

Genesis Centre, Science Park South Birchwood, Warrington, WA3 7BH **Telephone: 01925 812898**

Email: office@leesroxburgh.co.uk
Web Site:www.leesroxburgh.co.uk

Ref: 6196/R1 Rev A

Preston Road Longridge

Flood Risk Assessment

December 2017

REPORT DETAILS

Site Name: Preston Road, Longridge

Report Title: Flood Risk Assessment

Report Number: 6196/R1

Revision	Date	Status
-	December 2017	
Α	January 2018	

Client: Kier Living Ltd

Client Contact: Andrew Tee

Prepared By: John E Lees B.Sc., C.Eng., M.I.C.E., M.C.I.W.E.M.

CONTENTS

1.0		INTRODUCTION	1
2.0		SITE LOCATION AND DESCRIPTION	2
	2.1	Location	2
	2.2	Surrounding Land Use and Access	2
	2.3	Site Description	2
	2.4	Topography	3
	2.5	Existing Drainage	3
	2.6	Development Proposals	4
3.0		FLOOD RISK	5
	3.1	Flood Mapping	5
	3.2	Sequential and Exception Tests	6
	3.3	Sources of Flood Risk	6
4.0		SURFACE WATER RUNOFF	9
	4.1	Requirements for Surface Water Drainage of the Site	9
	4.2	Site Area	9
	4.3	Existing Site Run Off	9
	4.4	Surface Water Run Off from the Developed Site	9
	4.5	Comment	9
5.0		FLOOD MITIGATION MEASURES	11
6.0		CONCLUSIONS	13

APPENDICES

Appendix 1 SITE DETAILS

1A Location Plan

1B Watercourse Systems

Appendix 2 TOPOGRAPHICAL SURVEY

Tri CAD Solutions Ltd Ref. TRI-1192-01

Appendix 3 EXISTING DRAINAGE

3A United Utilities Public Sewer Records

3B Miller Homes Proposals

Appendix 4 EXISTING RUN OFF RATES

HR Wallingford Greenfield Runoff Estimation for Sites

Appendix 5 DRAINAGE PROPOSALS

Lees Roxburgh Drg. No. 6196/01-07 Rev A

1.0 INTRODUCTION

- 1.1 Lees Roxburgh have been instructed by Kier Living Limited to carry out a Flood Risk Assessment (FRA) for proposed the residential development of land off Preston Road, Longridge.
- 1.2 The site has the benefit of an outline planning consent granted on 18th September 2017 (Ref. 3/2016/0974). This report has been prepared to accompany a detailed planning application.
- 1.3 The site lies within an area designated on EA Flood mapping as Flood Risk Zone 1 and therefore comprises land assessed as having a less than a 1 in 1000 annual probability of river or sea flooding in any year.
- 1.4 The National Planning Policy Framework (NPPF) and the accompanying Planning Practice Guidance set out the requirements for addressing flood risk with respect to potential development sites.

In accordance with the NPPF at over 1 hectare in area the site is required to be the subject of an FRA.

- 1.5 Developers are required to provide an assessment which addresses the following;
 - The potential for the proposed development to be affected by flooding either from the development proposal or external sources.
 - The potential for the proposed development to increase the flood risk elsewhere.
 - That mitigation measures introduced to deal with any risks identified can be successfully managed.
 - That the site can be developed and occupied safely.

The NPPF indicates that an assessment of flood risk should be proportionate to the risk and appropriate to the scale, nature and location of the development. This report reflects the requirements of the NPPF in this regard.

2.0 SITE LOCATION AND DESCRIPTION

2.1 Location

- 2.1.1 The site is centred on National Grid references SD59913, 35938 (Appendix 1) and comprises a total area of 18.84ha.
- 2.1.2 The site is situated to the southern outskirts of Longridge some 8km to the north east of Preston city centre.

