        | StratumDescription                                                          | 1                      |    |
| Strikes              | B Depth (m)    | Туре     | Results               | (m)         | (m)         | NANAN         | Grass overlying blackish brown slig                                         |                        |    |
|                      | 0.10           | D        |                       | 0.25        |             |               | sandy clayey TOPSOIL. High plast<br>fine to medium sub angular of sand      | icity. Gravel is       |    |
|                      | 0.50           | D        |                       |             |             |               | mudstone.<br>Firm light brown and orangish brown                            |                        | 1  |
|                      | 1.00           |          | N=10 (3,3/4,2,2,2)    |             |             |               | gravelly CLAY. High plasticity. Grave<br>medium angular to sub rounded of   | el is fine to          |    |
| 8                    | 1.00           |          | N=10 (3,3/4,2,2,2)    |             |             |               | and mudstone.<br>HSV - 42 kPa at 0.70m depth.                               | Sanusione              |    |
| ×                    | 1.50           | D        |                       | 1.50        |             |               | Soft reddish brown slightly gravelly                                        | very sandy             |    |
|                      |                |          |                       |             |             |               | CLAY. High plasticity. Gravel is fine<br>angular to sub angular of sandston | e to coarse            |    |
| 8                    | 2.00           |          | N=7 (2,2/1,2,1,3)     |             |             |               | mudstone.<br>HSV - 24 kPa at 1.60m depth.                                   | eanu                   |    |
| 8                    |                |          |                       |             |             |               |                                                                             |                        |    |
| ×.                   | 2.70           |          | N=50 (11,12/50 for    | 2.70        |             |               | End of borehole at 2.70 m                                                   |                        |    |
|                      |                |          | 285mm)                |             |             |               | End of borehole at 2.70 m                                                   |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
|                      |                |          |                       |             |             |               |                                                                             |                        |    |
| marks                |                |          |                       |             |             |               |                                                                             |                        |    |
| Groundwa             | iter was encou | ntered   | during the drilling p | rocess at 1 | .40m dept   | h.            |                                                                             |                        |    |
| Borehole v           | was terminated | d at 2.7 | 0m depth due to ref   | usal and ba | ackfilled w | ith arisings. |                                                                             | AGS                    | 5  |


|                            |                  | 0           |       |                             |                      |              |              |                                                                                                              | Borehole N      | ۱o.  |
|----------------------------|------------------|-------------|-------|-----------------------------|----------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------|-----------------|------|
| n                          | 5                | ρ           |       |                             |                      | Bo           | reho         | ole Log                                                                                                      | WS8             |      |
| cor                        | ISUIT            | ing         |       |                             | Draiget No           |              | 1            | •                                                                                                            | Sheet 1 of      |      |
| Proje                      | ct Name          | : Chatburn  | Road, |                             | Project No.<br>C2099 |              | Co-ords:     | -                                                                                                            | Hole Type<br>WS | e    |
|                            |                  | 01111-0-0-0 |       |                             | 02000                |              | 1            |                                                                                                              | Scale           |      |
| Locat                      | lion:            | Clitheroe   |       |                             |                      |              | Level:       |                                                                                                              | 1:50            |      |
| Client                     | t:               | Oakmere     |       |                             |                      |              | Dates:       | 17/04/2015 - 17/04/2015                                                                                      | Logged B<br>LB  | iy   |
| Well                       | Water<br>Strikes |             |       | In Situ Testing             | Depth<br>(m)         | Level<br>(m) | Legend       | StratumDescription                                                                                           | I               |      |
| 1994 - 1994<br>1997 - 1997 | Otines           | Depth (m)   | Туре  | Results                     | 0.20                 |              |              | Grass overlying brown sandy grave<br>TOPSOIL. High plasticity. Gravel is<br>medium angular to sub rounded of | s fine to       | /    |
|                            | •                | 0.50        | D     |                             |                      |              |              | And mudstone.<br>Firm orangish brown slightly gravell<br>CLAY. High plasticity. Gravel is fine to            | o coarse        | -    |
|                            | 0<br>0<br>0<br>0 | 1.00        |       | N=5 (1,1/1,1,1,2)           | )                    |              |              | angular to sub rounded of sandstor<br>HSV - 68 kPa at 0.70m depth.                                           | ie.             | 1 -  |
|                            |                  | 1.80        |       | N=50 (11,14/50 fc<br>285mm) | or 1.80              |              |              | ======================================                                                                       |                 | 2 -  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 2 -  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 3 –  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 |      |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 4 -  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 |      |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 5 -  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 5 -  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 6 -  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 0 -  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | -    |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 7 –  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 |      |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 8 –  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | -    |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 9 –  |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | -    |
|                            |                  |             |       |                             |                      |              |              |                                                                                                              |                 | 10 - |
|                            | groundv          |             |       | ed during the drill         |                      |              | ith arisings | - <u></u>                                                                                                    | AGS             | S    |

| n<br>ons | S<br>sulti       |            |       |                                              |                      | Bo                         | reho     | ole Log                                                                                                                                                             | Borehole N<br>WS9<br>Sheet 1 of         | )  |
|----------|------------------|------------|-------|----------------------------------------------|----------------------|----------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----|
|          |                  | Chatburn I | Road, |                                              | Project No.<br>22099 |                            | Co-ords: | -                                                                                                                                                                   | Hole Typ<br>WS                          |    |
| ocatio   | on:              | Clitheroe  |       |                                              | 52099                |                            | Level:   |                                                                                                                                                                     | Scale                                   |    |
| lient:   |                  | Oakmere I  | lomoo | 1 4 4                                        |                      |                            |          | 17/04/2015 17/04/2015                                                                                                                                               | 1:50<br>Logged B                        | Зу |
| nent.    |                  |            |       | n Situ Testing                               |                      |                            | Dates:   | 17/04/2015 - 17/04/2015                                                                                                                                             | LB                                      | Т  |
| Vell     | Vater<br>Strikes | Depth (m)  | Туре  | Results                                      | Depth<br>(m)         | Level<br>(m)               | Legend   | StratumDescription                                                                                                                                                  |                                         |    |
|          |                  | 0.50       | D     |                                              | 0.30                 |                            |          | Grass overlying brown sandy grave<br>TOPSOIL. High plasticity. Gravel is<br>medium angular to sub angular of s<br>mudstone.<br>Firm orangish brown slightly gravell | fine to<br>andstone and<br>v very sandy |    |
|          |                  | 1.00       | D     | N=8(2,2/2,2,2,2)                             | 1.20                 |                            |          | CLAY. High plasticity. Gravel is fine t<br>angular to sub rounded of sandston<br>mudstone.<br>HSV - 42 kPa at 0.80m depth.<br>Firm greenish brown silty sandy gra   | e and                                   |    |
|          |                  | 1.50       |       |                                              |                      |                            |          | High plasticity. Gravel is fine to coa<br>sub angular of sandstone.<br>HSV - 79 kPa at 1.50m depth.                                                                 | rse angular to                          |    |
|          |                  | 2.00       |       | N=50 (4,6/50 for<br>255mm)                   | 2.00                 |                            |          | End of Borehole at 2.00 m                                                                                                                                           |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
|          |                  |            |       |                                              |                      |                            |          |                                                                                                                                                                     |                                         |    |
| mark     |                  |            |       | al alcodar a the 1 MM                        |                      |                            |          |                                                                                                                                                                     |                                         | Ľ  |
|          |                  |            |       | ed during the drillin<br>n depth due to refu |                      | -   - <b>(</b>     ) ' · · |          |                                                                                                                                                                     | AGS                                     | 3  |

|        | 6                | 5          |       |                                             |                      |              |             |                                                                                                                                                                                                                                                   | Borehole N                                               | No. |
|--------|------------------|------------|-------|---------------------------------------------|----------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----|
|        | 5                | ρ          |       |                                             |                      | Bo           | reho        | ole Log                                                                                                                                                                                                                                           | WS10                                                     | )   |
| con    | sult             | ing        |       |                                             |                      |              |             |                                                                                                                                                                                                                                                   | Sheet 1 of                                               |     |
| Projec | ct Name          | : Chatburn | Road, |                                             | Project No.<br>C2099 |              | Co-ords:    | -                                                                                                                                                                                                                                                 | Hole Typ<br>WS                                           | e   |
|        | ioni             | Clitheroe  |       |                                             | 02099                |              | Lovel       |                                                                                                                                                                                                                                                   | Scale                                                    |     |
| Locat  | 1011.            | Cillneroe  |       |                                             |                      |              | Level:      |                                                                                                                                                                                                                                                   | 1:50                                                     |     |
| Client | :                | Oakmere    | Home  | s Ltd                                       |                      |              | Dates:      | -                                                                                                                                                                                                                                                 | Logged B                                                 | у   |
| Well   | Water<br>Strikes | Sample     | s and | In Situ Testing                             | Depth                | Level        | Legend      | StratumDescription                                                                                                                                                                                                                                | <u> </u>                                                 |     |
| vven   | Strikes          | Depth (m)  | Туре  | Results                                     | (m)                  | (m)          | Legena      |                                                                                                                                                                                                                                                   |                                                          |     |
| Rema   |                  | 0.50       | D     | 50 (4 for 0mm/50 fo<br>0mm)                 |                      |              |             | Turf over dark brown sandy gravell<br>plasticity (field description). Gravel<br>andmudstone.<br>Firm orangish brown slightly gravell<br>CLAY. High plasticity (field descripti<br>is sub-rounded to angular fine to co<br>sandstone and mudstone. | is sub-<br>n of sandstone<br>y very sandy<br>on). Gravel |     |
|        |                  |            |       | ed during the drillin<br>Om depth due to re |                      | ackfilled wi | th arisings | s.                                                                                                                                                                                                                                                | AGS                                                      | S   |



## **Appendix III**





# **Appendix IV**

#### SUMMARY OF GEOTECHNICAL TESTING

|                         |            |              | Sample | details                                                                                 |     | Class | ificatio | n Test | is   |    | Densit            | / Tests           | Undrainer        | d Triaxial Co      | mpression       | 0  | hemical Te        | asts      | ſ <u>ŗ</u>                                                                                                  |
|-------------------------|------------|--------------|--------|-----------------------------------------------------------------------------------------|-----|-------|----------|--------|------|----|-------------------|-------------------|------------------|--------------------|-----------------|----|-------------------|-----------|-------------------------------------------------------------------------------------------------------------|
| Borehole /<br>Trial Pit | Sample Ref | Depth<br>(m) | Туре   | Description                                                                             | мс  | LL    | PL       | PI     | -41  |    | Bulk              | Dry               | Cell<br>Pressure | Deviator<br>Stress | Shear<br>Stress | рН | 2:1<br>W/S<br>SO4 | W/S<br>Mg | Other tests and comments                                                                                    |
|                         |            |              |        |                                                                                         | (%) | (%)   | (%)      | (%)    | ) (% | 6) | Mg/m <sup>3</sup> | Mg/m <sup>3</sup> | kPa              | kPa                | kPa             |    | (g/L)             | (mg/L)    | 1                                                                                                           |
| BH1                     |            | 2.80-3.30    | В      | Grey sandy silty CLAY with abundant gravel                                              | 8.4 | 27    | 14       | 13     | 62   | 2  |                   |                   |                  |                    |                 |    |                   |           | 2.5kg Compaction                                                                                            |
| BH2                     |            | 1.00-1.50    | В      | Grey brown gravelly sandy silty CLAY. Gravel is mudstone.                               | 37  | 43    | 23       | 20     | 80   | 0  |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>2.5kg Compaction                                                              |
| BH2                     |            | 1.90-2.35    | U      | Soft to firm brown silty CLAY with abundant gravel and rootlets                         |     |       |          |        |      |    |                   |                   |                  |                    |                 |    |                   |           | Oedometer consolidation                                                                                     |
| BH2                     |            | 2.70-3.20    | в      | Grey brown gravelly sandy silty CLAY                                                    |     |       |          |        |      |    |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution                                                                                  |
| BH2                     |            | 3.50-3.80    | В      | Grey brown sandy silty clayey GRAVEL. Gravel is fine to cobble sized limestone.         | 4.9 | 24    | 13       | 11     | 28   | 8  |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>Compaction cancelled - insufficient<br>material                               |
| BH2                     |            | 3.50         | U      | Firm to stiff grey sandy gravelly CLAY                                                  | 9.9 |       |          |        |      |    | 2.29              | 2.08              | 35               | 196                | 98              |    |                   |           |                                                                                                             |
| BH3                     |            | 1.10-1.60    | В      | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized limestone.              | 14  | 28    | 16       | 12     | 54   | 4  |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>Compaction cancelled - unsuitable<br>material, too much coarse gravel present |
| BH3                     |            | 1.80-2.20    | U      | Firm grey silty CLAY with abundant gravel                                               | 9.5 | 24    | 15       | 9.0    | 60   | 0  |                   |                   |                  |                    |                 |    |                   |           | Oedometer consolidation                                                                                     |
| BH3                     |            | 2.70-3.20    | В      | Dark grey-brown sandy very gravelly silty CLAY.<br>Gravel includes cobble sized gravel. | 10  | 27    | 14       | 13     | 47   | 7  |                   |                   |                  |                    |                 |    |                   |           |                                                                                                             |
| BH3                     |            | 3.70-4.15    | U      | Soft to firm grey brown sandy gravelly silty CLAY. Gravel is fine to medium.            | 12  |       |          |        |      |    | 2.39              | 2.13              | 37<br>74         | 87<br>90           | 44              |    |                   |           |                                                                                                             |
| TP10                    |            | 0.60         | В      | Brown sandy silty CLAY with rare fine to medium gravel                                  |     |       |          |        |      |    |                   |                   |                  |                    |                 |    |                   |           | Particle Size Distribution<br>California Bearing Ratio                                                      |
| TP10                    |            | 1.50         | В      | Brown sandy very gravelly silty CLAY. Gravel<br>includes cobble sized gravel.           | 18  | 36    | 17       | 19     | 56   | 6  |                   |                   |                  |                    |                 |    |                   |           |                                                                                                             |

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

| 101                              | Project Number:<br>GEO / 22476<br>Project Name: |  |
|----------------------------------|-------------------------------------------------|--|
| Operations Manager<br>27/04/2015 | C2099 CLITHEROE                                 |  |

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

Client: HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

### SUMMARY OF GEOTECHNICAL TESTING

|                         | Sample details |              |      | Classification Tests                                                                                          |           |    | Der | nsity Tests | Undrained | Undrained Triaxial Compression |  |                         | hemical Te                | ests                   |    |                            |                     |                                                                                                            |
|-------------------------|----------------|--------------|------|---------------------------------------------------------------------------------------------------------------|-----------|----|-----|-------------|-----------|--------------------------------|--|-------------------------|---------------------------|------------------------|----|----------------------------|---------------------|------------------------------------------------------------------------------------------------------------|
| Borehole /<br>Trial Pit | Sample Ref     | Depth<br>(m) | Туре | Description                                                                                                   | MC<br>(%) |    |     |             | μm        | Bull<br>Mg/n                   |  | Cell<br>Pressure<br>kPa | Deviator<br>Stress<br>kPa | Shear<br>Stress<br>kPa | рН | 2:1<br>W/S<br>SO4<br>(g/L) | W/S<br>Mg<br>(mg/L) | Other tests and comments                                                                                   |
| TP10                    |                | 2.40         | В    | Grey brown sandy gravelly silty CLAY. Gravel is<br>fine to cobble sized.                                      |           |    |     |             |           |                                |  |                         |                           |                        |    |                            |                     | Particle Size Distribution                                                                                 |
| TP2                     |                | 0.80         | В    | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized                                               |           |    |     |             |           |                                |  |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |
| TP3                     |                | 0.50         | В    | Brown gravelly sandy silty CLAY. Gravel is fine to cobble sized limestone.                                    |           |    |     |             |           |                                |  |                         |                           |                        |    |                            |                     | Particle Size Distribution<br>California Bearing Ratio                                                     |
| TP3                     |                | 1.50         | В    | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized limestone.                                    | 17        | 37 | 18  | 19          | 56        |                                |  |                         |                           |                        |    |                            |                     | Particle Size Distribution<br>Compaction cancelled - unsuitable<br>material, too much coarse gravel preser |
| TP4                     |                | 0.60         | В    | Grey brown sandy gravelly silty CLAY. Gravel is fine to cobble sized sandstone.                               |           |    |     |             |           |                                |  |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |
| TP5                     |                | 0.50         | В    | Brown sandy silty CLAY with rare fine to<br>medium gravel                                                     |           |    |     |             |           |                                |  |                         |                           |                        |    |                            |                     | Particle Size Distribution                                                                                 |
| TP5                     |                | 1.60         | В    | Brown mottled orange sandy gravelly silty<br>CLAY. Gravel includes cobble sized gravel with<br>rare rootlets. | 17        | 36 | 20  | 16          | 67        |                                |  |                         |                           |                        |    |                            |                     |                                                                                                            |
| TP5                     |                | 1.90         | D    | Brown sandy gravelly silty CLAY.                                                                              | 8.4       | 27 | 13  | 14          | 44        |                                |  |                         |                           |                        |    |                            |                     |                                                                                                            |
| TP6                     |                | 0.50         | В    | Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized.                                              | 28        | 41 | 19  | 22          | 86        |                                |  |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |
| TP6                     |                | 1.50         | В    | Grey brown sandy gravelly silty CLAY. Gravel is fine to cobble sized.                                         |           |    |     |             |           |                                |  |                         |                           |                        |    |                            |                     | Particle Size Distribution                                                                                 |
| TP7                     |                | 0.50         | D    | Mottled brown grey and dark orange silty CLAY with rare rootlets.                                             | 28        | 51 | 27  | 24          | 100       |                                |  |                         |                           |                        |    |                            |                     |                                                                                                            |
| TP8                     |                | 0.50         | В    | Brown sandy gravelly silty CLAY. Gravel is sandstone.                                                         |           |    |     |             |           |                                |  |                         |                           |                        |    |                            |                     | California Bearing Ratio                                                                                   |

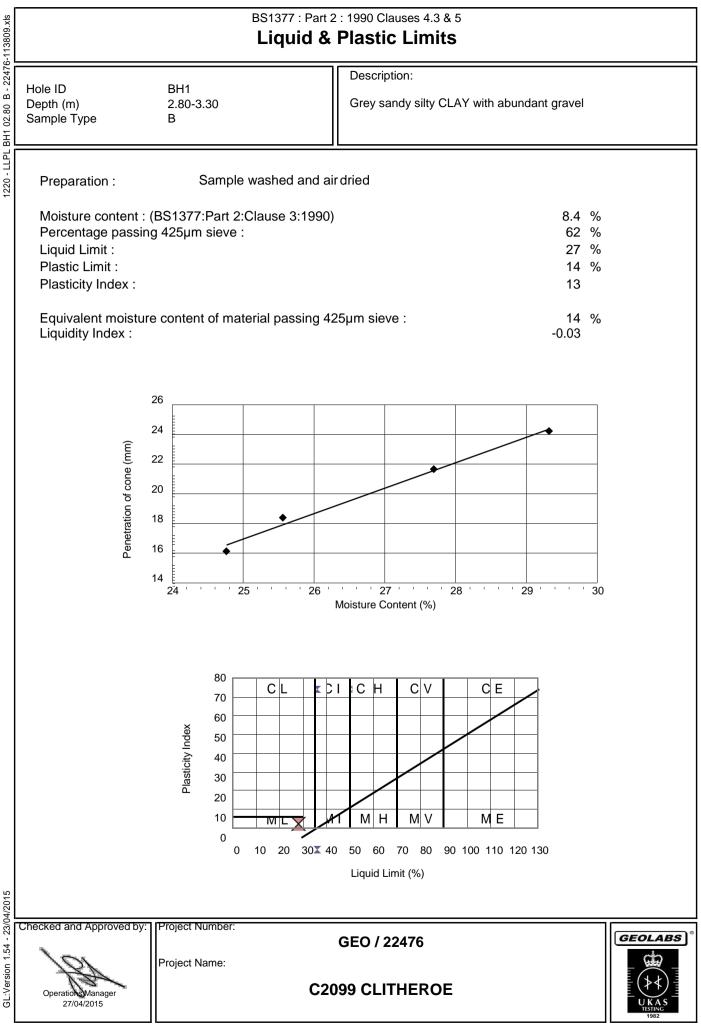
Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

| 101                              | Project Number:<br>GEO / 22476<br>Project Name: |  |
|----------------------------------|-------------------------------------------------|--|
| Operations Manager<br>27/04/2015 | C2099 CLITHEROE                                 |  |

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

 $Client: {\sf HSPC} on sulting, {\sf Lawrence\,{\sf House},{\sf Meadowbank\,{\sf Way},{\sf Eastwood},{\sf Nottingham}}$ 