2.2 Surrounding Land Use and Access

- 2.2.1 The site is bounded by residential development within Longridge to the north, including the current Miller Homes Development.
- 2.2.2 The site fronts onto the B6243 Preston Road to the east, from which access to the Miller Homes development is achieved, with open countryside beyond.
 - To the south and west is open countryside which continues around Longridge to the north.
- 2.2.3 Three large elevated reservoirs, Alston Reservoir No.1, No.2 and No.3 are located just beyond Preston Road to the north east of the site.
- 2.2.4 A dismantled railway runs north east to south west about 200m from the site at its closest.
- 2.2.5 Numerous farms are recorded in the area including Bolton Fold Farm, Daniels Farm and Alston Folds Farm immediately to the south of the site.

2.3 <u>Site Description</u>

2.3.1 The site substantially comprises 6 No. open fields, used as pasture for sheep and cows.

Internal and external field boundaries are generally formed by timber and post/wire fences, reinforced in places with hedges and occasional trees. There are garden fences, as well as post and wire fencing to the boundary of the residential properties to the north of the site.

2.3.2 A high voltage overhead power line cuts across the very northern area of the site and is supported by two pylons within the site area.

Charnley Farm, Fold and Cottage buildings share frontage to Preston Road but lie outside the site area.

2.3.3 There are four ponds recorded within the north west area of the site, although only two of them contained much water at the time of the site visit on 9th October 2014.

2.4 **Topography**

- 2.4.1 Ground levels across the site are uniform, falling generally in a south/south westerly direction.
- 2.4.2 Reference should be made to the topographical survey (**Appendix 2**) but levels can be summarised as follows;

North east boundary with Preston Road ...
 83m AOD

North west boundary...
 85m AOD

• South west boundary... 77m AOD

South east boundary adjacent to Preston Road... 78.5m AOD

2.4.3 Slopes in a north east to south westerly direction average 1 in 86.

2.5 Existing Drainage

2.5.1 Numerous minor watercourse systems are recorded in the area, including within the site.

The nearest main river system is Savick Brook located just beyond the dismantled railway to the north west.

The systems within the site generally flow in a south/south westerly direction through Tippings Farm and Dam House Farm before turning westerly towards Savick Brook.

Drainage to the opposite side of Preston Road generally falls in a southerly direction towards Turn Brook.

- 2.5.2 Within the site, three systems are recorded on OS mapping and have been confirmed on site.
- 2.5.3 Much of the western boundary of the site is formed by a deep ditch which commences with two separate surface water outfalls from the Longridge housing development at the northern site boundary. This ditch system collects a new 225mm diameter outfall from the Miller Homes development, before joining with a second ditch system which crosses the site from northeast to southwest. This latter ditch commences with a 300mm outfall pipe close to the site boundary with properties associated with Grimbledeston Farm.
- 2.5.4 Close to the south eastern site boundary, and running parallel with the Preston Road frontage, a short section of drain issues just south of Charnley Cottage before sinking in what appears to be a south easterly culvert direction. No obvious outfall for this culverted system was located within, or adjacent to the site, on the opposite side of Preston Road. It is presumed to connect with Turn Brook beyond Bolton Fold Farm.
- 2.5.5 A manhole was noted in Preston Road providing some evidence of a highway drainage system.

2.6 <u>Development Proposals</u>

2.6.1 The development proposals comprise 256 No. dwellings and are incorporated in **Appendix 5.**

3.0 FLOOD RISK

3.1 Flood Mapping

3.1.1 Gov. UK Flood Map for Planning

3.1.1.1 Reference to the Gov.UK Flood Map for Planning (Figure. 1) indicates that the site is situated within a Flood Zone 1 Area of flood risk. This is land defined within the NPPF as assessed as having a less than 1 in 1000 annual probability of flooding (<0.1% in any year). All uses of land are appropriate in this zone.

Figure 1: Gov.UK Flood Map for Planning

3.1.2 Gov. UK Surface Water Flood Risk

3.1.2.1 Reference to the Gov.UK Surface Water Flood Risk Map (Figure 2) identifies surface water flooding sporadically in the area and within the site including along the route of the ditch.