#### SUMMARY OF GEOTECHNICAL TESTING


| Sample details          |            |              |      |                                                       |           |    | Classification Tests |           |                   | Density Tests |              | Undrained Triaxial Compression |                           |                        | C  | hemical Te                 | ests                |                                                |
|-------------------------|------------|--------------|------|-------------------------------------------------------|-----------|----|----------------------|-----------|-------------------|---------------|--------------|--------------------------------|---------------------------|------------------------|----|----------------------------|---------------------|------------------------------------------------|
| Borehole /<br>Trial Pit | Sample Ref | Depth<br>(m) | Туре | Description                                           | MC<br>(%) |    | PL<br>(%)            | PI<br>(%) | <425<br>μm<br>(%) | DUIK          | Dry<br>Mg/m³ | Cell<br>Pressure<br>kPa        | Deviator<br>Stress<br>kPa | Shear<br>Stress<br>kPa | рН | 2:1<br>W/S<br>SO4<br>(g/L) | W/S<br>Mg<br>(mg/L) | Other tests and comments                       |
| TP9                     |            | 0.60         | В    | Brown gravelly sandy silty CLAY. Gravel is sandstone. | 30        | 39 | 28                   | 11        | 73                |               |              |                                |                           |                        |    |                            |                     | Particle Size Distribution<br>2.5kg Compaction |
| TP9                     |            | 1.50         | В    | Grey brown sandy gravelly silty CLAY.                 |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     | Particle Size Distribution                     |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |
|                         |            |              |      |                                                       |           |    |                      |           |                   |               |              |                                |                           |                        |    |                            |                     |                                                |

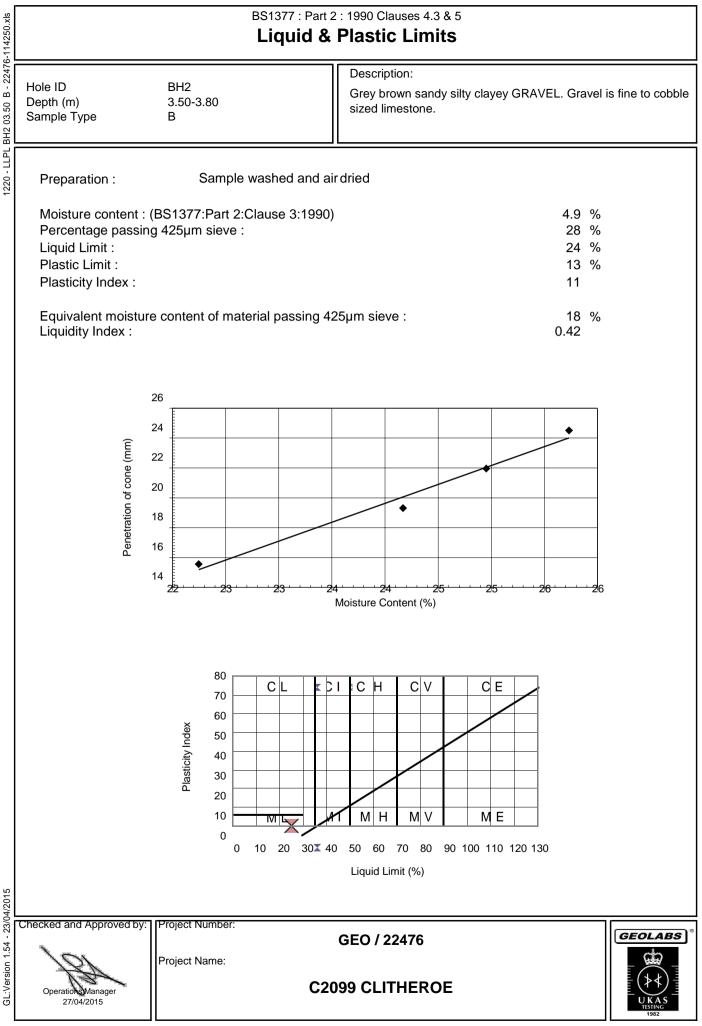
Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

| 101                              | Project Number:<br>GEO / 22476<br>Project Name: | <b>GEOLABS</b> ) <sup>®</sup> |
|----------------------------------|-------------------------------------------------|-------------------------------|
| Operations Manager<br>27/04/2015 | C2099 CLITHEROE                                 |                               |

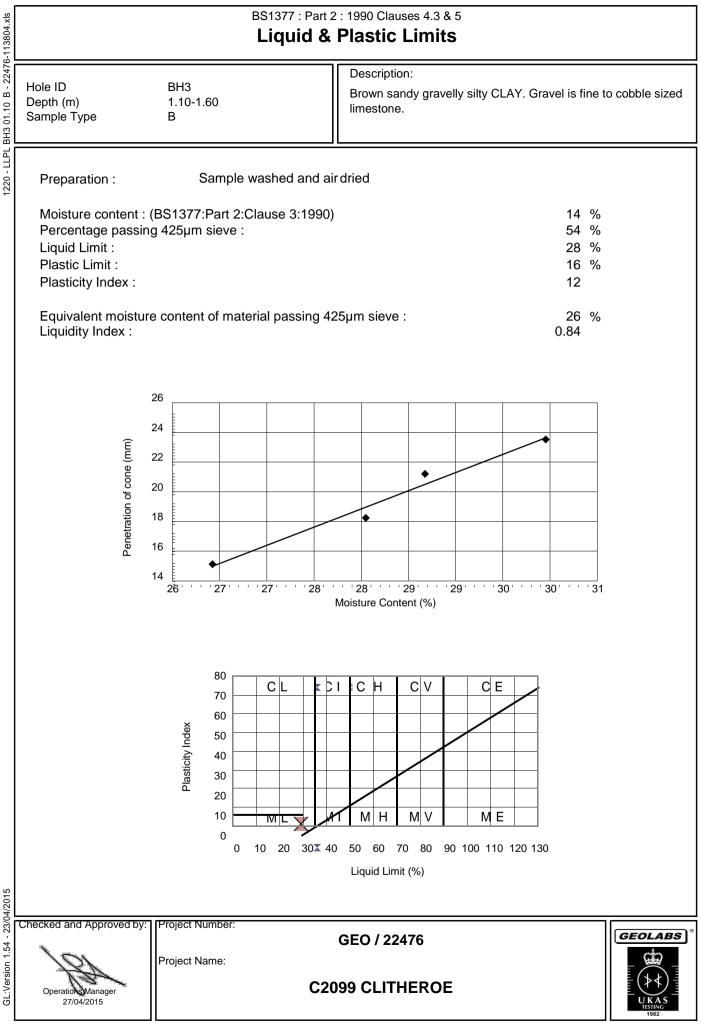
Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

 $Client: {\sf HSPC} on sulting, {\sf Lawrence\,{\sf House},{\sf Meadowbank\,{\sf Way},{\sf Eastwood},{\sf Nottingham}}$ 

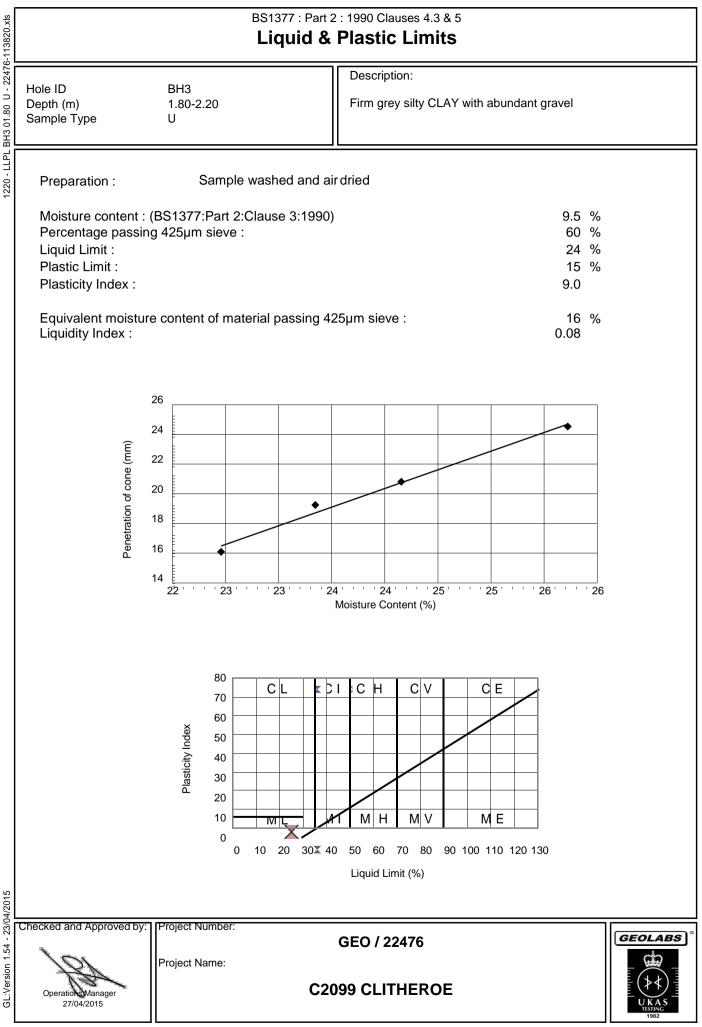



 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

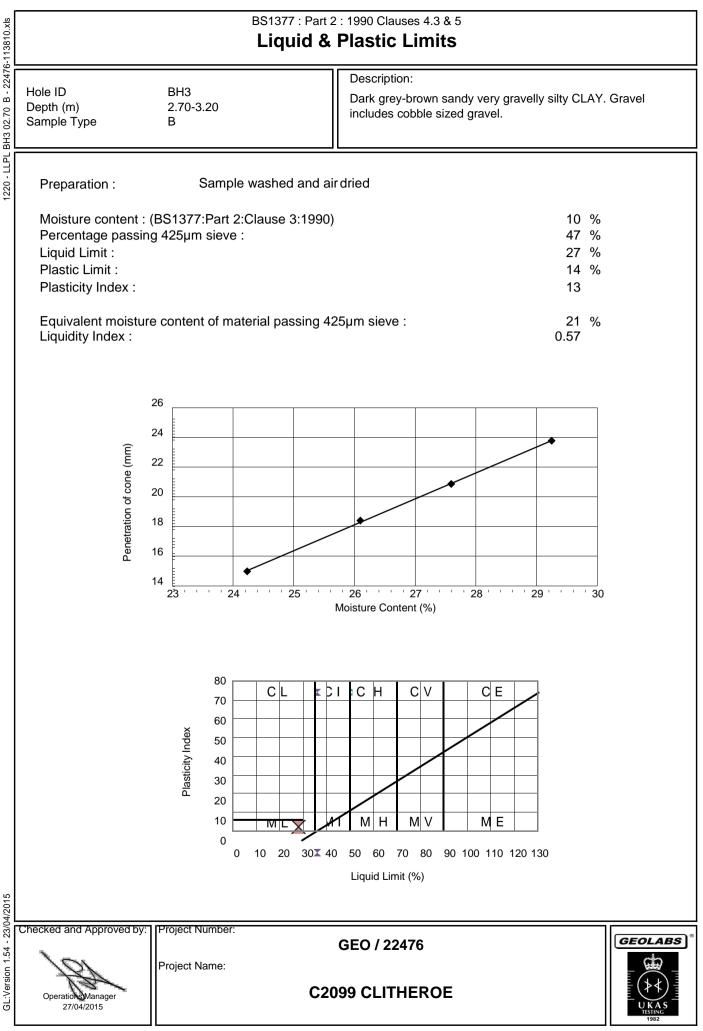
 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notingham