Figure 2: Gov.UK Flood Risk from Surface Water

3.2 <u>Sequential and Exception Tests</u>

3.2.1 The proposed development is situated within a Flood Zone 1 Risk Area. On this basis, the Sequential and Exception Tests as set out in NPPF are not applicable.

3.3 Sources of Flood Risk

3.3.1 Water Bodies and Watercourse Systems

3.3.1.1 Grimsargh Reservoirs are situated well below site level and do not present a source of risk to the development.

The Alston Reservoirs are operated and managed by United Utilities and as such will be subject to regular inspection and maintenance to ensure no overtopping or risk of breach.

On this basis it is concluded that the risk of flooding from water bodies can be discounted.

3.3.1.2 The nearest main watercourse system is Savick Brook to the west and which flows away from the site and is not viewed as presenting a source of flood risk. This is confirmed by reference to EA mapping.

As noted, there are minor watercourse systems within the site, the risk of flooding from which will need to be considered.

- 3.3.2 Existing Sewers and Drainage
- 3.3.2.1 Copies of United Utilities public sewer records have been obtained and identify the presence of adopted drainage infrastructure in the area of the site. These records have been incorporated in **Appendix 3**.
- 3.3.2.2 Reference to the public sewer records indicates the following;
 - Generally, foul, combined and surface water systems within the development to the north.

The records here are incomplete.

Foul (375mm diameter) and surface water systems (675mm diameter) exit the development to the north from Thirlmere Drive, cutting into the north west corner of the site.

The surface water system outfalls into the boundary watercourse with the foul system continuing as combined to just beyond the dismantled railway before turning south westerly.

- A 300mm diameter abandoned sewer is also recorded extending down from the residential development and cutting across the western extremity of the site.
- No systems are recorded in Preston Road.
- 3.3.2.3 Information for the drainage from the Miller development has been obtained (Appendix 3B).

This identifies;

- Foul drainage draining to a new pumping station at the southern limit of the development, immediately adjacent to the northern site boundary with a rising main running along the boundary and understood to be connecting into (but not shown as such) the public system described above as it leaves Thirlmere Drive.
- Surface water gravity sewer cutting north east to south west across this
 development site and outfalling into the watercourse at the southern
 boundary with flows limited to a flat rate of 15 litres/sec.

- 3.3.2.4 Reference to United Utilities has not identified any flooding issues associated with the public systems although their presence within the site needs to be taken into account within the development proposals.
- 3.3.3 Land Drainage and Groundwater
- 3.3.3.1 The site appeared generally well drained with the presence of four ponds noted.
- 3.3.3.2 On this basis, land drainage and groundwater issues will need to be considered by this FRA but none are anticipated which cannot be dealt with as part of the normal design and construction process.
- 3.3.4 **Comment**
- 3.3.5.1 On the basis of the assessment of the potential sources of flood risk described above, it is considered that the risks associated with the following need to be addressed by this FRA;
 - Minor watercourse systems within the site and along the site boundary
 - Development drainage proposals
 - Land drainage

4.0 SURFACE WATER RUNOFF

4.1 Requirements for Surface Water Drainage of the Site

- 4.1.1 The NPPF recommends that surface water generated by the development site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development.
- 4.1.2 Proposals should ensure that peak flow rates of surface water leaving the developed site are no greater than those prior to development, reducing surface water run off where possible and taking climate change into consideration.

4.2 Site Area

4.2.1 Within the overall site area the developable area comprises 11.554 ha.

4.3 Existing Site Run Off

- 4.3.1 The existing site is greenfield.
- 4.3.2 Existing greenfield run off rates have been calculated based on the HR Wallingford greenfield runoff estimation method apportioned to the west and east development areas (**Appendix 4**), giving total rates as follows;

• Q_{bar} ... 93.7 litres/sec

Q_{1...} 81.5 litres/sec

• Q₃₀ ... 159.3 litres/sec

• Q₁₀₀ ... 195.0 litres/sec

4.4 Surface Water Run Off from the Developed Site

- 4.4.1 The development plan is incorporated in **Appendix 5.**
- 4.4.2 Uncontrolled flows from the development will significantly exceed greenfield run off rates. For the purposes of this FRA, it is considered that development run off rates limited to the greenfield run off rates identified in 4.3.2 would be appropriate.