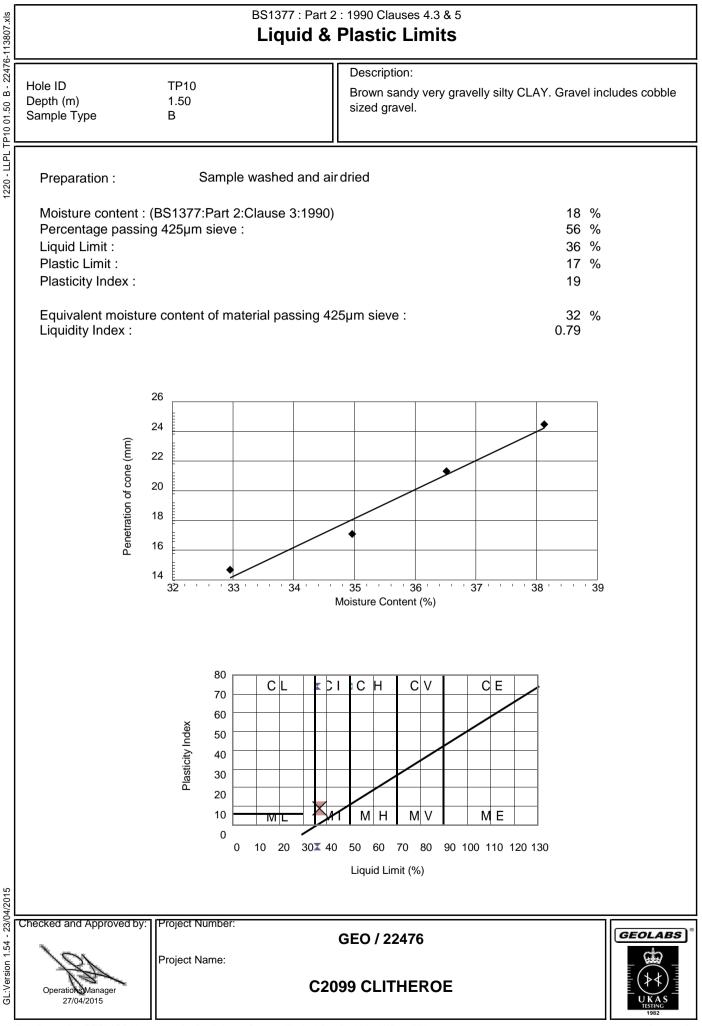

 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX


 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notingham



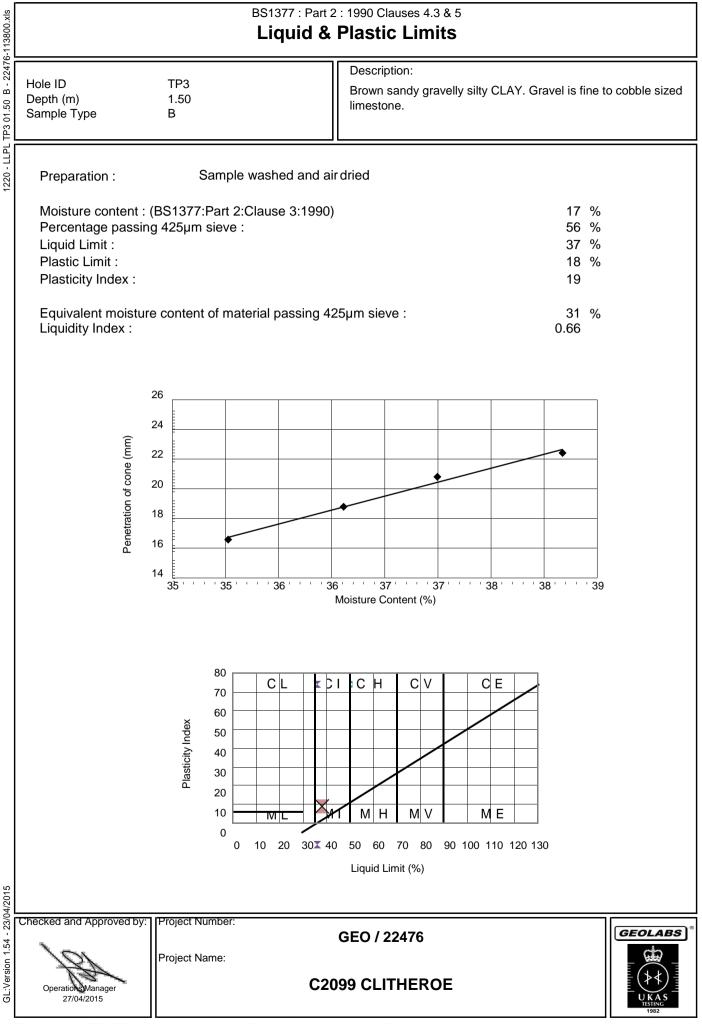

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notlingham

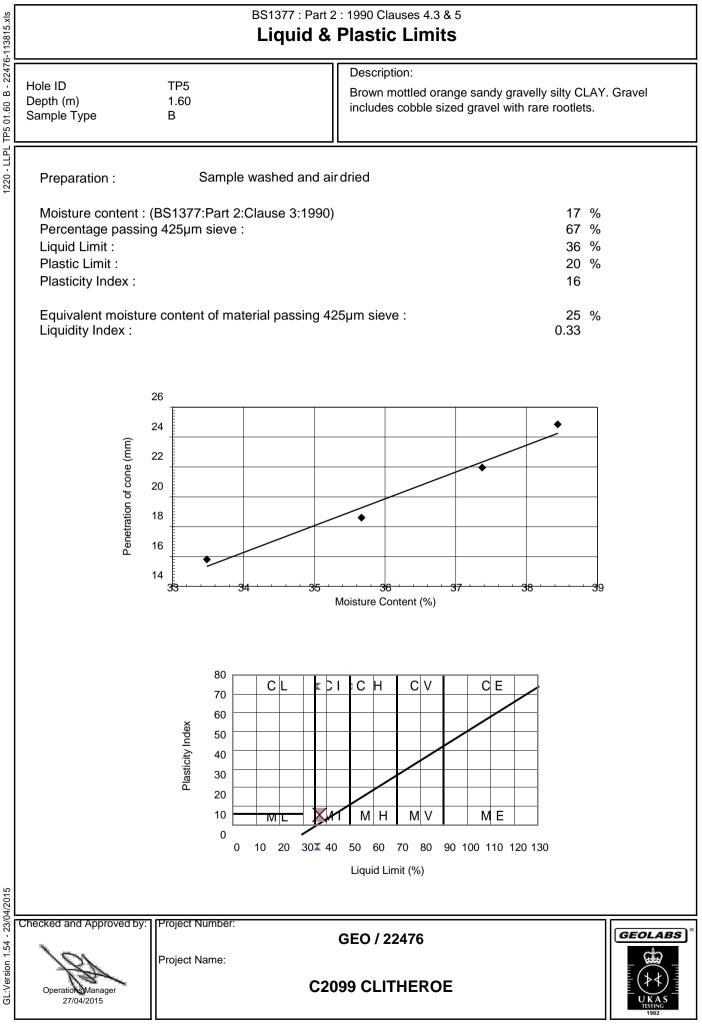


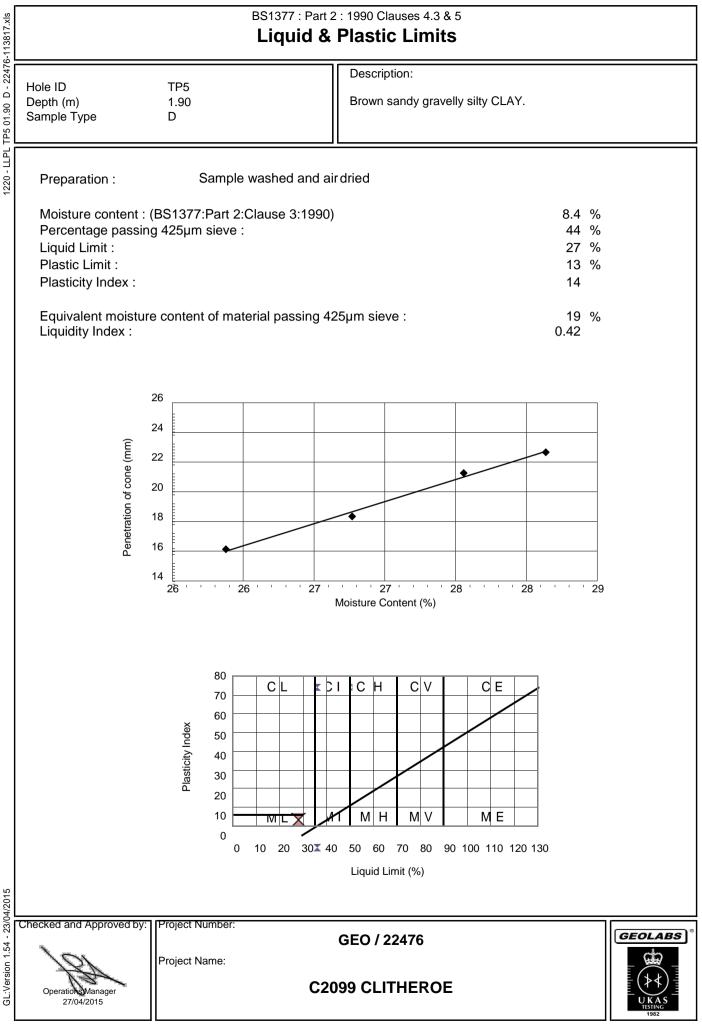

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notingham

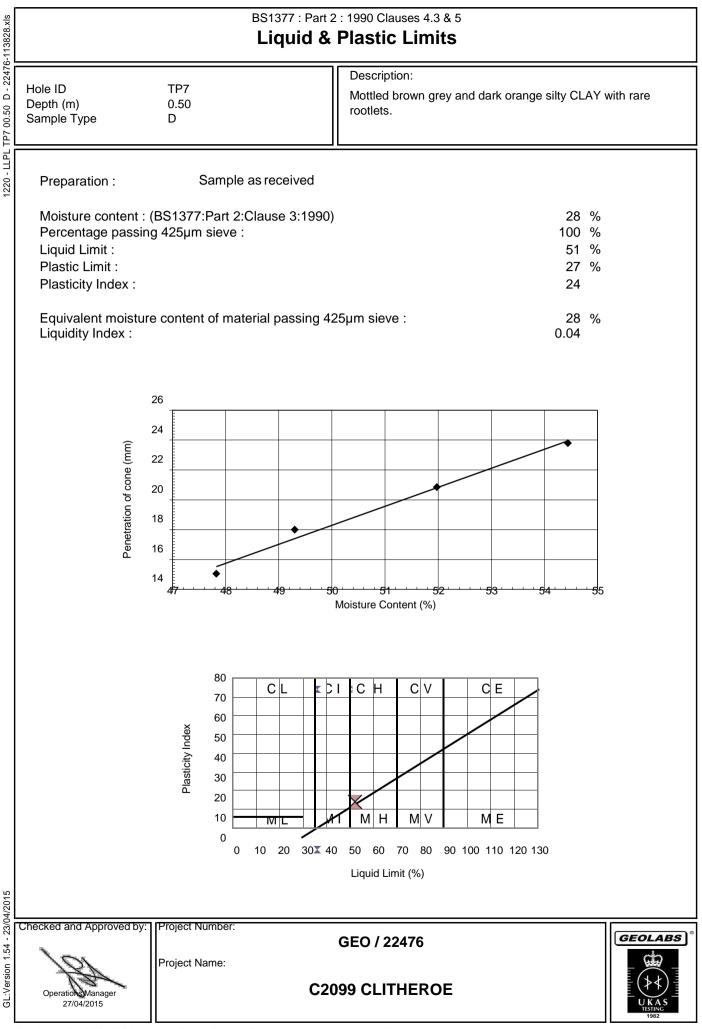


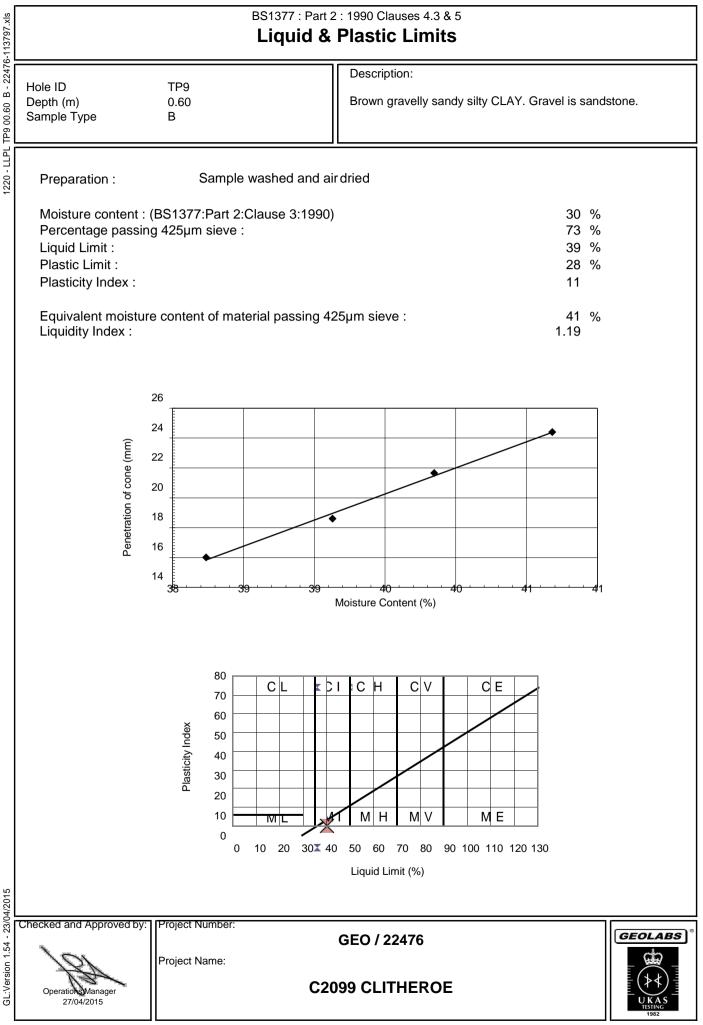
Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notingham