4.5 Comment

4.5.1 A Phase 2 Geoenvironmental Site Assessment has been undertaken by Coopers (report ref. 6772si 18th July 2017) and has identified that the site is underlain by clay. On this basis, ground conditions will not favour a ground percolation based drainage solution.

A positive surface water outfall from the development is therefore required.

- 4.5.2 Levels within the proposed development area fall towards the watercourse system to the south which accommodates flows from the main systems running along the site boundary and within the site.
- 4.5.3 It is therefore proposed to connect the surface water drainage system into this system, thus capturing and controlling surface water discharge from the development.

5.0 FLOOD MITIGATION MEASURES

5.1 Existing Ditch Systems

5.1.1 There are two existing ditch systems one running along the west boundary and one running through the centre of the site, both outfalling into a single system to the south west.

There is also a third system just within the Preston Road boundary which outfalls to the south east.

5.1.2 The western boundary system receives surface water from the development to the north.

The source of flows into the central system appears limited with flows from the current Miller development being directed through the site area to the watercourse system to the south.

- 5.1.3 Development levels will be set to ensure flows are safely directed through the development to the downstream watercourse system, and therefore not a source of flood risk (also note 5.2.2). Where required, channel improvement works and maintenance will be undertaken.
- 5.1.4 Measures will similarly be undertaken to the system which runs close to the Preston Road frontage.

5.2 Drainage Development Proposals

5.2.1 It is proposed that flows from the development will be connected into the existing ditch system to the south of the site with flows limited to the greenfield runoff rates identified in 4.3.2. This will be achieved by the incorporation of a complex control arrangement to ensure that flows are contained within the system so as not to exceed the greenfield runoff rates for the equivalent storm event.

The flow of 15 litres/sec from the Miller Homes development will be allowed for in the pipe design but simply passed forward and not attenuated.

The on site piped systems will be designed to accommodate flows up to the 1 in 30 year event and will be proposed for adoption by United Utilities. These systems will connect into two attenuation ponds within the southern area of the site.

Overall flows up to the 1 in 100 year event plus 30% climate change allowance will be accommodated onsite within attenuation ponds, and by appropriate setting of development levels prior to discharge off site, all subject to design development.

5.2.2 It is anticipated some raising of site levels may be required to achieve a gravity drainage solution.

More generally, development levels will also be set in accordance with good design practice and will therefore further mitigate against any risk of associated flooding of properties.

The drainage strategy is incorporated in **Appendix 5.**

5.3 Land Drainage

- 5.3.1 Where required, land drainage will be provided to ensure residual flows are safely conveyed through the development utilising the existing ditch system wherever practicable.
- 5.3.2 Development of itself will reduce uncontrolled land drainage run off from the site area.

6.0 CONCLUSIONS

- 6.1 The FRA has identified that the site lies in an area of Zone 1 Flood Risk.
- 6.2 Setting of development levels will ensure that flows within the existing ditch systems both to the boundary and within the site will be safely conveyed through the development.

Development of itself will reduce uncontrolled land drainage run off from the site area.

- 6.3 It is proposed to connect surface water drainage into the existing surface water system with flows limited to greenfield run off rates, thus mimicking existing run off in accordance with the NPPF.
- 6.4 The proposed drainage system will be designed to accommodate a 1 in 30 year event including allowance for the 15 litres/sec flow from the Miller Homes development which will be passed forward to outfall. The system will be put forward for adoption by United Utilities who will therefore become responsible for the long term maintenance of the new drainage system.

The site systems will connect into two attenuation ponds located in the southern area of the site. Overall the drainage system including the ponds and appropriate setting of development levels will accommodate flows generated by up to the 1 in 100 year event plus 30% allowance for climate change.

Private drainage (i.e. not adoptable) serving houses within the development will be designed to current building standards.

- 6.5 Where required, land drainage will be introduced to pick up residual land drainage flows.
- It is therefore concluded that this FRA has demonstrated in accordance with the NPPF that the development is not at risk of flooding from external sources, will not increase flood risk associated with the development and is therefore appropriate.

Appendix 1: Site Details

Appendix 1A: Location Plan

Kier Living Limited The Genesis Centre Science Park South Birchwood Warrington WA3 7BH Tel: 01925 817 800

Preston Road Longridge

Drawing:

Contract Plan

Drawing File Location:

Drawn by:

11/05/17 Scale: COINS code: 1:1250 @ A0

> This drawing is © copyright protected.
> All dimensions to be checked on site. Any discrepancies to be reported to the Architect immediately.

Date:

This drawing should not be scaled. Revision: Drawing no:

NWL17012 - CP

Appendix 1B: Watercourse Systems

WATERCOURSE SYSTEMS 1:10,000

PRESTON ROAD, LONGRIDGE

Appendix 2: Topographical Survey

Tri CAD Solutions Ltd Ref. TRI-1192-01

Appendix 3: Existing Drainage

Appendix 3A: United Utilities Public Sewer Records

 Refno
 Cover Func
 Invert
 Size.x Size.y Shape Matl
 Length
 Grad
 Refno
 Cover Func
 Invert
 Size.x Size.y Shape Matl
 Length
 Grad

 0401
 78.06
 FO
 77.11
 150
 Cl
 VC
 57.88
 109

 0402
 FO
 0
 150
 Cl
 VC
 45.59

 0403
 FO
 0
 150
 Cl
 VC
 22.48

 0404
 78.45
 FO
 77.69
 150
 Cl
 VC
 22.87

 0405
 78.44
 FO
 77.84
 150
 Cl
 VC
 5.26
 40

 Head of System Hydrobrake / Vortex Inspection Chamber Bifurcation (A) (Catchpit Contaminated Surface Water MW Pumping Station Sludge Pumping Station Sewer Overflow 🗂 🖰 🔼 T Junction/Saddle √o Valve Chamber Washout Chamber DropShaft WW Treatment Works ST Septic Tank Vent Column Network Storage Tank Orifice Plate Penstock Chamber O O Blind Manhole Foul Surface Combined Overflow Screen Chamber CK Control Kiosk Discharge Point Unspecified → ← → Outfall **LEGEND** MANHOLE FUNCTION FO Foul SW Surface Water CO Combined OV Overflow **SEWER SHAPE** Cl Circular TR Trapezoidal EG Egg AR Arch OV Oval BA Barrel FT Flat Top HO HorseShoe RE Rectangular UN Unspecified SQ Square SEWER MATERIAL DI Ductile Iron AC Asbestos Cement PVC Polyvinyl Chloride BR Brick Cast Iron PE Polyethylene RP Reinforced Plastic Matrix Spun Iron CO Concrete Vitrified Clay CSB Concrete Segment Bolted CSU Concrete Segment Unbolted Polypropylene PF Pitch Fibre CC Concrete Box Culverted PSC Plastic/Steel Composite MAC Masonry, Coursed GRC Glass Reinforced Concrete MAR Masonry, Random GRP Glass Reinforced Plastic U Unspecified The position of underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. The actual positions may be different from those shown on the plan and private pipes, sewers or drains may not be recorded. United Utilities will not accept any liability for any damage caused by the actual positions being different from those shown. United Utilities 2001 The plan is based upon the Ordnance Survey Map with the sanction of the Controller of H.M. Stationery Office.Crown and United Utilities copyrights are reserved. Unauthorised reproduction will infringe these copyrights. OS Sheet No: SD6035SW Scale: 1: 1250 Date: 24/09/2014 5 Nodes Sheet 1 of 1 United Utilities