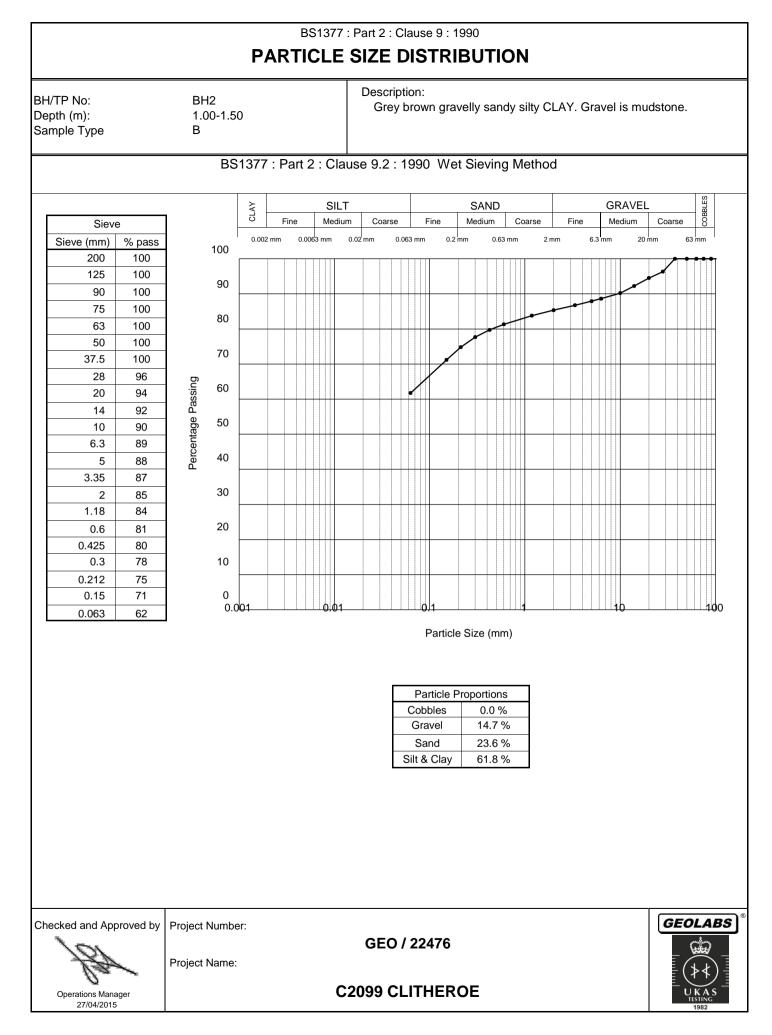


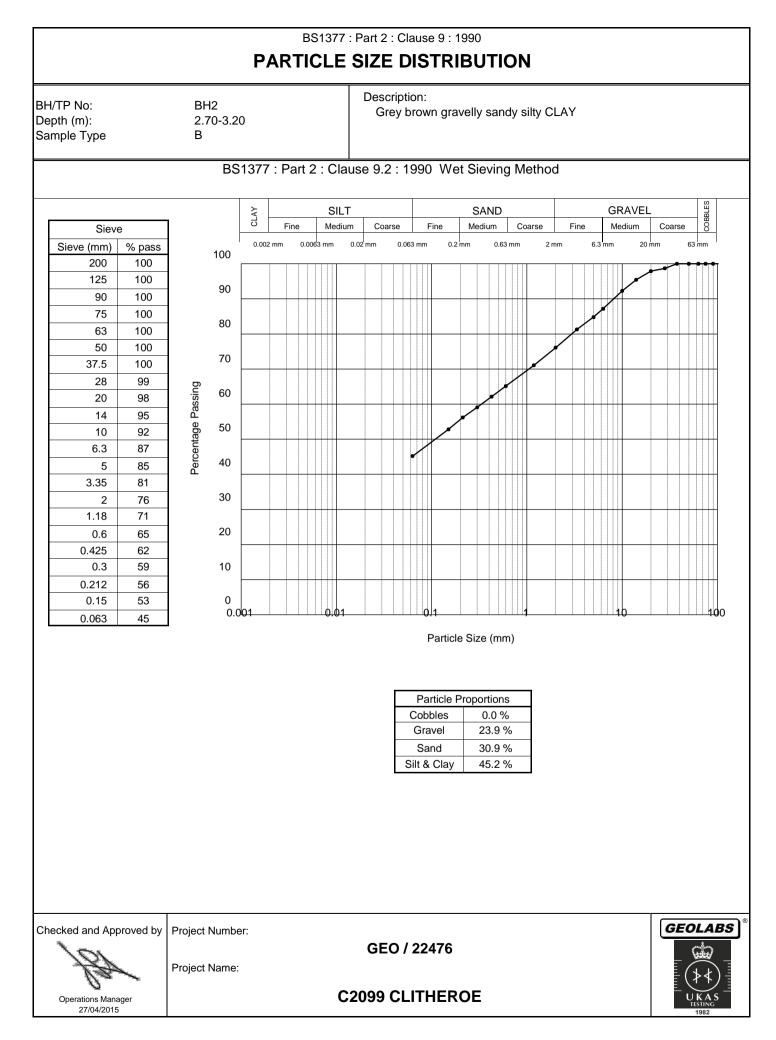


Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notlingham

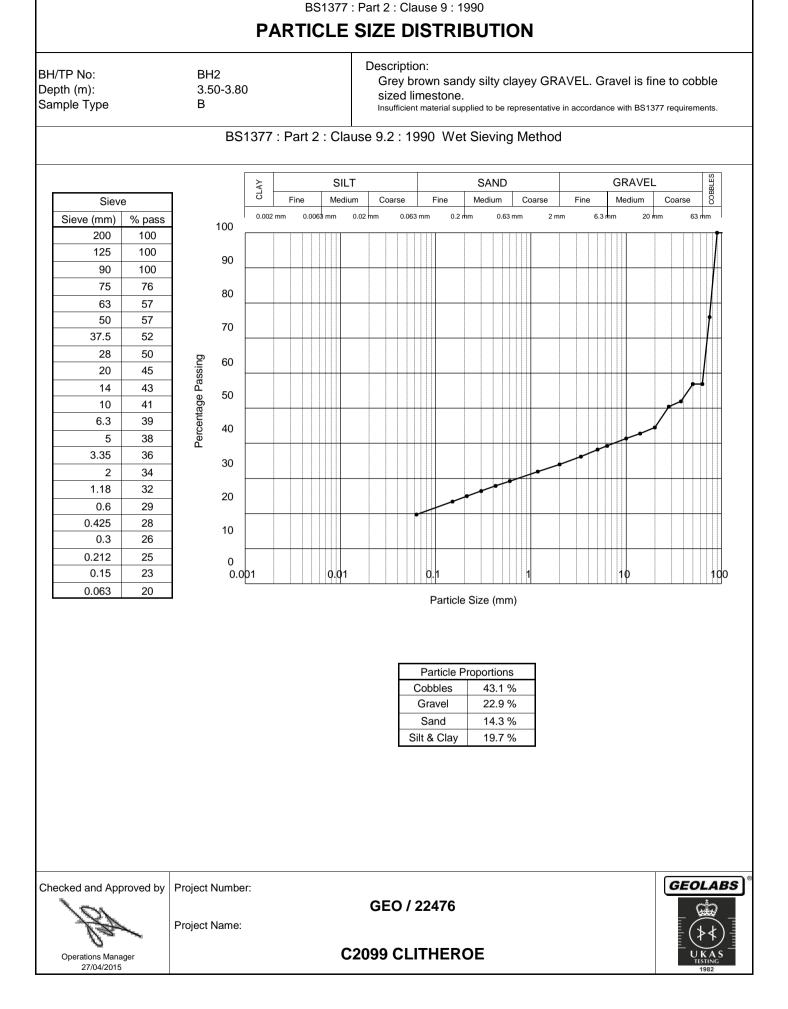


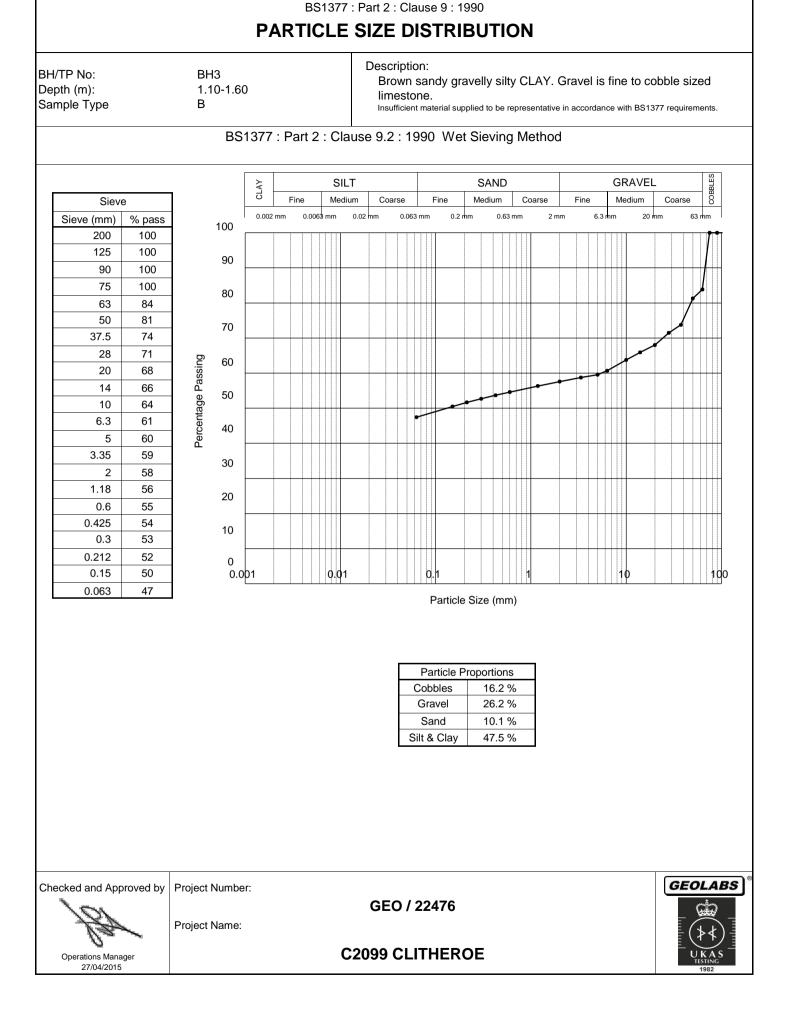


 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

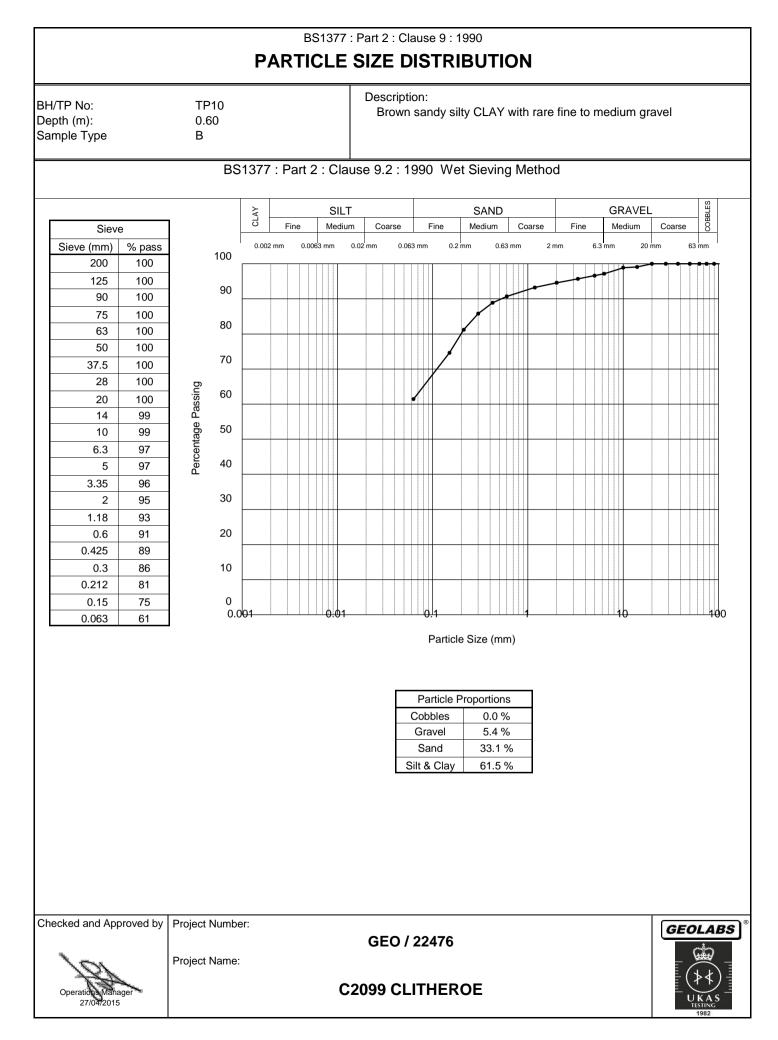

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notingham

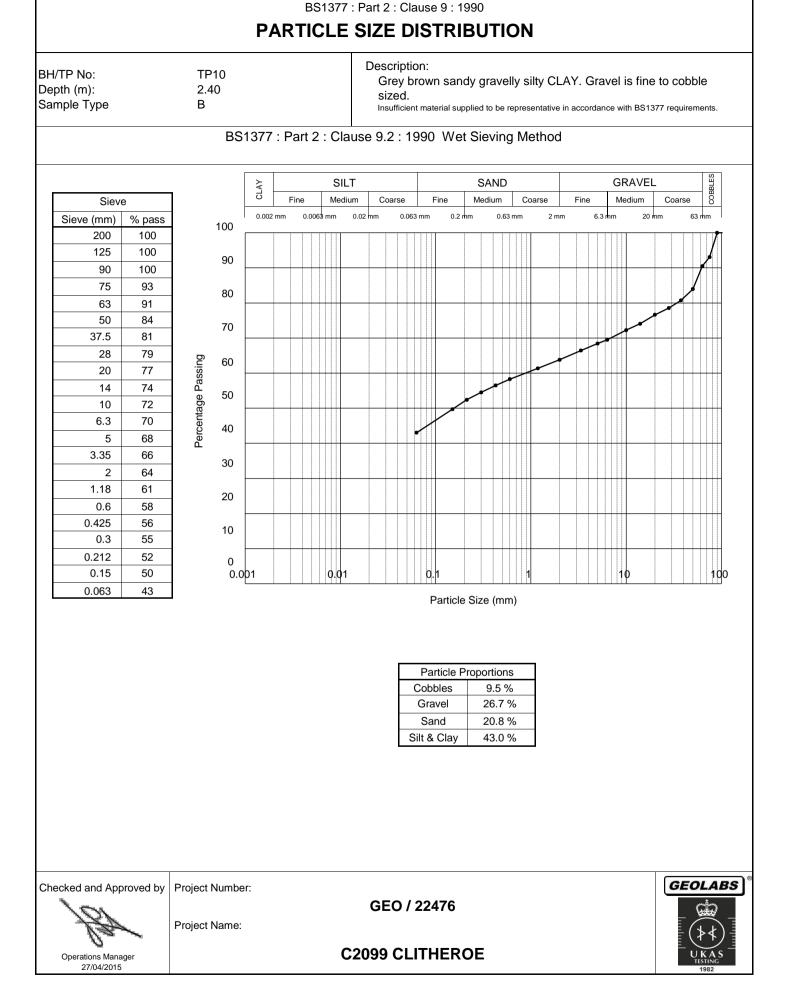


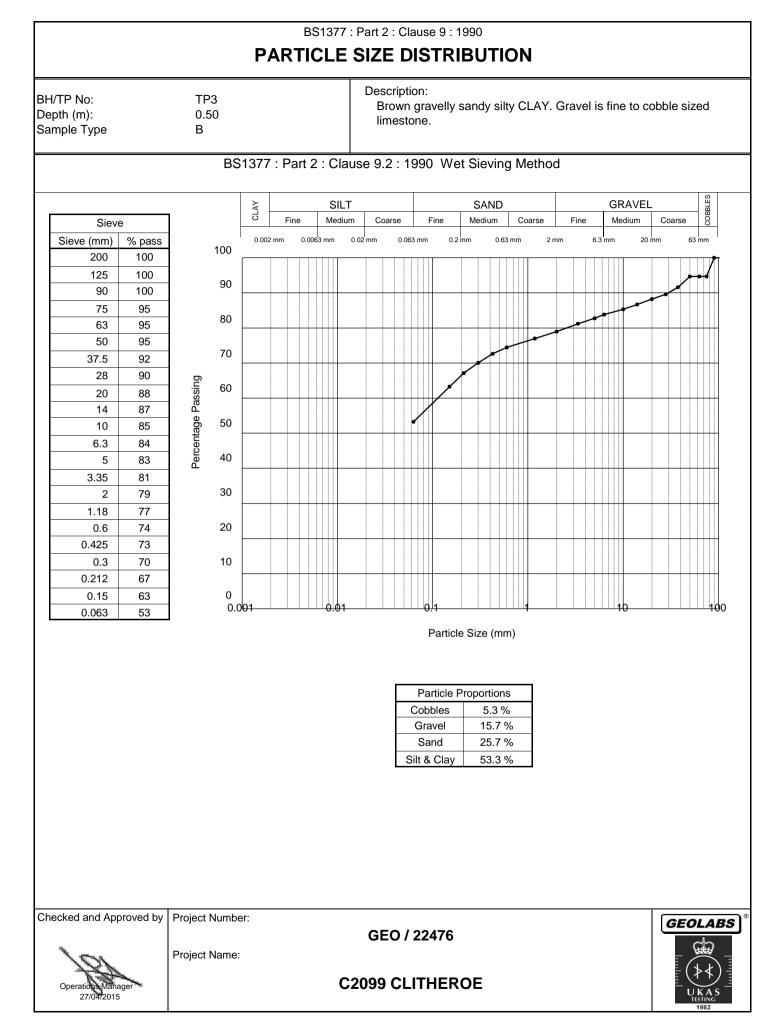



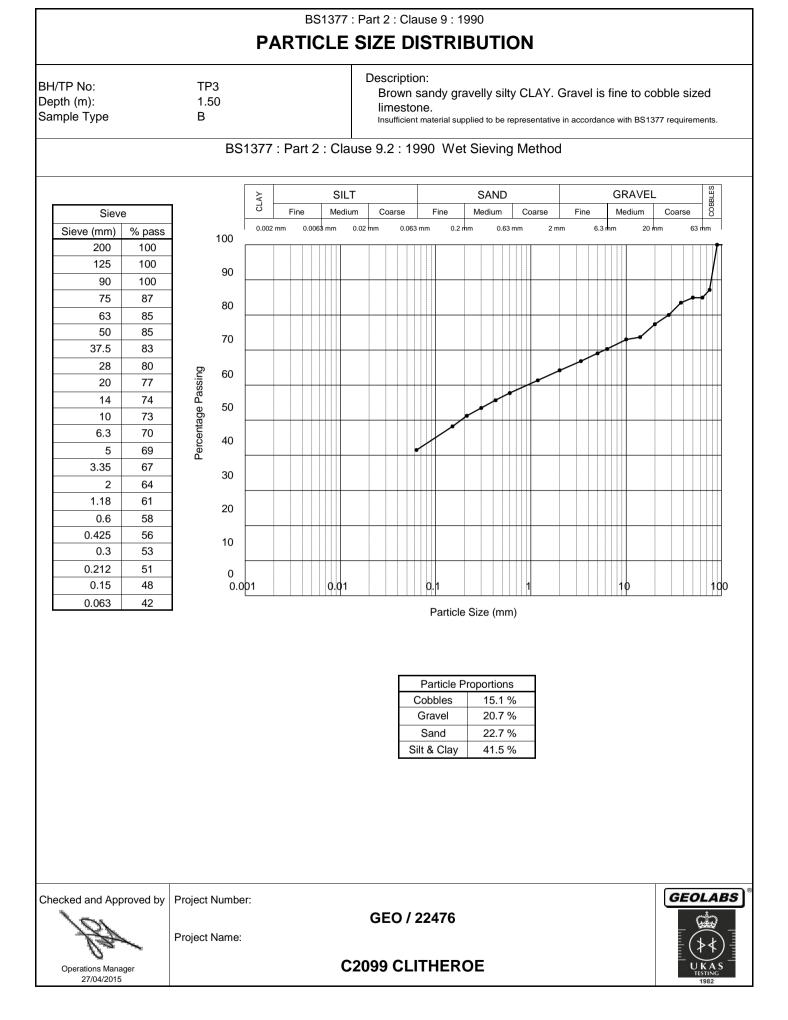



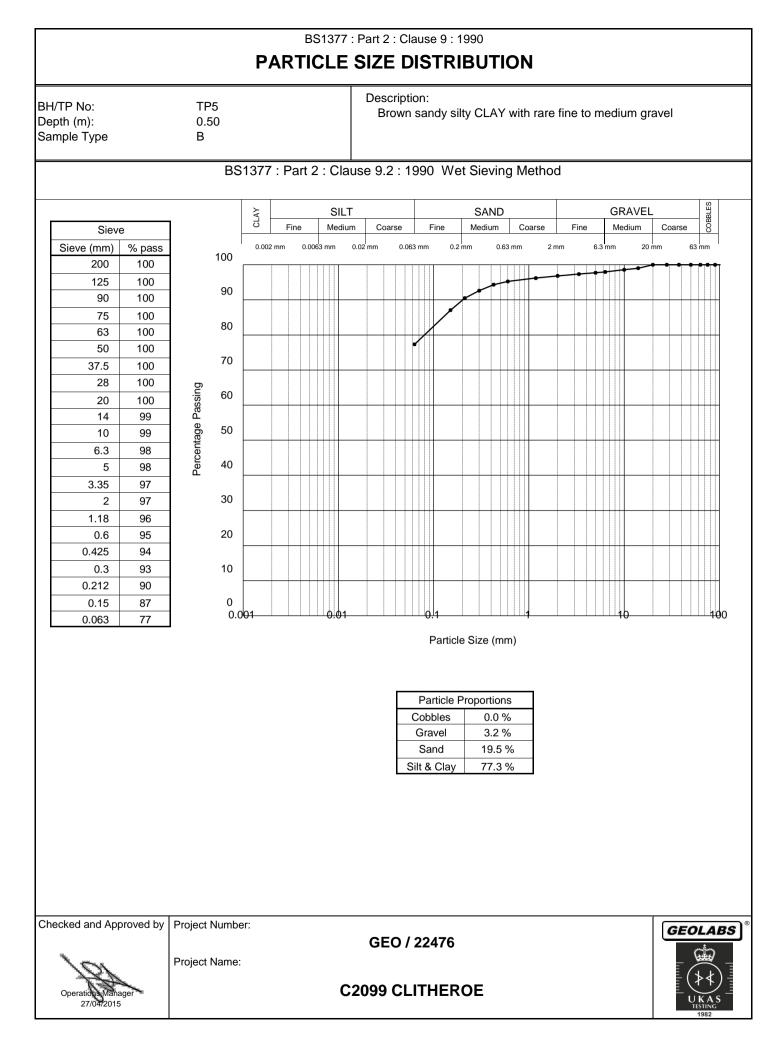



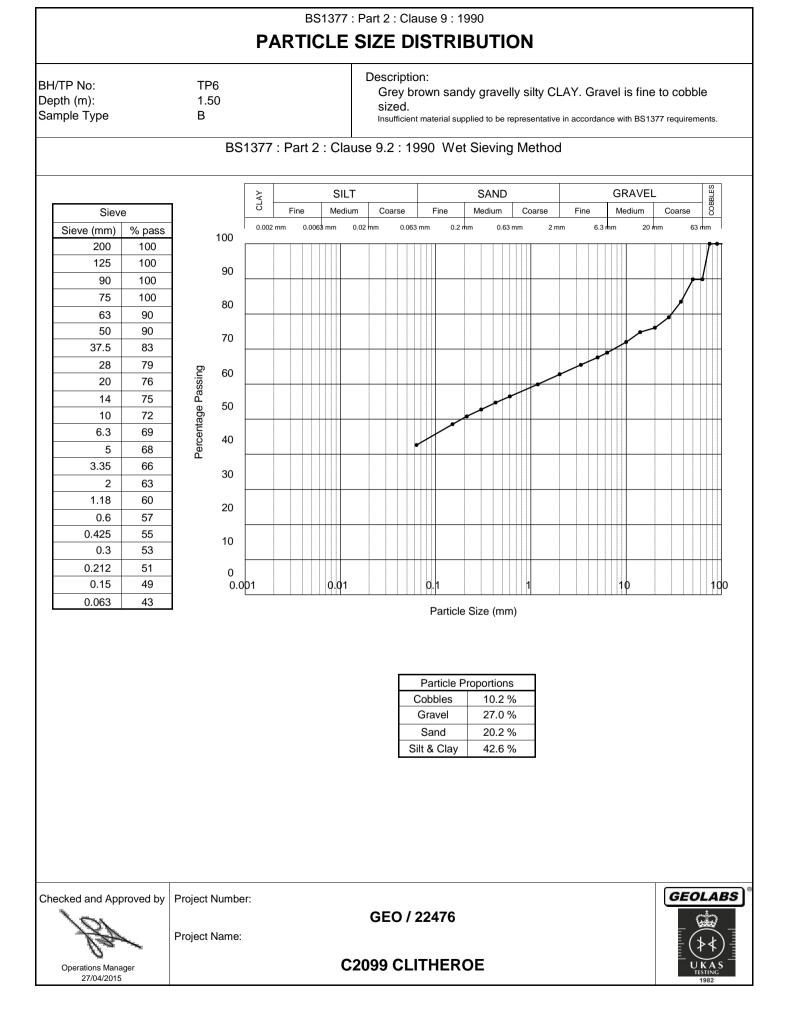



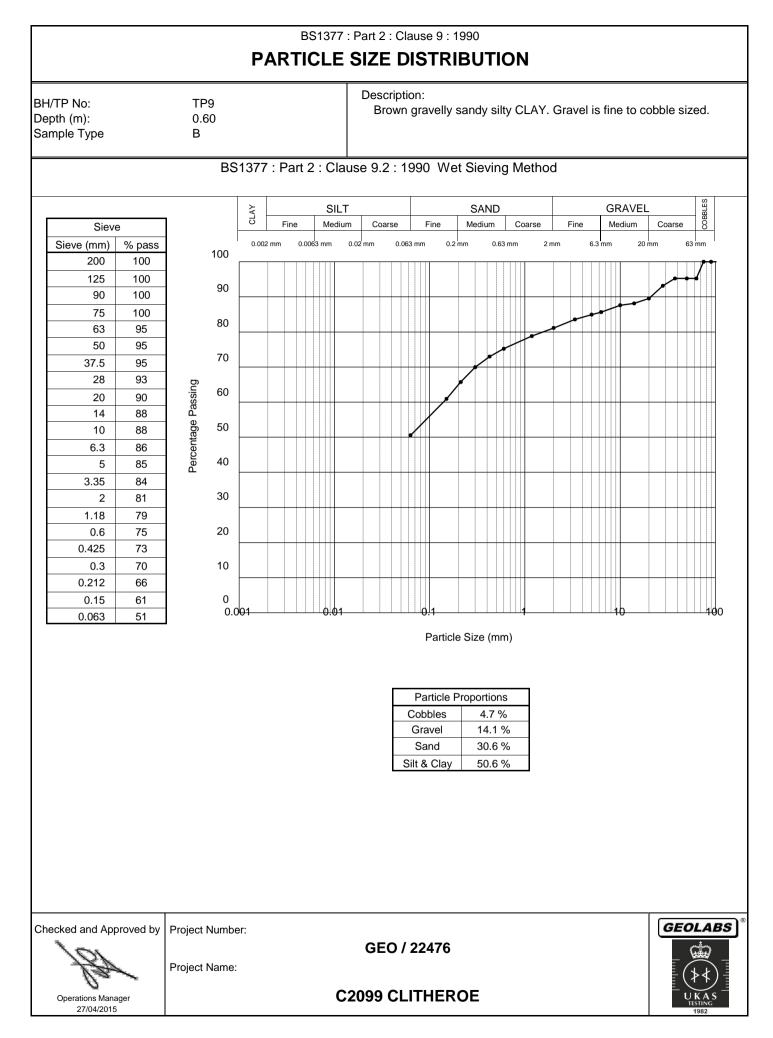



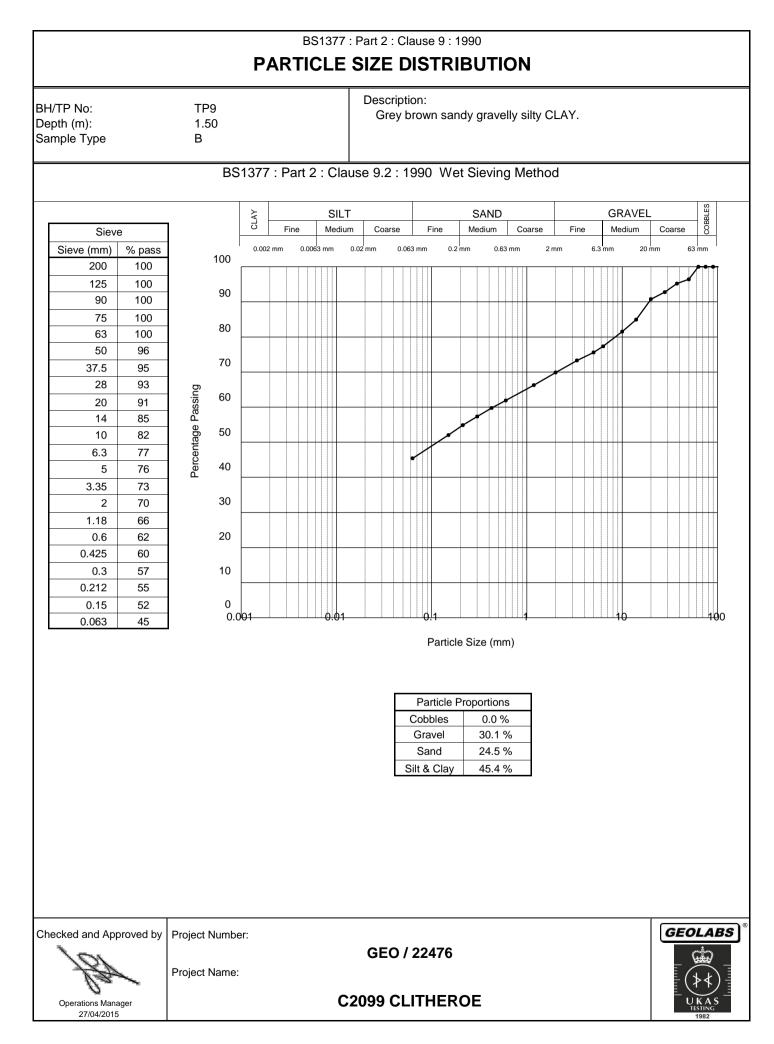



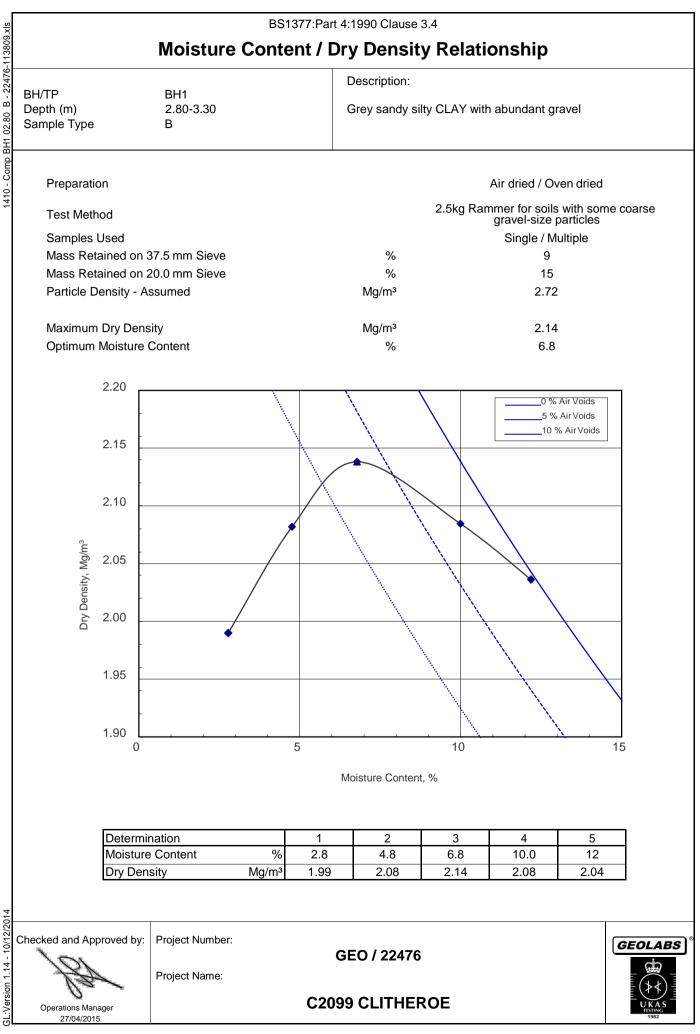



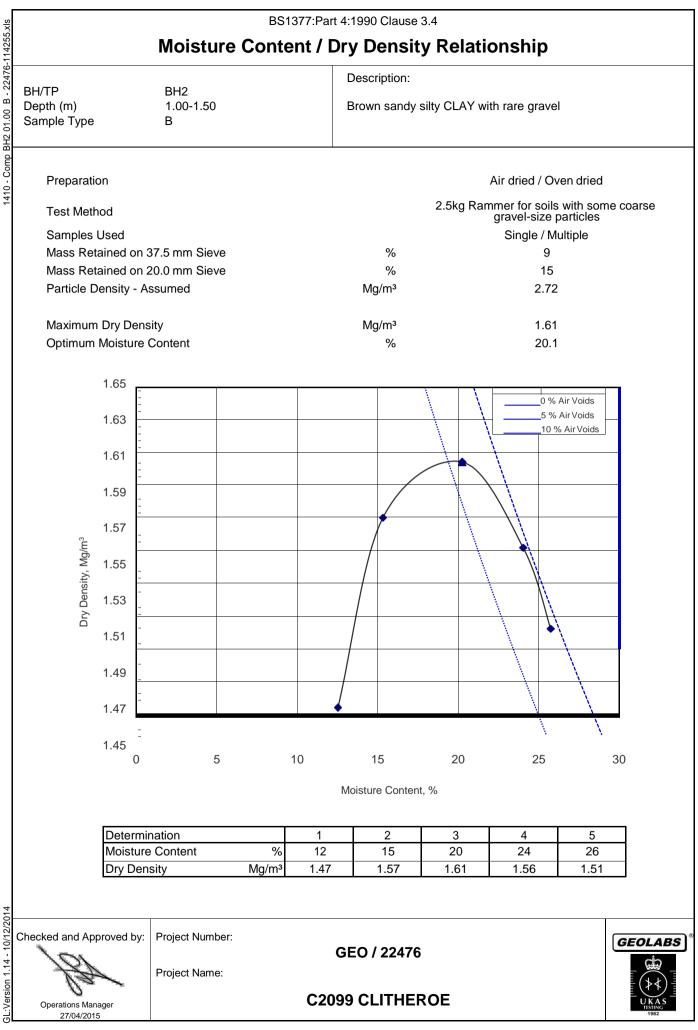



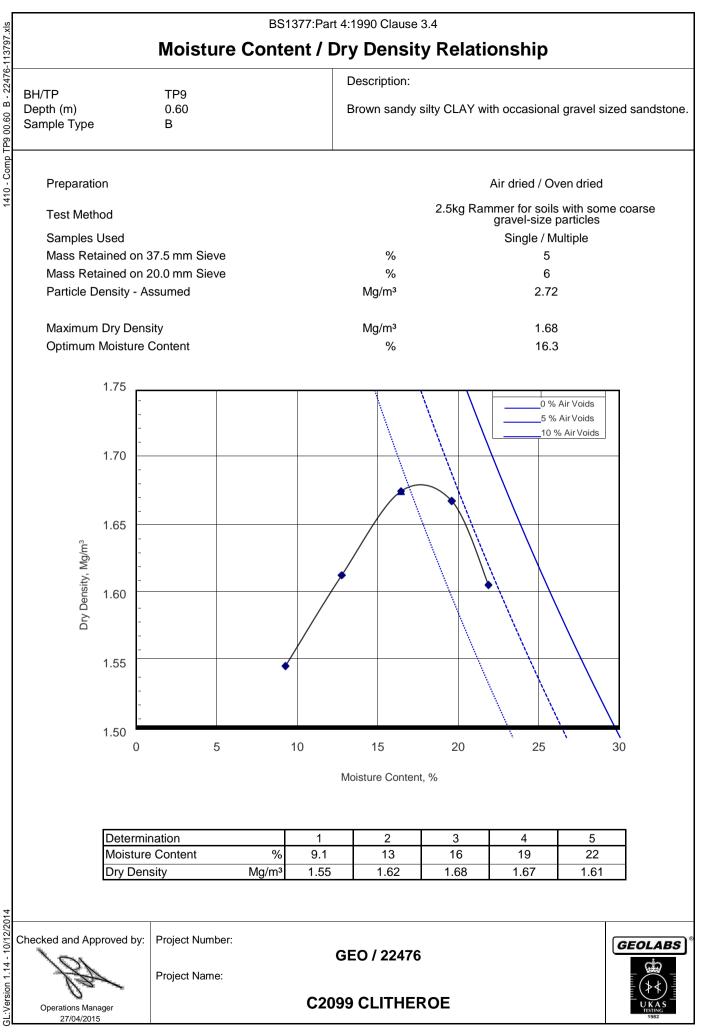



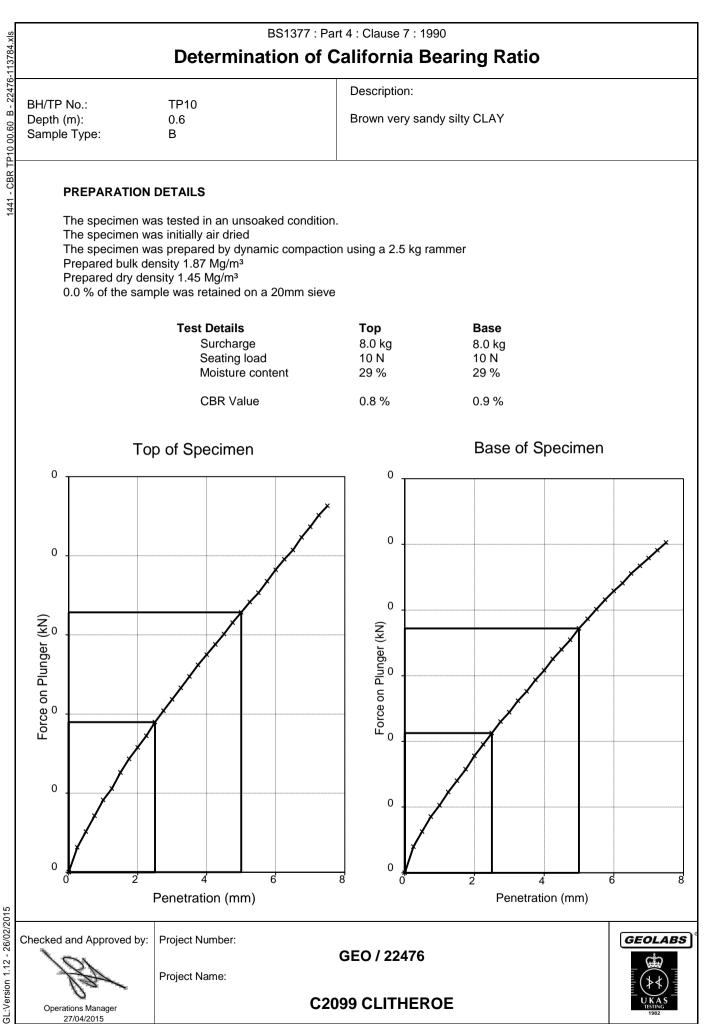



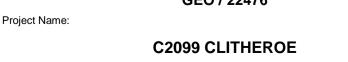



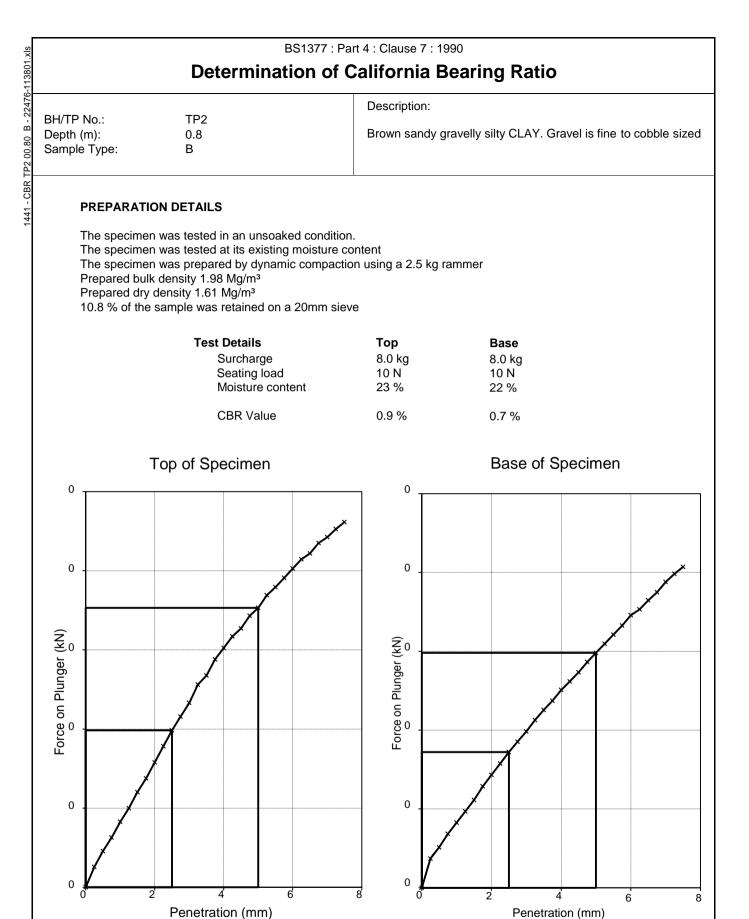














Operations Manager 27/04/2015

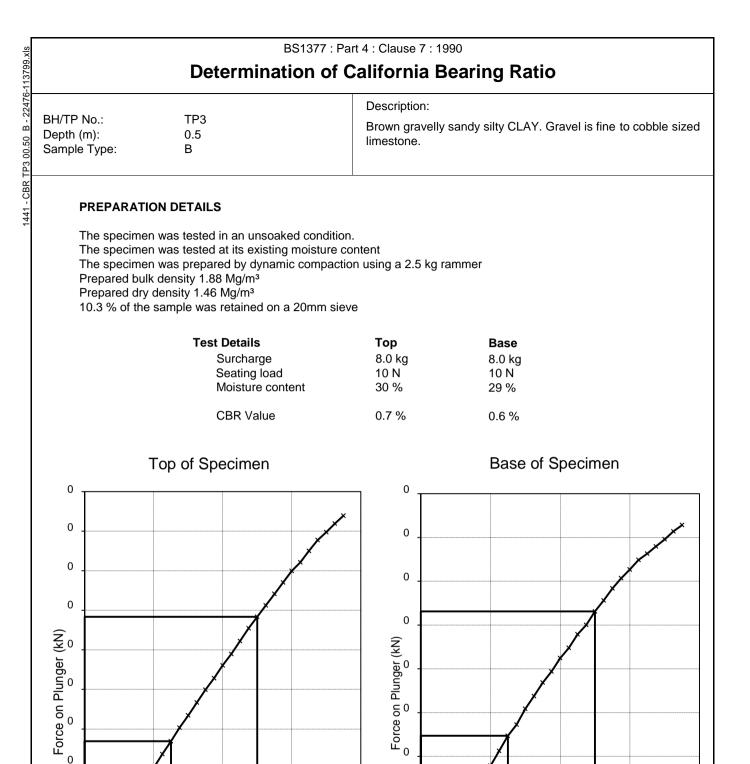


GEO / 22476

C2099 CLITHEROE

Checked and Approved by:

Operations Manager 27/04/2015


 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notlingham

Project Number:

Project Name:

GEOLABS



0

0

0

GEO / 22476

**C2099 CLITHEROE** 

2

4

Penetration (mm)

8

0

0

0

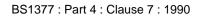
Checked and Approved by:

Operations Manager 27/04/2015 2

 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

4


Penetration (mm)

Project Number:

Project Name:

6

**GEOLABS** 

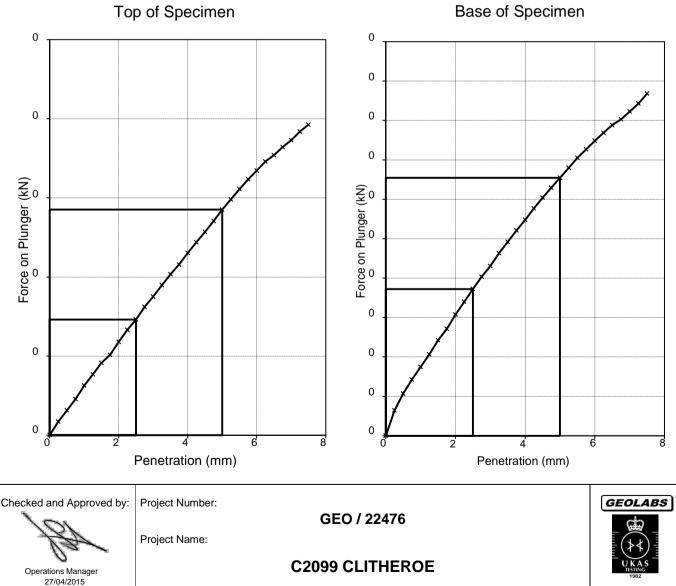


## **Determination of California Bearing Ratio**

| 1                                                  |                                                                                                    |   |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------|---|
| BH/TP No.: TP4<br>Depth (m): 0.6<br>Sample Type: B | Description:<br>Grey brown sandy gravelly silty CLAY. Gravel is fine to cobble<br>sized sandstone. | Э |

#### **PREPARATION DETAILS**

The specimen was tested in an unsoaked condition. The specimen was tested at its existing moisture content


The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.91 Mg/m<sup>3</sup>

Prepared dry density 1.54 Mg/m<sup>3</sup>

14.1 % of the sample was retained on a 20mm sieve

| Test Details     | <b>Top</b> | <b>Base</b> |
|------------------|------------|-------------|
| Surcharge        | 8.0 kg     | 8.0 kg      |
| Seating load     | 10 N       | 10 N        |
| Moisture content | 23 %       | 25 %        |
| CBR Value        | 0.7 %      | 0.7 %       |



 Test Report By
 GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

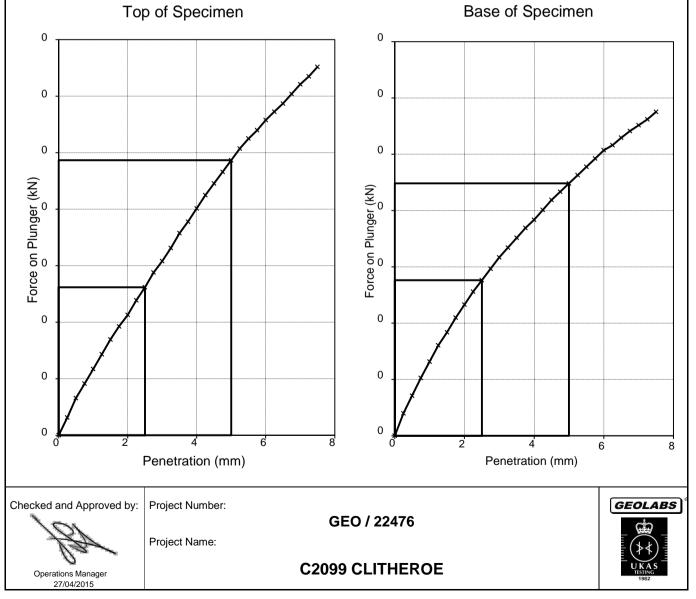
 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham
 Nottingham

1441 - CBR TP4 00.60 B - 22476-113814.xls

GL:Version 1.12 - 26/02/2015

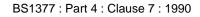
# **Determination of California Bearing Ratio**

| 1                   |                                          |                 |                                                                                  |
|---------------------|------------------------------------------|-----------------|----------------------------------------------------------------------------------|
| TP6 00.50 B - 22476 | BH/TP No.:<br>Depth (m):<br>Sample Type: | TP6<br>0.5<br>B | Description:<br>Brown sandy gravelly silty CLAY. Gravel is fine to cobble sized. |
|                     |                                          |                 |                                                                                  |


#### **PREPARATION DETAILS**

The specimen was tested in an unsoaked condition. The specimen was tested at its existing moisture content The specimen was prepared by dynamic compaction using a 2.5 kg rammer Prepared bulk density 1.87 Mg/m<sup>3</sup>

Prepared dry density 1.46 Mg/m<sup>3</sup>


3.8 % of the sample was retained on a 20mm sieve

| <b>Test Details</b> | <b>Top</b> | <b>Base</b> |
|---------------------|------------|-------------|
| Surcharge           | 8.0 kg     | 8.0 kg      |
| Seating load        | 10 N       | 10 N        |
| Moisture content    | 28 %       | 28 %        |
| CBR Value           | 1.2 %      | 1.1 %       |



Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Notingham

1441 - CBR TP6 00.50 B - 22476-113805.xls



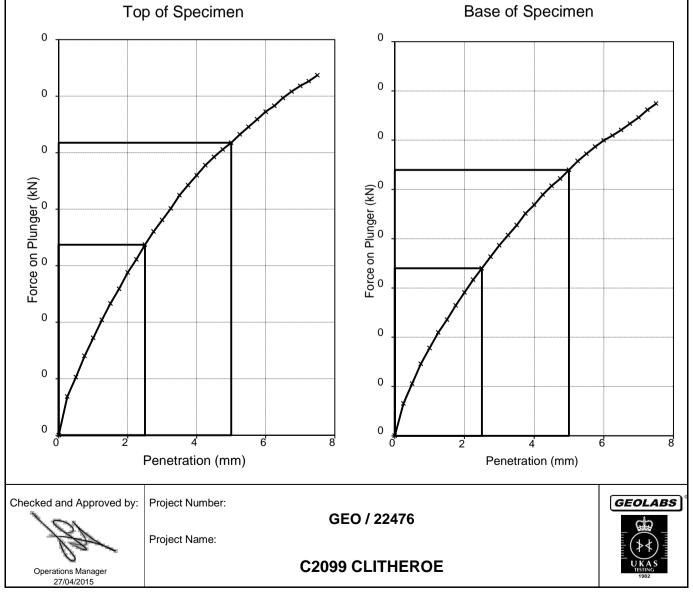
## **Determination of California Bearing Ratio**

| ÷      |              |     |                                                       |
|--------|--------------|-----|-------------------------------------------------------|
| 2241C  |              | TDO | Description:                                          |
| '      | BH/TP No.:   | TP8 |                                                       |
| п<br>Э | Depth (m):   | 0.5 | Brown sandy gravelly silty CLAY. Gravel is sandstone. |
| 0.0    | Sample Type: | В   |                                                       |
| ŝ      |              |     |                                                       |

#### **PREPARATION DETAILS**

1441 - CBR TP8 00.50 B - 22476-113825.xls

The specimen was tested in an unsoaked condition. The specimen was tested at its existing moisture content


The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.84 Mg/m<sup>3</sup>

Prepared dry density 1.41 Mg/m<sup>3</sup>

2.1 % of the sample was retained on a 20mm sieve

| Test Details     | <b>Top</b> | <b>Base</b> |
|------------------|------------|-------------|
| Surcharge        | 8.0 kg     | 8.0 kg      |
| Seating load     | 10 N       | 10 N        |
| Moisture content | 30 %       | 30 %        |
| CBR Value        | 1.3 %      | 1.3 %       |



 Test Report By
 GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX

 Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham
 Nottingham

BS 1377 : Part 7 : 1990 Clause 8

# **Quick Undrained Triaxial Compression Test**

BH/TP No Depth (m) Sample Type

BH2 3.50 U

Description:

Firm to stiff grey sandy gravelly CLAY

Remarks : Sample reached 20% strain on first stage of multistage test

#### **Specimen Details**

| Specimen conditions      |                      | Undisturbed |
|--------------------------|----------------------|-------------|
| Length                   | (mm)                 | 201.6       |
| Diameter                 | (mm)                 | 102.1       |
| Moisture Content         | (%)                  | 9.9         |
| Bulk Density             | (Mg/m³)              | 2.29        |
| Dry Density              | (Mg/m <sup>3</sup> ) | 2.08        |
| Test Details             |                      |             |
| Latex membrane thickness | (mm)                 | 0.3         |
| Membrane correction      | (kPa)                | 1.1         |
| Axial displacement rate  | (%/min)              | 2.0         |
| Cell pressure            | (kPa)                | 35          |
| Strain at failure        | (%)                  | 20.8        |
| Maximum Deviator Stress  | (kPa)                | 196         |
| Shear Stress Cu          | (kPa)                | 98          |



| Mode of failure |  |
|-----------------|--|
|                 |  |
|                 |  |

| Orientation of the sample    | Vertical |
|------------------------------|----------|
| Distance from top of tube mm | 50       |

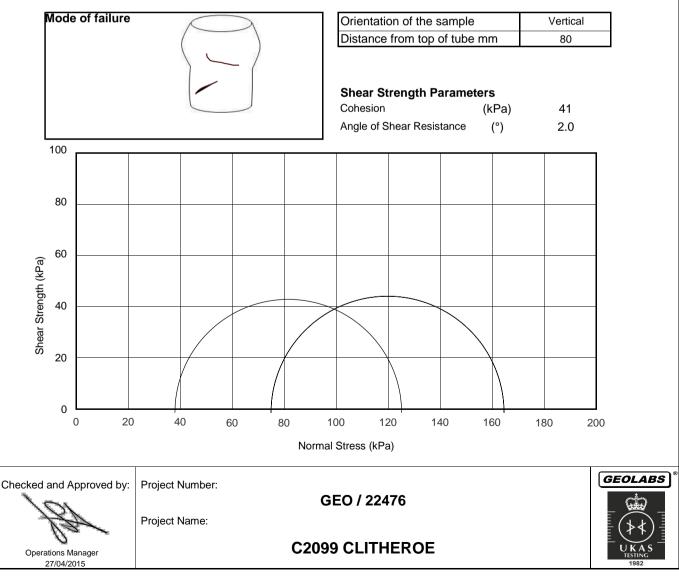
| 6/03/2015      | Checked and Approved by:-        | Project Number:      |                                        |                             |
|----------------|----------------------------------|----------------------|----------------------------------------|-----------------------------|
| 44 - 1         |                                  |                      | GEO / 22476                            | <b>GEOLABS</b> <sup>®</sup> |
| <del>.</del> . | 101                              | Project Name:        |                                        | (LÉO)                       |
| GL:Version     | Operations Manager<br>27/00/2015 |                      | C2099 CLITHEROE                        |                             |
|                | Test Report By GEOLABS Limite    | d Bucknalls Lane, Ga | rston, Watford, Hertfordshire, WD259XX | Page 1 of 1                 |

Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

#### BS 1377 : Part 7 : 1990 Clause 9

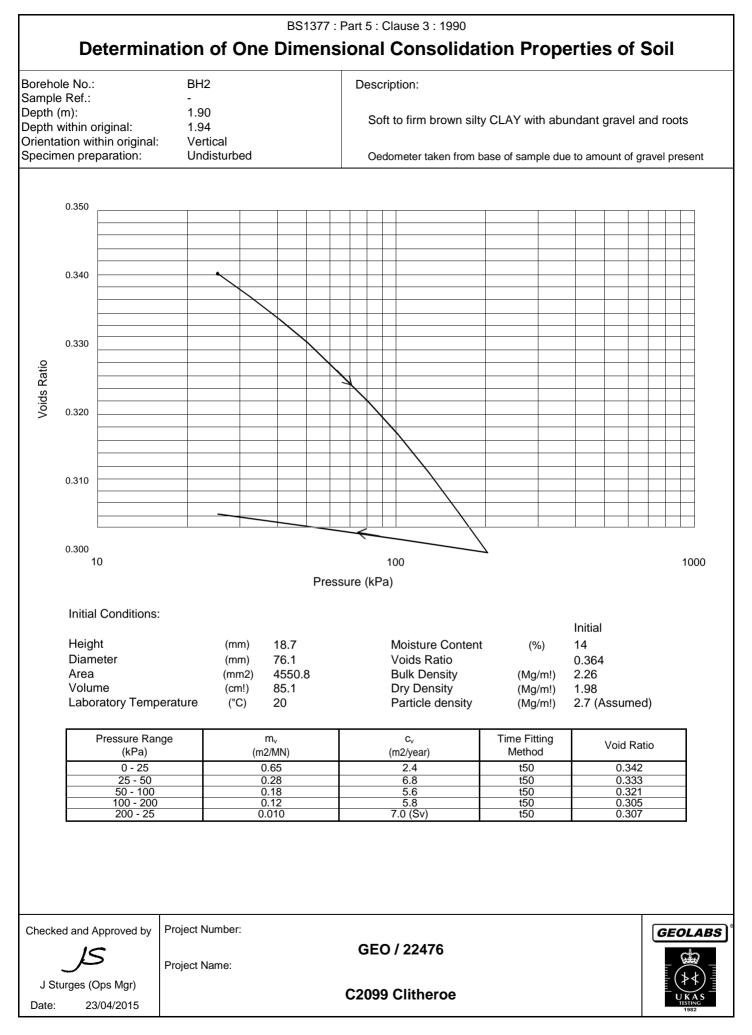
## **Quick Undrained Triaxial Compression Test**

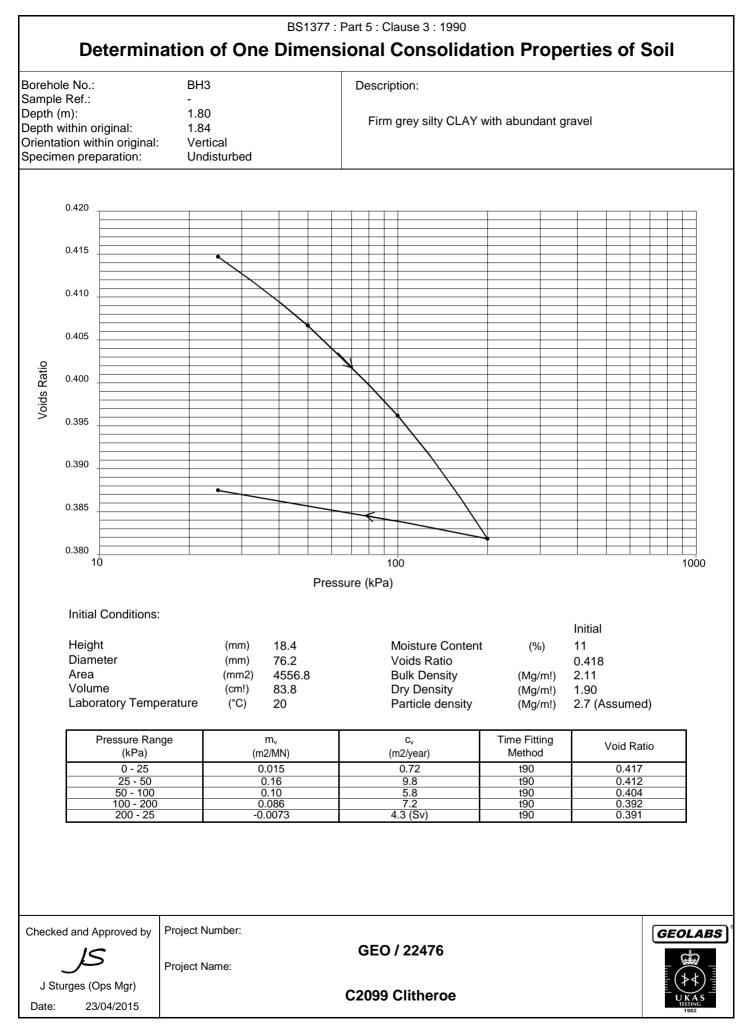
BH/TP No Depth (m) Sample Type


BH3 3.70-4.15 U Description:

Soft to firm grey brown sandy gravelly silty CLAY. Gravel is fine to medium.

Remarks : Sample went to 20% on second stage of multistage test


#### **Specimen Details**


| Specimen conditions      |         | Undisturbed |      |
|--------------------------|---------|-------------|------|
| Length                   | (mm)    | 202.5       |      |
| Diameter                 | (mm)    | 101.7       |      |
| Moisture Content         | (%)     | 12          |      |
| Bulk Density             | (Mg/m³) | 2.39        |      |
| Dry Density              | (Mg/m³) | 2.13        |      |
| Test Details             |         | 1           | 2    |
| Latex membrane thickness | (mm)    | 0.3         | 0.3  |
| Membrane correction      | (kPa)   | 1.0         | 1.1  |
| Axial displacement rate  | (%/min) | 1.0         | 1.0  |
| Cell pressure            | (kPa)   | 37          | 74   |
| Strain at failure        | (%)     | 17.3        | 20.7 |
| Maximum Deviator Stress  | (kPa)   | 87          | 90   |
| Shear Stress Cu          | (kPa)   | 44          | 45   |



Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, Meadowbank Way, Eastwood, Nottingham

GL:Version 1.44 - 16/03/2015







# Appendix V





| Report Number:         | 15-06828 Issue-1                                                            |                   |             |
|------------------------|-----------------------------------------------------------------------------|-------------------|-------------|
| Initial Date of Issue: | 31-Mar-2015                                                                 |                   |             |
| Client:                | HSP Consulting Engineers Limited                                            |                   |             |
| Client Address:        | Lawrence House<br>Meadowbank Way<br>Eastwood<br>Nottinghamshire<br>NG16 3SB |                   |             |
| Contact(s):            | LukeBradley                                                                 |                   |             |
| Project:               | C2099 - Clitheroe                                                           |                   |             |
| Quotation No.:         |                                                                             | Date Received:    | 25-Mar-2015 |
| Order No.:             |                                                                             | Date Instructed:  | 25-Mar-2015 |
| No. of Samples:        | 15                                                                          |                   |             |
| Turnaround: (Wkdays)   | 5                                                                           | Results Due Date: | 31-Mar-2015 |
| Date Approved:         | 31-Mar-2015                                                                 |                   |             |
| Approved By:           |                                                                             |                   |             |
| (CT) Shes              |                                                                             |                   |             |

Details:

Keith Jones, Technical Manager

## Chemtest The right chemistry to deliver results

## Project: C2099 - Clitheroe

| Client: HSP Consulting Engineers Limited |                      | Chen           | ntest Jo | b No.:    | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828 |
|------------------------------------------|----------------------|----------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| Quotation No.:                           | Chemtest Sample ID.: |                |          |           | 120111    | 120112    | 120113    | 120114    | 120115    | 120116    | 120117    | 120118   |
| Order No.:                               | Client Sample Ref.:  |                |          |           |           |           |           |           |           |           |           |          |
|                                          | Client Sample ID.:   |                |          | WS1       | WS2       | WS3A      | WS6       | WS7       | WS8       | WS5       | WS5       |          |
|                                          |                      | Sample Type:   |          | SOIL      |          |
|                                          |                      | Top Depth (m): |          | 0.5       | 0.5       | 0.1       | 0.5       | 0.5       | 0.6       | 0.5       | 0.1       |          |
|                                          | Bottom Depth(m):     |                |          |           |           |           |           |           |           |           |           |          |
|                                          | Date Sampled:        |                |          | 17-Mar-15 |          |
| Determinand                              | Accred.              | SOP            | Units    | LOD       |           |           |           |           |           |           |           |          |
| Moisture                                 | N                    | 2030           | %        | 0.02      | 17        | 26        | 44        | 21        | 19        | 24        | 22        | 31       |
| Soil Colour                              | N                    |                |          |           | Brown     | Brown    |
| Other Material                           | N                    |                |          |           | Stones    | Stones   |
| Soil Texture                             | N                    |                |          |           | Clay      | Clay      | Sand      | Clay      | Clay      | Clay      | Clay      | Clay     |
| рН                                       | М                    | 2010           |          |           | 6.9       | 7.2       | 5.7       | 7.4       | 6.5       | 7.5       | 7.0       | 6.2      |
| Boron (Hot Water Soluble)                | М                    | 2120           | mg/kg    | 0.4       | < 0.40    | 0.41      | 1.9       | 0.66      | 0.51      | 0.52      | < 0.40    | 1.8      |
| Sulphate (2:1 Water Soluble) as SO4      | М                    | 2120           | g/l      | 0.01      | 0.017     | 0.032     | 0.082     | 0.036     | 0.023     | 0.085     | 0.028     | 0.21     |
| Total Sulphur                            | М                    | 2175           | %        | 0.01      | < 0.010   |           | 0.070     | < 0.010   |           | < 0.010   |           |          |
| Sulphur (Elemental)                      | М                    | 2180           | mg/kg    | 1         | < 1.0     | < 1.0     | 4.2       | 4.0       | < 1.0     | < 1.0     | < 1.0     | 6.5      |
| Cyanide (Total)                          | М                    | 2300           | mg/kg    | 0.5       | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50   |
| Cyanide (Free)                           | М                    | 2300           | mg/kg    | 0.5       | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50   |
| Sulphide (Easily Liberatable)            | М                    | 2325           | mg/kg    | 0.5       | 1.6       | 1.7       | 1.3       | 1.8       | 1.4       | 0.96      | 1.3       | 1.1      |
| Sulphate (Acid Soluble)                  | М                    | 2430           | %        | 0.01      | 0.021     |           | 0.17      | 0.046     |           | 0.080     |           |          |
| Arsenic                                  | М                    | 2450           | mg/kg    | 1         | 54        | 10        | 13        | 4.2       | 8.8       | 6.9       | 15        | 9.9      |
| Cadmium                                  | М                    | 2450           | mg/kg    | 0.1       | < 0.10    | 0.21      | 0.77      | 0.41      | 0.85      | 0.42      | 2.3       | 0.50     |
| Chromium                                 | М                    | 2450           | mg/kg    | 1         | 28        | 29        | 33        | 19        | 26        | 23        | 29        | 25       |
| Copper                                   | М                    | 2450           | mg/kg    | 0.5       | 54        | 20        | 32        | 4.1       | 14        | 11        | 23        | 21       |
| Mercury                                  | М                    | 2450           | mg/kg    | 0.1       | 0.15      | < 0.10    | 0.20      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.13     |
| Nickel                                   | М                    | 2450           | mg/kg    | 0.5       | 15        | 31        | 22        | 8.6       | 21        | 16        | 55        | 18       |
| Lead                                     | М                    | 2450           | mg/kg    | 0.5       | 85        | 27        | 100       | 23        | 45        | 31        | 56        | 65       |
| Selenium                                 | М                    | 2450           | mg/kg    | 0.2       | 0.52      | 0.25      | 0.72      | 0.27      | 0.38      | 0.23      | 1.0       | 0.34     |
| Zinc                                     | М                    | 2450           | mg/kg    | 0.5       | 75        | 80        | 130       | 68        | 130       | 95        | 280       | 100      |
| Chromium (Hexavalent)                    | N                    | 2490           | mg/kg    | 0.5       | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50    | < 0.50   |
| Organic Matter                           | М                    | 2625           | %        | 0.4       | 0.90      | 1.7       | 15        | 1.5       | 1.1       | 1.7       | 1.1       | 7.8      |
| Aliphatic TPH >C5-C6                     | N                    | 2675           | mg/kg    | 0.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10   |
| Aliphatic TPH >C6-C8                     | N                    | 2675           | mg/kg    | 0.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10   |
| Aliphatic TPH >C8-C10                    | М                    |                | 0 0      | 0.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10   |
| Aliphatic TPH >C10-C12                   | М                    | 2675           | mg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Aliphatic TPH >C12-C16                   | М                    | 2675           | mg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Aliphatic TPH >C16-C21                   | М                    | 2675           | mg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Aliphatic TPH >C21-C35                   | М                    | 2675           | mg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Aliphatic TPH >C35-C44                   | М                    | 2675           | mg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Total Aliphatic Hydrocarbons             | М                    | 2675           | mg/kg    | 5         | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0     | < 5.0    |

## Chemtest The right chemistry to deliver results

## Project: C2099 - Clitheroe

| Client: HSP Consulting Engineers Limited |                      |                 | ntest Jo |           | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828 |
|------------------------------------------|----------------------|-----------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| Quotation No.:                           | Chemtest Sample ID.: |                 |          |           | 120111    | 120112    | 120113    | 120114    | 120115    | 120116    | 120117    | 120118   |
| Order No.:                               | Client Sample Ref.:  |                 |          |           |           |           |           |           |           |           |           |          |
|                                          | Client Sample ID.:   |                 |          | WS1       | WS2       | WS3A      | WS6       | WS7       | WS8       | WS5       | WS5       |          |
|                                          | Sample Type:         |                 | SOIL     | SOIL      | SOIL      | SOIL      | SOIL      | SOIL      | SOIL      | SOIL      |           |          |
|                                          |                      | Top Depth (m):  |          | 0.5       | 0.5       | 0.1       | 0.5       | 0.5       | 0.6       | 0.5       | 0.1       |          |
|                                          | Bottom Depth(m):     |                 |          |           |           |           |           |           |           |           |           |          |
|                                          |                      | Date Sampled: 1 |          | 17-Mar-15 |          |
| Determinand                              | Accred.              | SOP             | Units    |           |           |           |           |           |           |           |           |          |
| Aromatic TPH >C5-C7                      | N                    | 2675            | mg/kg    | 0.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10   |
| Aromatic TPH >C7-C8                      | N                    | 2675            | mg/kg    | 0.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10   |
| Aromatic TPH >C8-C10                     | М                    | 2675            | mg/kg    | 0.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10   |
| Aromatic TPH >C10-C12                    | М                    | 2675            |          | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Aromatic TPH >C12-C16                    | М                    | 2675            |          | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Aromatic TPH >C16-C21                    | М                    | 2675            |          | 1         | < 1.0     | < 1.0     | 3.9       | < 1.0     | < 1.0     | < 1.0     | < 1.0     | 2.6      |
| Aromatic TPH >C21-C35                    | М                    | 2675            |          | 1         | < 1.0     | < 1.0     | 11        | < 1.0     | < 1.0     | < 1.0     | < 1.0     | 11       |
| Aromatic TPH >C35-C44                    | N                    | 2675            |          | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Total Aromatic Hydrocarbons              | М                    | 2675            | mg/kg    | 5         | < 5.0     | < 5.0     | 15        | < 5.0     | < 5.0     | < 5.0     | < 5.0     | 15       |
| Total Petroleum Hydrocarbons             | М                    | 2675            | mg/kg    | 10        | < 10      | < 10      | 15        | < 10      | < 10      | < 10      | < 10      | 15       |
| Naphthalene                              | М                    | 2700            |          | 0.1       | < 0.10    | < 0.10    | 0.44      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.48     |
| Acenaphthylene                           | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 0.34      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.39     |
| Acenaphthene                             | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 0.16      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.34     |
| Fluorene                                 | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 0.15      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.45     |
| Phenanthrene                             | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 1.3       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 3.5      |
| Anthracene                               | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 0.33      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | < 0.10   |
| Fluoranthene                             | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 3.1       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 5.5      |
| Pyrene                                   | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 3.2       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 5.5      |
| Benzo[a]anthracene                       | М                    | 2700            |          | 0.1       | < 0.10    | < 0.10    | 1.6       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 2.6      |
| Chrysene                                 | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 2.3       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 3.3      |
| Benzo[b]fluoranthene                     | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 1.9       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 3.5      |
| Benzo[k]fluoranthene                     | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 0.34      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 2.0      |
| Benzo[a]pyrene                           | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 1.7       | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 2.3      |
| Indeno(1,2,3-c,d)Pyrene                  | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 0.54      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.78     |
| Dibenz(a,h)Anthracene                    | М                    | 2700            | mg/kg    | 0.1       | < 0.10    | < 0.10    | 0.44      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.43     |
| Benzo[g,h,i]perylene                     | М                    | 2700            |          |           | < 0.10    | < 0.10    | 0.45      | < 0.10    | < 0.10    | < 0.10    | < 0.10    | 0.47     |
| Total Of 16 PAH's                        | М                    | 2700            | mg/kg    | 2         | < 2.0     | < 2.0     | 18        | < 2.0     | < 2.0     | < 2.0     | < 2.0     | 32       |
| Benzene                                  | М                    | 2760            | µg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Toluene                                  | М                    | 2760            | µg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Ethylbenzene                             | М                    | 2760            |          | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| m & p-Xylene                             | М                    | 2760            | µg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| o-Xylene                                 | М                    | 2760            | µg/kg    | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |
| Methyl Tert-Butyl Ether                  | М                    | 2760            |          | 1         | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0    |



# **Results Summary - Soil**

### Project: C2099 - Clitheroe

| Client: HSP Consulting Engineers Limited |               | Cherr  | ntest Jo | b No.:  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  | 15-06828  |
|------------------------------------------|---------------|--------|----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Quotation No.:                           | C             | hemtes | st Samp  | le ID.: | 120111    | 120112    | 120113    | 120114    | 120115    | 120116    | 120117    | 120118    |
| Order No.:                               |               | Clien  | t Sampl  | e Ref.: |           |           |           |           |           |           |           |           |
|                                          |               | Clier  | nt Samp  | le ID.: | WS1       | WS2       | WS3A      | WS6       | WS7       | WS8       | WS5       | WS5       |
|                                          |               |        | Sample   | Type:   | SOIL      |
|                                          |               | Т      | Гор Dep  | th (m): | 0.5       | 0.5       | 0.1       | 0.5       | 0.5       | 0.6       | 0.5       | 0.1       |
|                                          |               | Bot    | tom Dep  | oth(m): |           |           |           |           |           |           |           |           |
|                                          | Date Sampled: |        |          |         | 17-Mar-15 |
| Determinand                              | Accred.       | SOP    | Units    | LOD     |           |           |           |           |           |           |           |           |
| Total Phenols                            | M             | 2920   | mg/kg    | 0.3     | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    | < 0.30    |



## **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at our Coventry laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

## If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.co.uk





| Report Number:         | 15-06833 Issue-1                                                            |                   |             |  |  |  |
|------------------------|-----------------------------------------------------------------------------|-------------------|-------------|--|--|--|
| Initial Date of Issue: | 31-Mar-2015                                                                 |                   |             |  |  |  |
| Client:                | HSP Consulting Engineers Limited                                            |                   |             |  |  |  |
| Client Address:        | Lawrence House<br>Meadowbank Way<br>Eastwood<br>Nottinghamshire<br>NG16 3SB |                   |             |  |  |  |
| Contact(s):            | LukeBradley                                                                 |                   |             |  |  |  |
| Project:               | C2099 - Clitheroe                                                           |                   |             |  |  |  |
| Quotation No.:         |                                                                             | Date Received:    | 25-Mar-2015 |  |  |  |
| Order No.:             |                                                                             | Date Instructed:  | 25-Mar-2015 |  |  |  |
| No. of Samples:        | 2                                                                           |                   |             |  |  |  |
| Turnaround: (Wkdays)   | 5                                                                           | Results Due Date: | 31-Mar-2015 |  |  |  |
| Date Approved:         | 31-Mar-2015                                                                 |                   |             |  |  |  |
| Approved By:           |                                                                             |                   |             |  |  |  |
| Details:               | Darrell Hall, Laboratory Director                                           |                   |             |  |  |  |



### **Results Summary - 2 Stage WAC**

Project: C2099 - Clitheroe

| Chemtest Job No: 15-06833    |      |         |          |          |         |            | Landfill Wa  | aste Acceptar  | ce Criteria    |
|------------------------------|------|---------|----------|----------|---------|------------|--------------|----------------|----------------|
| Chemtest Sample ID: 120134   |      |         |          |          |         |            |              | Limits         |                |
| Sample Ref:                  |      |         |          |          |         |            |              | Stable Non-    |                |
| Sample ID: WS2               |      |         |          |          |         |            |              | reactive       | Hazardous      |
| Top Depth(m): 0.5            |      |         |          |          |         |            | Inert Waste  | Hazardous      | Waste          |
| Bottom Depth(m):             |      |         |          |          |         |            | Landfill     | waste in       | Landfill       |
| Sampling Date: 17-Mar-2015   |      |         |          |          |         |            |              | non-           | Lanam          |
| Determinand                  | SOP  | Accred. | Units    |          |         |            |              | hazardous      |                |
| Total Organic Carbon         | 2625 | U       | %        |          |         | 0.92       | 3            | 5              | 6              |
| Loss on Ignition             | 2610 | U       | %        |          |         | 4.3        |              |                | 10             |
| Total BTEX                   | 2760 | U       | mg/kg    |          |         | < 0.01     | 6            |                |                |
| Total PCBs (7 congeners)     | 2815 | U       | mg/kg    |          |         | < 0.10     | 1            |                |                |
| TPH Total WAC (Mineral Oil)  | 2670 | U       | mg/kg    |          |         | < 10       | 500          |                |                |
| Total (of 17) PAHs           | 2700 | N       | mg/kg    |          |         | < 2.0      | 100          |                |                |
| рН                           | 2010 | U       |          |          |         | 7.1        |              | >6             |                |
| Acid Neutralisation Capacity | 2015 | N       | mol/kg   |          |         | 0.003      |              | To evaluate    | To evaluate    |
|                              |      |         |          |          |         | Cumulative |              |                |                |
| Eluate Analysis              |      |         | 2:1      | 8:1      | 2:1     | 10:1       |              | s for compliar | •              |
|                              |      |         | mg/l     | mg/l     | mg/kg   | mg/kg      | test using B | S EN 12457-3   | at L/S 10 l/kg |
| Arsenic                      | 1450 | U       | < 0.001  | 0.002    | < 0.050 | < 0.050    | 0.5          | 2              | 25             |
| Barium                       | 1450 | U       | 0.003    | 0.008    | < 0.50  | < 0.50     | 20           | 100            | 300            |
| Cadmium                      | 1450 | U       | 0.00068  | 0.0035   | < 0.010 | 0.033      | 0.04         | 1              | 5              |
| Chromium                     | 1450 | U       | 0.004    | 0.011    | < 0.050 | 0.11       | 0.5          | 10             | 70             |
| Copper                       | 1450 | U       | 0.003    | 0.011    | < 0.050 | < 0.050    | 2            | 50             | 100            |
| Mercury                      | 1450 | U       | < 0.0005 | < 0.0005 | < 0.001 | < 0.005    | 0.01         | 0.2            | 2              |
| Molybdenum                   | 1450 | U       | < 0.001  | < 0.001  | < 0.050 | < 0.050    | 0.5          | 10             | 30             |
| Nickel                       | 1450 | U       | 0.002    | 0.006    | < 0.050 | 0.054      | 0.4          | 10             | 40             |
| Lead                         | 1450 | U       | 0.001    | 0.005    | < 0.010 | 0.048      | 0.5          | 10             | 50             |
| Antimony                     | 1450 | U       | < 0.001  | < 0.001  | < 0.010 | < 0.010    | 0.06         | 0.7            | 5              |
| Selenium                     | 1450 | U       | 0.001    | < 0.001  | < 0.010 | < 0.010    | 0.1          | 0.5            | 7              |
| Zinc                         | 1450 | U       | 0.033    | 0.14     | < 0.50  | 1.3        | 4            | 50             | 200            |
| Chloride                     | 1220 | U       | 4.6      | 1.3      | < 10    | 14         | 800          | 15000          | 25000          |
| Fluoride                     | 1220 | U       | 0.19     | 0.14     | < 1.0   | 1.4        | 10           | 150            | 500            |
| Sulphate                     | 1220 | U       | 4.9      | < 1.0    | < 10    | < 10       | 1000         | 20000          | 50000          |
| Total Dissolved Solids       | 1020 | N       | 48       | 17       | 93      | 180        | 4000         | 60000          | 100000         |
| Phenol Index                 | 1920 | U       | < 0.030  | < 0.030  | < 0.30  | < 0.50     | 1            | -              | -              |
| Dissolved Organic Carbon     | 1610 | U       | 31       | 18       | 60      | 190        | 500          | 800            | 1000           |

| Soild Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.175 |
| Moisture (%)                | 23    |

| Leachate Test Information           |       |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|
| Leachant volume 1st extract/l       | 0.296 |  |  |  |  |  |
| Leachant volume 2nd extract/l       | 1.4   |  |  |  |  |  |
| Eluant recovered from 1st extract/l | 0.084 |  |  |  |  |  |



### **Results Summary - 2 Stage WAC**

Project: C2099 - Clitheroe

| Chemtest Job No: 15-06833    |      |         |             |             |              |               | Landfill Wa | aste Acceptar | ce Criteria |
|------------------------------|------|---------|-------------|-------------|--------------|---------------|-------------|---------------|-------------|
| Chemtest Sample ID: 120135   |      |         |             |             |              |               |             | Limits        |             |
| Sample Ref:                  |      |         |             |             |              |               |             | Stable Non-   |             |
| Sample ID: WS4               |      |         |             |             |              |               |             | reactive      | Hazardous   |
| Top Depth(m): 0.1            |      |         |             |             |              |               | Inert Waste | Hazardous     | Waste       |
| Bottom Depth(m):             |      |         |             |             |              |               | Landfill    | waste in      | Landfill    |
| Sampling Date: 17-Mar-2015   |      |         |             |             |              |               |             | non-          | Lanam       |
| Determinand                  | SOP  | Accred. | Units       |             |              |               |             | hazardous     |             |
| Total Organic Carbon         | 2625 | U       | %           |             |              | 3.5           | 3           | 5             | 6           |
| Loss on Ignition             | 2610 | U       | %           |             |              | 9.4           |             |               | 10          |
| Total BTEX                   | 2760 | U       | mg/kg       |             |              | < 0.01        | 6           |               |             |
| Total PCBs (7 congeners)     | 2815 | U       | mg/kg       |             |              | < 0.10        | 1           |               |             |
| TPH Total WAC (Mineral Oil)  | 2670 | U       | mg/kg       |             |              | 37            | 500         |               |             |
| Total (of 17) PAHs           | 2700 | N       | mg/kg       |             |              | 34            | 100         |               |             |
| рН                           | 2010 | U       |             |             |              | 7.2           |             | >6            |             |
| Acid Neutralisation Capacity | 2015 | N       | mol/kg      |             |              | 0.003         |             | To evaluate   | To evaluate |
|                              |      |         | 0.4         | 0.4         | 0-4          | Cumulative    |             | s for complia |             |
| Eluate Analysis              |      |         | 2:1<br>mg/l | 8:1<br>mg/l | 2:1<br>mg/kg | 10:1<br>mg/kg |             | S EN 12457-3  | -           |
| Arsenic                      | 1450 | U       | 0.002       | 0.001       | < 0.050      | < 0.050       | 0.5         | 2             | 25          |
| Barium                       | 1450 | U       | 0.014       | 0.019       | < 0.50       | < 0.50        | 20          | 100           | 300         |
| Cadmium                      | 1450 | U       | 0.0021      | 0.0015      | < 0.010      | 0.015         | 0.04        | 1             | 5           |
| Chromium                     | 1450 | U       | 0.005       | 0.007       | < 0.050      | 0.064         | 0.5         | 10            | 70          |
| Copper                       | 1450 | U       | 0.01        | 0.012       | < 0.050      | < 0.050       | 2           | 50            | 100         |
| Mercury                      | 1450 | U       | < 0.0005    | < 0.0005    | < 0.001      | < 0.005       | 0.01        | 0.2           | 2           |
| Molybdenum                   | 1450 | U       | < 0.001     | < 0.001     | < 0.050      | < 0.050       | 0.5         | 10            | 30          |
| Nickel                       | 1450 | U       | 0.005       | 0.004       | < 0.050      | < 0.050       | 0.4         | 10            | 40          |
| Lead                         | 1450 | U       | 0.01        | 0.012       | 0.019        | 0.12          | 0.5         | 10            | 50          |
| Antimony                     | 1450 | U       | < 0.001     | < 0.001     | < 0.010      | < 0.010       | 0.06        | 0.7           | 5           |
| Selenium                     | 1450 | U       | 0.001       | 0.001       | < 0.010      | 0.011         | 0.1         | 0.5           | 7           |
| Zinc                         | 1450 | U       | 0.077       | 0.05        | < 0.50       | 0.51          | 4           | 50            | 200         |
| Chloride                     | 1220 | U       | 4.1         | 2           | < 10         | 21            | 800         | 15000         | 25000       |
| Fluoride                     | 1220 | U       | 0.13        | 0.085       | < 1.0        | < 1.0         | 10          | 150           | 500         |
| Sulphate                     | 1220 | U       | 15          | 2.2         | 29           | 28            | 1000        | 20000         | 50000       |
| Total Dissolved Solids       | 1020 | N       | 60          | 19          | 120          | 210           | 4000        | 60000         | 100000      |
| Phenol Index                 | 1920 | U       | < 0.030     | < 0.030     | < 0.30       | < 0.50        | 1           | -             | -           |
| Dissolved Organic Carbon     | 1610 | U       | 83          | 22          | 160          | 250           | 500         | 800           | 1000        |

| Soild Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.175 |
| Moisture (%)                | 18    |

| Leachate Test Information           |       |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|
| Leachant volume 1st extract/l       | 0.313 |  |  |  |  |  |
| Leachant volume 2nd extract/l       | 1.4   |  |  |  |  |  |
| Eluant recovered from 1st extract/l | 0.086 |  |  |  |  |  |



#### **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at our Coventry laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

### If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.co.uk



# **Appendix VI**



| Project Number<br>Project Name<br>Client | C2099<br>Land off ChatburnRoad, Clitheroe<br>Oakmere Homes |                 |                 |                |                        |                        |                          |                               |                             |
|------------------------------------------|------------------------------------------------------------|-----------------|-----------------|----------------|------------------------|------------------------|--------------------------|-------------------------------|-----------------------------|
|                                          |                                                            |                 |                 |                | on Limi                |                        |                          |                               |                             |
| Hole Number                              | Gas Flow Rate. (l/hr)                                      | Methane. (%LEL) | Methane. (%vol) | Oxygen. (%vol) | Carbon Dioxide. (%vol) | Carbon Monoxide. (ppm) | Hydrogen Sulphide. (ppm) | Depth of Installation. (mbgl) | Depth of Groundwater (mbgl) |
| CP1                                      | <0.1                                                       | <0.1            | <0.1            | 19.2           | 0.5                    | <1                     | 1                        | 4.22                          | 4.16                        |
| CP2                                      | < 0.1                                                      | <0.1            | <0.1            | 20.1           | 0.0                    | 13                     | 2                        | 5.75                          | 2.00                        |
| CP3<br>WS2                               | 1.2<br><0.1                                                | <0.1<br><0.1    | <0.1<br><0.1    | 20.2<br>17.6   | 0.4                    | 5<br><1                | 2 <1                     | 6.65<br>2.55                  | 1.10<br>DRY                 |
|                                          | <0.1                                                       | <0.1            | <0.1            | 20.8           | 0.2                    | 8                      | <1                       | 1.82                          | 0.62                        |
| WS8                                      | <0.1                                                       | <0.1            | <0.1            | 20.0           | 0.8                    | 5                      | 1                        | 1.94                          | 1.80                        |
|                                          |                                                            |                 |                 |                |                        |                        |                          |                               |                             |
| Date                                     |                                                            | Not             | es:             |                | Baron                  | netric P               | ressure,                 |                               | 00                          |
| 27.03.2015                               | Enginee                                                    | er              | DRS             |                |                        | mbar<br>essure         | -                        |                               | 86<br>sing                  |
|                                          | Equipm                                                     | ient            | GFM43           | 30             | Air                    | Tempe                  | rature                   | 8                             | °C                          |
|                                          |                                                            |                 |                 |                |                        |                        |                          |                               |                             |



Project Number C2099 Project Name Land off ChatburnRoad, Clitheroe Client **Oakmere Homes** Detection Limit <0.1 < 0.1 < 0.1 < 0.1 <1 <1 Depth of Groundwater (mbgl) Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) 14 Hole Number 0.5 8.97 <0.1 <0.1 19.6 13 1.40 < 0.1 1 CP2 < 0.1 <0.1 < 0.1 < 0.1 9.58 2.05 18.0 13 0 9.57 CP3 < 0.1 <0.1 <0.1 17.9 0.90 1.1 0 0 WS2 < 0.1 <0.1 <0.1 16.3 2.2 5 0 2.55 DRY WS6 <0.1 <0.1 < 0.1 20.3 0.6 0 0 1.82 0.76 19.2 WS8 < 0.1 <0.1 < 0.1 1.2 5 1.94 1.38 3 Date Notes: Barometric Pressure, 1020 16.04.2015 Engineer HJD mbar Pressure Trend Rising GFM430 Air Temperature 13°C Equipment



|                    |                       |                 | C2099<br>Land off ChatburnRoad, Clitheroe<br>Oakmere Homes |                |                             |                              |                          |                               |                             |  |  |
|--------------------|-----------------------|-----------------|------------------------------------------------------------|----------------|-----------------------------|------------------------------|--------------------------|-------------------------------|-----------------------------|--|--|
| Π                  |                       |                 |                                                            |                | on Limi                     |                              |                          |                               |                             |  |  |
|                    |                       | <0.1            | <0.1                                                       | <0.1           | <0.1                        | <1                           | <1                       |                               |                             |  |  |
| Hole Number        | Gas Flow Rate. (I/hr) | Methane. (%LEL) | Methane. (%vol)                                            | Oxygen. (%vol) | Carbon Dioxide. (%vol)      | Carbon Monoxide. (ppm)       | Hydrogen Sulphide. (ppm) | Depth of Installation. (mbgl) | Depth of Groundwater (mbgl) |  |  |
| CP1                | <0.1                  | <0.1            | <0.1                                                       | 19.7           | 0.6                         | <1                           | 1                        | 4.20                          | 1.47                        |  |  |
| CP2                | <0.1                  | <0.1            | <0.1                                                       | 20.4           | 0.0                         | 11                           | 2                        | 5.75                          | 2.10                        |  |  |
| CP3                | <0.1                  | <0.1            | <0.1                                                       | 12.1           | 2.9                         | 8                            | 1                        | 6.55                          | 1.35                        |  |  |
| WS2                | <0.1                  | <0.1            | <0.1                                                       | 16.9           | 2.5                         | 5                            | <1                       | 2.55                          | DRY                         |  |  |
| WS6                | <0.1                  | <0.1            | <0.1                                                       | 19.6           | 1.2                         | 8                            | <1                       | 1.95                          | 1.44                        |  |  |
| WS8                | <0.1                  | <0.1            | <0.1                                                       | 20.7           | 0.5                         | 8                            | 2                        | 1.80                          | 0.85                        |  |  |
|                    |                       |                 |                                                            |                |                             |                              |                          |                               |                             |  |  |
|                    |                       |                 |                                                            |                | 1                           |                              |                          |                               |                             |  |  |
| Date<br>24.04.2015 | Enginee               | Not<br>er       | es:<br>DRS                                                 |                | Barometric Pressure<br>mbar |                              |                          | 9                             | 96                          |  |  |
|                    | Equipm                | ent             | GFM43                                                      | 30             |                             | essure <sup>-</sup><br>Tempe |                          |                               | lling<br>3°C                |  |  |
|                    | Lyupin                | CIIL            | 0110143                                                    |                |                             | rempe                        | ature                    | 1 1.                          |                             |  |  |



| Project Number<br>Project Name<br>Client | C2099<br>Land off<br>Oakmere |                 |                 | , Clithe       | roe                    |                        |                          |                               |                             |
|------------------------------------------|------------------------------|-----------------|-----------------|----------------|------------------------|------------------------|--------------------------|-------------------------------|-----------------------------|
|                                          |                              |                 |                 | Detecti        | on Limi                | t                      |                          |                               |                             |
|                                          |                              | <0.1            | <0.1            | <0.1           | <0.1                   | <1                     | <1                       |                               |                             |
| Hole Number                              | Gas Flow Rate. (I/hr)        | Methane. (%LEL) | Methane. (%vol) | Oxygen. (%vol) | Carbon Dioxide. (%vol) | Carbon Monoxide. (ppm) | Hydrogen Sulphide. (ppm) | Depth of Installation. (mbgl) | Depth of Groundwater (mbgl) |
| CP1                                      | <0.1                         | <0.1            | <0.1            | 20.8           | <0.1                   | <1                     | 2                        | 4.18                          | 0.52                        |
| CP2                                      | < 0.1                        | <0.1            | <0.1            | 18.1           | 0.3                    | <1                     | 3                        | 5.72                          | 1.82                        |
| CP3                                      | <0.1                         | <0.1            | <0.1            | 10.0           | 4.4                    | 13                     | 2                        | 6.55                          | 1.06                        |
| WS2                                      | <0.1                         | <0.1            | <0.1            | 18.0           | 2.1                    | 5                      | <1                       | 2.54                          | 2.46                        |
| WS6                                      | < 0.1                        | < 0.1           | <0.1            | 21.0           | < 0.1                  | 8                      | 2                        | 1.96                          | 0.95                        |
| WS8                                      | <0.1                         | <0.1            | <0.1            | 19.8           | 0.5                    | <1                     | 13                       | 1.82                          | 0.70                        |
|                                          |                              |                 |                 |                |                        |                        |                          |                               |                             |
|                                          |                              |                 |                 |                |                        |                        |                          |                               |                             |
| Date                                     |                              | Not             | 1               |                | Baron                  |                        | ressure,                 | 10                            | 001                         |
| 08.05.2015                               | Engine                       | er              | DRS             |                | Pre                    | mbar<br>- essure       |                          |                               | ling                        |
|                                          | Equipm                       | ent             | GFM4            | 30             |                        | Tempe                  |                          |                               | 2°C                         |
|                                          |                              |                 |                 |                |                        |                        |                          |                               |                             |



| Project Number<br>Project Name<br>Client |                       | C2099<br>Land off ChatburnRoad, Clitheroe<br>Oakmere Homes |                 |                |                        |                        |                          |                               |                             |
|------------------------------------------|-----------------------|------------------------------------------------------------|-----------------|----------------|------------------------|------------------------|--------------------------|-------------------------------|-----------------------------|
|                                          |                       |                                                            |                 | Detecti        | on Limi                | it                     |                          |                               |                             |
|                                          |                       | <0.1                                                       | <0.1            | <0.1           | <0.1                   | <1                     | <1                       |                               |                             |
| Hole Number                              | Gas Flow Rate. (I/hr) | Methane. (%LEL)                                            | Methane. (%vol) | Oxygen. (%vol) | Carbon Dioxide. (%vol) | Carbon Monoxide. (ppm) | Hydrogen Sulphide. (ppm) | Depth of Installation. (mbgl) | Depth of Groundwater (mbgl) |
| CP1                                      | <0.1                  | <0.1                                                       | <0.1            | 20.6           | 0.2                    | 8                      | <1                       | 4.20                          | 1.27                        |
| CP2                                      | <0.1                  | <0.1                                                       | <0.1            | 18.0           | <0.1                   | <1                     | <1                       | 5.73                          | 1.97                        |
| CP3                                      | < 0.1                 | < 0.1                                                      | < 0.1           | 13.4           | 2.4                    | <1                     | <1                       | 6.55                          | 0.85                        |
| WS2                                      | < 0.1                 | < 0.1                                                      | < 0.1           | 17.2           | 2.3                    | <1                     | 3                        | 2.33                          | 2.46                        |
| WS6                                      | <0.1                  | < 0.1                                                      | <0.1            | 20.8<br>19.1   | 0.1                    | <1<br><1               | 5<br><1                  | 1.77                          | 0.73                        |
| WS8                                      | <0.1                  | <0.1                                                       | <0.1            | 19.1           | 1.0                    | <1                     | <1                       | 1.95                          | 1.27                        |
|                                          |                       |                                                            |                 |                |                        |                        |                          |                               |                             |
|                                          |                       |                                                            |                 |                |                        |                        |                          |                               |                             |
| Date<br>26.05.2015                       | Enginee               | Not                                                        | es:<br>DRS      |                | Baron                  | netric P<br>mbai       | ressure,                 | 10                            | 008                         |
| 20.05.2015                               | Linginie              | -1                                                         | 515             |                | Pre                    | essure <sup>-</sup>    |                          | Ste                           | ady                         |
|                                          | Equipm                | ent                                                        | GFM4            | 30             |                        | Tempe                  |                          |                               | 5°C                         |
|                                          |                       |                                                            |                 |                |                        |                        |                          |                               |                             |



Project Number C2099 Project Name Land off ChatburnRoad, Clitheroe Client **Oakmere Homes** Detection Limit <0.1 < 0.1 < 0.1 < 0.1 <1 <1 Depth of Groundwater (mbgl) Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) 14 Hole Number 2.1 <0.1 <0.1 13.9 2 4.17 1.42 < 0.1 1 CP2 < 0.1 <0.1 < 0.1 18.4 < 0.1 5.76 2.13 <1 1 CP3 < 0.1 <0.1 <0.1 13.1 4.2 6.37 1.40 2 2 WS2 < 0.1 <0.1 <0.1 18.5 3.3 2 1 2.54 2.43 WS6 <0.1 <0.1 < 0.1 20.1 0.8 <1 2 1.75 0.86 19.7 WS8 < 0.1 <0.1 < 0.1 1.4 1 1.93 1.46 <1 Date Notes: Barometric Pressure, 1007 24.06.2015 Engineer DRS mbar **Steady** Pressure Trend GFM430 Air Temperature 17°C Equipment

# Gas Testing Summary



| -,     | C2099                   |
|--------|-------------------------|
| -      | Land off Chatburn Road, |
| Client | Clitheroe Oakmere Homes |

|     | Methane (%LEL) |      |      |      |      |      |  |  |
|-----|----------------|------|------|------|------|------|--|--|
| CP1 | <0.1           | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |
| CP2 | <0.1           | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |
| CP3 | <0.1           | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |
| WS2 | <0.1           | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |
| WS6 | <0.1           | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |
| WS8 | <0.1           | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |
|     |                |      |      |      |      |      |  |  |
|     |                |      |      |      |      |      |  |  |
|     |                |      |      |      |      |      |  |  |
|     |                |      |      |      |      |      |  |  |

|     | Methane (%Vol) |      |      |       |       |      |  |  |
|-----|----------------|------|------|-------|-------|------|--|--|
| CP1 | <0.1           | <0.1 | <0.1 | < 0.1 | < 0.1 | <0.1 |  |  |
| CP2 | <0.1           | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 |  |  |
| CP3 | <0.1           | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 |  |  |
| WS2 | <0.1           | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 |  |  |
| WS6 | <0.1           | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 |  |  |
| WS8 | <0.1           | <0.1 | <0.1 | <0.1  | <0.1  | <0.1 |  |  |
|     |                |      |      |       |       |      |  |  |
|     |                |      |      |       |       |      |  |  |
|     |                |      |      |       |       |      |  |  |
|     |                |      |      |       |       |      |  |  |

|     | Oxygen. (%vol) |      |      |      |      |      |  |  |
|-----|----------------|------|------|------|------|------|--|--|
| CP1 | 19.2           | 19.6 | 19.7 | 20.8 | 20.6 | 13.9 |  |  |
| CP2 | 20.1           | 18   | 20.4 | 18.1 | 18   | 18.4 |  |  |
| CP3 | 20.2           | 17.9 | 12.1 | 10   | 13.4 | 13.1 |  |  |
| WS2 | 17.6           | 16.3 | 16.9 | 18   | 17.2 | 18.5 |  |  |
| WS6 | 20.8           | 20.3 | 19.6 | 21   | 20.8 | 20.1 |  |  |
| WS8 | 20.1           | 19.2 | 20.7 | 19.8 | 19.1 | 19.7 |  |  |
|     |                |      |      |      |      |      |  |  |
|     |                |      |      |      |      |      |  |  |
|     |                |      |      |      |      |      |  |  |
|     |                |      |      |      |      |      |  |  |

# Gas Testing Summary



| Project Number | C2099                   |
|----------------|-------------------------|
| Project Name   | Land off Chatburn Road, |
| Client         | Clitheroe Oakmere Homes |

|     |     | Carbon Dioxide. (%vol) |     |      |      |      |  |  |  |
|-----|-----|------------------------|-----|------|------|------|--|--|--|
| CP1 | 0.5 | 0.5                    | 0.6 | <0.1 | 0.2  | 2.1  |  |  |  |
| CP2 | 0   | <0.1                   | 0   | 0.3  | <0.1 | <0.1 |  |  |  |
| CP3 | 0.4 | 1.1                    | 2.9 | 4.4  | 2.4  | 4.2  |  |  |  |
| WS2 | 1.6 | 2.2                    | 2.5 | 2.1  | 2.3  | 3.3  |  |  |  |
| WS6 | 0.2 | 0.6                    | 1.2 | <0.1 | 0.1  | 0.8  |  |  |  |
| WS8 | 0.8 | 1.2                    | 0.5 | 0.5  | 1    | 1.4  |  |  |  |
|     |     |                        |     |      |      |      |  |  |  |
|     |     |                        |     |      |      |      |  |  |  |
|     |     |                        |     |      |      |      |  |  |  |
|     |     |                        |     |      |      |      |  |  |  |

|     | Carbon Monoxide. (ppm) |    |    |    |    |    |  |  |
|-----|------------------------|----|----|----|----|----|--|--|
| CP1 | <1                     | 13 | <1 | <1 | 8  | 2  |  |  |
| CP2 | 13                     | 13 | 11 | <1 | <1 | <1 |  |  |
| CP3 | 5                      | 0  | 8  | 13 | <1 | 2  |  |  |
| WS2 | <1                     | 5  | 5  | 5  | <1 | 2  |  |  |
| WS6 | 8                      | 0  | 8  | 8  | <1 | <1 |  |  |
| WS8 | 5                      | 5  | 8  | <1 | <1 | <1 |  |  |
|     |                        |    |    |    |    |    |  |  |
|     |                        |    |    |    |    |    |  |  |
|     |                        |    |    |    |    |    |  |  |
|     |                        |    |    |    |    |    |  |  |

|     | Hydrogen Sulphide. (ppm) |   |    |    |    |   |  |  |  |
|-----|--------------------------|---|----|----|----|---|--|--|--|
| CP1 | 1                        | 1 | 1  | 2  | <1 | 1 |  |  |  |
| CP2 | 2                        | 0 | 2  | 3  | <1 | 1 |  |  |  |
| CP3 | 2                        | 0 | 1  | 2  | <1 | 2 |  |  |  |
| WS2 | <1                       | 0 | <1 | <1 | 3  | 1 |  |  |  |
| WS6 | <1                       | 0 | <1 | 2  | 5  | 2 |  |  |  |
| WS8 | 1                        | 3 | 2  | 13 | <1 | 1 |  |  |  |
|     |                          |   |    |    |    |   |  |  |  |
|     |                          |   |    |    |    |   |  |  |  |
|     |                          |   |    |    |    |   |  |  |  |
|     |                          |   |    |    |    |   |  |  |  |

### Gas Testing Summary



| Project Number | C2099                   |
|----------------|-------------------------|
| Project Name   | Land off Chatburn Road, |
| Client         | Clitheroe Oakmere Homes |

|     | Gas Flow Rate (I/hr) |      |      |      |      |      |  |  |  |
|-----|----------------------|------|------|------|------|------|--|--|--|
| CP1 | <0.1                 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |  |
| CP2 | <0.1                 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |  |
| CP3 | 1.2                  | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |  |
| WS2 | <0.1                 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |  |
| WS6 | <0.1                 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |  |
| WS8 | <0.1                 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |  |  |  |
|     |                      |      |      |      |      |      |  |  |  |
|     |                      |      |      |      |      |      |  |  |  |
|     |                      |      |      |      |      |      |  |  |  |
|     |                      |      |      |      |      |      |  |  |  |

|     | Atmospheric Pressure Range |     |      |      |      |  |  |  |  |
|-----|----------------------------|-----|------|------|------|--|--|--|--|
| 986 | 1020                       | 996 | 1001 | 1008 | 1007 |  |  |  |  |

- Max Methane Concentration (%vol) 0.1
- Max Carbon Dioxide Concentration (%vol) 4.4
- Max Carbon Monoxide Concentration (ppm) 13
- Max Hydrogen Sulphide Concentration (ppm) 13
  - Max Flow Rate (l/hr) 1.2
  - Methane Gas Screening Value 0.0012
  - Carbon Dioxide Gas Screening Value 0.0528
  - Carbon Monoxide Gas Screening Value 0.156
  - Hydrogen Sulphide Gas Screening Value 0.156
    - Maximum Gas Screening Value 0.0528
      - - Characteristic Situation 1 PASS Characteristic Situation 2 PASS
        - Characteristic Situation 3 PASS
        - Characteristic Situation 4 PASS
        - Characteristic Situation 5 PASS
      - Characteristic Situation 6 PASS

| TEST DATE AND CONDITIONS |          |  |  |  |  |  |  |
|--------------------------|----------|--|--|--|--|--|--|
| Date                     | 17/06/15 |  |  |  |  |  |  |
| Atmospheric Pressure     | 1010mB   |  |  |  |  |  |  |
| Ambient Temp             | 24.3°C   |  |  |  |  |  |  |
| Environics Serial No.    | 2633     |  |  |  |  |  |  |

#### GAS DATA LTD Pegasus House Seven Stars Estate Wheler Rd Coventry CV34LB Tel 02476303311 Fax 02476307711

### **GFM430-1 FINAL INSPECTION & CALIBRATION CHECK CERTIFICATE**

| PRESSURE CHECKS |                       |             |         |               |          |        |  |  |  |
|-----------------|-----------------------|-------------|---------|---------------|----------|--------|--|--|--|
| Calibration     | n Pressure            |             | Instrun | nent Pressure | Channels | s Read |  |  |  |
| Pressure @      | Applied               | Atmospheric | tol.    |               |          |        |  |  |  |
|                 | Pressure              | rApl (mB)   | ( mB)   |               |          |        |  |  |  |
| All Potts       | Cunent<br>Atmospheric | 1011        | +/-2.0  |               |          |        |  |  |  |
| Ap Port         | +800mB(a)             | 797         | +/-5.0  |               | Ι        |        |  |  |  |
| (Internal)      | +1200mB(a)            | 1199        | +/-5.0  |               |          |        |  |  |  |

| FLOW CHECKS   |               |                               |                |                              |        |  |  |  |
|---------------|---------------|-------------------------------|----------------|------------------------------|--------|--|--|--|
| Calibra       | tion Flow     | Instrument Flow Channels Read |                |                              |        |  |  |  |
| Applied       | Applied       | Flow                          | tol.           | <b>Differential Pressure</b> | tol.   |  |  |  |
| Flow (I/hour) | Pressure (Pa) | fFlow <b>l</b> (1/hour )      | (l/hour)       | fDpl (Pa)                    | (Pa)   |  |  |  |
| -30.0         | 319           | -30.1                         | +/-3.0         | -325                         | +/-50  |  |  |  |
| -3.0          | -15           | -3.1                          | 3.1 +/-1.0 -16 |                              | +/-6   |  |  |  |
| 0.0           | 0             | 0.0                           | 0.0            | 0                            | 0.0    |  |  |  |
| +3.0          | 14            | 3.0                           | +/-0.5         | 13                           | +/-3   |  |  |  |
| +15.0         | 115           | 15.1                          | +/-1.5         | 115                          | +/-20  |  |  |  |
| +30.0         | 320           | 30.0                          | +/-3.0         | 320                          | +/-50  |  |  |  |
| +60.0         | 981           | 60.8                          | +/-6.0         | 994                          | +/-130 |  |  |  |
| +90.0         | 1931          | 91.3                          | +/-9.0         | 1989                         | +/-250 |  |  |  |

| TEMPERATURE CHECK                                           |                                |         |  |  |  |
|-------------------------------------------------------------|--------------------------------|---------|--|--|--|
| Calibration Temperature Instrument Temperature Channel Read |                                |         |  |  |  |
| Applied Equivalent                                          | Applied Equivalent Temperature |         |  |  |  |
| Temperature (°C)                                            | rTempl (°C)                    | ( oc)   |  |  |  |
| -10.0                                                       | -10.5                          | +/- 2.0 |  |  |  |
| 0.0                                                         | 0.0                            | +/- 1.0 |  |  |  |
| 30.0                                                        | 30.0                           | +/- 1.0 |  |  |  |
| 60.0                                                        | 60.0                           | +/- 1.0 |  |  |  |
| 100.0                                                       | 99.5                           | +/- 1.0 |  |  |  |

#### Notes:

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO900I:2008 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

Gas Data Ltd is certified to BS EN ISO9001:2008. Certificate NQA 8374. Valid until 20 /03 /2016

| TEST DATE AND CONDITIONS |          |  |  |  |  |  |
|--------------------------|----------|--|--|--|--|--|
| Date                     | 17/06/15 |  |  |  |  |  |
| Atmospheric Pressure     | IOIOmB   |  |  |  |  |  |
| Ambient Temp             | 24.3°c   |  |  |  |  |  |
| Environics Serial No.    | 2633     |  |  |  |  |  |

### GAS DATA LTD

Pegasus House Seven Stars Estate Wheler Rd Coventry CV34LB Tel 02476303311 Fax 02476307711

### **GFM430-1 FINAL INSPECTION & CALIBRATION CHECK CERTIFICATE**

| INSTRUMENT DETAILS |                                  |  |  |  |  |
|--------------------|----------------------------------|--|--|--|--|
| Serial No          | Customer                         |  |  |  |  |
| 10152              | HSP Consulting Engineers Limited |  |  |  |  |

| INSTRUMENT CHECKS              |    |                      |                |  |  |  |  |
|--------------------------------|----|----------------------|----------------|--|--|--|--|
| Keyboard / Pump Flow 500cc/min |    |                      |                |  |  |  |  |
| Display Contrast ./            |    | Pump Flow (a) -200mB | 450cc/min      |  |  |  |  |
| Clock Set / Running            | ./ | S/W Version          | G430.0024/0013 |  |  |  |  |
| Labels Fitted                  | ./ | Recalibration Date   | 17/06/16       |  |  |  |  |


| GAS CHECKS                    |         |                              |         |      |         |      |         |  |
|-------------------------------|---------|------------------------------|---------|------|---------|------|---------|--|
| Calibration Gas               |         | Instrument Gas Channels Read |         |      |         |      |         |  |
| Gas Type                      | Applied | CH4                          | tol.    | CO2  | tol.    | 02   | to!.    |  |
|                               | Cone.   | (%)                          | (%vol.) | (%)  | (%vol.) | (%)  | (%vol.) |  |
| N2                            | 100%    | 0.0                          | 0.0     | 0.0  | 0.0     | 0.0  | +0.1    |  |
| CH4                           | 5%      | 5.1                          | +1-0.3  | 0.0  | 0.0     | 0.0  | +0.1    |  |
|                               | 60%     | 60.1                         | +/-3.0  | 0.0  | 0.0     | 0.0  | +0.1    |  |
| CO2                           | 5%      | 0.0                          | 0.0     | 4.9  | +/-0.3  | 0.0  | +0.1    |  |
|                               | 40%     | 0.0                          | 0.0     | 40.3 | +/-3.0  | 0.0  | +0.1    |  |
| Air (20.9% 02,<br>400ppm CO2) | 100%    | 0.0                          | 0.0     | 0.1  | +0.1    | 20.9 | +1-0.5  |  |

|                 | OPTIONAL GAS CHECKS |       |                              |         |  |  |  |          |
|-----------------|---------------------|-------|------------------------------|---------|--|--|--|----------|
| Calibration Gas |                     |       | Instrument Gas Channels Read |         |  |  |  |          |
| Gas             | Applied             | Label | H2S                          | со      |  |  |  | tol.     |
| Туре            | Cone.               | Range | 2000ppm                      | 2000ppm |  |  |  | (% vol.) |
| N2              | 100%                |       | 0                            | 0       |  |  |  | 0.0      |
| H2S             | 1500ppm             |       | 1500                         | 0       |  |  |  | +/- 5.0  |
| со              | 1000ppm             |       | 35                           | 1000    |  |  |  | +/- 5.0  |
|                 |                     |       |                              |         |  |  |  | +/- 5.0  |
|                 |                     |       |                              |         |  |  |  | +/- 5.0  |
|                 |                     |       |                              |         |  |  |  | +/- 5.0  |

| TEST DATE AND CONDITIONS |                    |  |  |  |  |  |
|--------------------------|--------------------|--|--|--|--|--|
| Date                     | <i>°t</i> ,6 ⋅(t:, |  |  |  |  |  |
| Atmospheric Pressure     | (QIQ mB            |  |  |  |  |  |
| Ambient Temp             | 20.1 00            |  |  |  |  |  |
| Environics Serial No.    | 3268               |  |  |  |  |  |

#### SDATALTD ePasus House

eSen Stars Estate Wer Rd. Coventry CV3 4LB



et: 024 76 303311 Fax: 024 76 30771 I

### GFM430-1 OUTWARD INSPECTION & QUALITY CHECK SHEET

|                                   |                                                      | INS             | TRUMENT DETA                                  | AILS                                     |            |                       |
|-----------------------------------|------------------------------------------------------|-----------------|-----------------------------------------------|------------------------------------------|------------|-----------------------|
| SO Number   Instrument Type   Ins |                                                      | strument Serial | Job Number(s)                                 |                                          |            |                       |
| Numk                              |                                                      | ber+ SW Version | L(D                                           | L(D I 1-                                 |            |                       |
| P:J lcl -h                        | C.,F-tvtu?{)                                         | TOR             | ber+ SW Version                               |                                          |            |                       |
| Calibration                       | n Technician                                         | 7.              | •••••                                         | DATE                                     | .!.?       | P.f(!5                |
| Inspection                        | Ũ                                                    |                 |                                               | DAT                                      | E P        | <b>, ,</b> S          |
|                                   | INSTRUMENT<br>CHECKS                                 |                 | Pass (P), Fail (F) or not<br>aoolicable (NA)  | INSTRUMENT<br>LIST                       |            | Tick if<br>included   |
| Function                          | bust Caps Fitted                                     |                 |                                               | n str ument                              |            | 11                    |
| h'ests                            | Keyboard Test (All Keys)<br>Backlight Test           |                 | - r.;                                         | Leather Case<br>Enstrument Strap         | _          | -'\.'' <mark>V</mark> |
|                                   | lock Set / Running                                   |                 | [)                                            | IAC Battery Charger                      | (UK)       | - V                   |
|                                   | omms Test                                            |                 | r                                             | $v \setminus C$ Battery Charger (        | (EURO)     | У                     |
|                                   | Pump Flow Test (In & Out                             | )               | /J                                            | AC Battery Charger (                     | US)        | 1                     |
|                                   | bverall Leak Test (30mB)                             |                 | NA                                            | AC Batte1y Charger (                     | (AUS)      | V                     |
|                                   | Batte1yCharge Test                                   |                 |                                               | Gas Sample Pipe                          |            | 00                    |
|                                   | Service Date set to?                                 |                 | <i>t</i> ,76 (.f                              | =any Case                                |            | )(                    |
| 2 hannel Test                     | Data Logging Enabled?                                |                 | <u>NR</u>                                     | Spares Pot                               |            | Y'                    |
|                                   | Verify CH4/LEL<br>Verify CO2                         |                 | r_,)                                          | Allen Key<br>Flow Sample Pipe            |            |                       |
|                                   | Verify 02                                            |                 | 1                                             | Temperature Probe                        |            | V                     |
|                                   |                                                      |                 |                                               | -                                        |            | У-,                   |
|                                   | Verify LEL                                           | 1/1111 1        |                                               | Vane Anemometer                          |            | <u></u>               |
|                                   | Verify 1st Option gas H                              |                 |                                               | B Cable                                  |            | V.                    |
|                                   | Verify 2nd Option gas                                | <u>n</u>        |                                               | USB Memory stick                         | <b>X</b> 7 | V V                   |
|                                   | Verify 3rd Option gas                                |                 | Nft                                           | SiteMan Software<br>Internal Filter Pack | Ver<br>Oty | V                     |
|                                   |                                                      | re              |                                               | External Filter Pack                     | Oty        | ý<br>V                |
|                                   | Verify atmosp heric pressu<br>Verify static pressure |                 | Ī\JA                                          | field Guide                              | QU         | ý                     |
|                                   | Verify differential pressure                         |                 | E)                                            | bperation Manual (ha                     | y          |                       |
|                                   | Verify flow                                          |                 |                                               | Extra He ms:                             |            | Ţ.                    |
|                                   | Verify temperature probe                             | nput            | V                                             |                                          |            |                       |
|                                   | Verify vane anemometer in                            | nput            | _'1J                                          |                                          |            |                       |
| DataBase                          | Jobcard(s) completed and s                           | igned           | _[.)                                          |                                          |            |                       |
| Checks                            | Jobcard(s) booked off data                           | ıbase           |                                               | $\neg$                                   |            |                       |
|                                   | 2 alibration ce1tificate com                         | pleted          | {-J                                           | -                                        |            |                       |
|                                   | Complete & print QI recor                            | ď               | NA-                                           | Comments:                                |            |                       |
| Label Checks                      | Label Checks No. of Calibration label fitted         |                 | , <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                          |            |                       |
|                                   | Warranty label fitted                                |                 | V                                             |                                          |            |                       |
| H2S Range                         | H2S Range from Sales Or                              | der             | '/ ( L. )                                     | ]                                        |            |                       |
|                                   | H2S Range fromCal Cert                               |                 | j - JI)                                       |                                          |            |                       |
|                                   | Over-range value correct?                            |                 | μ                                             |                                          |            |                       |