"bing life flow smoothly

SEWER RECORDS

WASTE WATER SYMBOLOGY

O WW Site Termination

Non Return Valve

Extent of Survey

Foul Surface Combined

Surface Combined Overflow

— — — Rising Main, S104

Manhole, Side Entry

Highway Drain, Private

Sludge Main, Public
Sludge Main, Private
Sludge Main, S104

ABANDONED PIPE

OS Sheet No: SD6035SW

Printed By: Gareth Hindley

Scale: 1: 1250 Date: 24/09/2014

OS Sheet No: SD6035NW

Printed By: Gareth Hindley

Scale: 1: 1250 Date: 24/09/2014

 Refno
 Cover Func
 Invert Size.x Size.y Shape Matl
 Length
 Grad
 Refno
 Cover Func
 Invert Size.x Size.y Shape Matl
 Length
 Grad

 8502
 76.37 FO
 75.03 150
 Cl
 VC 84.58
 75.01
 FO
 76.01
 FO
 7701
 FO
 7701
 FO
 7801
 FO

United Utilities 2001 The plan is based upon the Ordnance Survey Map with the sanction of the Controller of H.M. Stationery Office.Crown and United Utilities copyrights are reserved. Unauthorised reproduction will infringe these copyrights.

OS Sheet No: SD5935NE

Scale: 1: 1250 Date: 24/09/2014

5 Nodes

The position of underground apparatus shown on this plan is approximate only and is given in

United Utilities will not accept any liability for any damage caused by the actual positions being

WASTE WATER SYMBOLOGY

O WW Site Termination

Non Return Valve

Flow Meter

Head of System

Extent of Survey

ĕ Hydrobrake / ∨ortex

Inspection Chamber

Contaminated Surface Water

Sludge Pumping Station

Bifurcation

Sewer Overflow

MW Pumping Station

🗂 🖰 🔼 T Junction/Saddle

LampHole

Orifice Plate

Screen Chamber

Discharge Point

Outfall

ST

Foul Surface Combined Overflow

MANHOLE FUNCTION

FO Foul
SW Surface Water
CO Combined
OV Overflow
SEWER SHAPE
CI Circular

EG Egg OV Oval

FT Flat Top

SQ Square
SEWER MATERIAL

RE Rectangular

AC Asbestos Cement

RP Reinforced Plastic Matrix

CSB Concrete Segment Bolted
CSU Concrete Segment Unbolted

CC Concrete Box Culverted
PSC Plastic/Steel Composite

GRC Glass Reinforced Concrete

accordance with the best information currently available.
The actual positions may be different from those shown on the plan and private pipes, sewers or drains may not be recorded.

GRP Glass Reinforced Plastic

Brick

PE Polyethylene

CO Concrete

DropShaft

WW Treatment Works

Network Storage Tank

LEGEND

DI Ductile Iron

PVC Polyvinyl Chloride

Cast Iron

Spun Iron

Polypropylene

MAC Masonry, Coursed

MAR Masonry, Random

U Unspecified

PF Pitch Fibre

Vortex Chamber

TR Trapezoidal

HO HorseShoe

UN Unspecified

BA Barrel

Septic Tank Vent Column

(A) (A) Catchpit

Foul Surface Combined

Surface Combined Overflow

— — — — — — Rising Main, S104

Manhole, Side Entry MainSewer, Public

Highway Drain, Private

ABANDONED PIPE

→ MainSewer

Rising Main
Highway Drain
Sludge Main

Sludge Main, Public
Sludge Main, Private
Sludge Main, S104

CK Control Kiosk

Unspecified

Sheet 1 of 1

United Utilities

Selping life flow smoothly

SEWER RECORDS

OS Sheet No: SD5935NE

Printed By: Gareth Hindley

Scale: 1: 1250 Date: 24/09/2014

 Refno
 Cover Func

 0101
 86.48 SW

 0102
 FO

 0103
 86.21 FO

 0104
 85.95 SW

 0202
 87.01 SW

 0204
 87.85 SW

 0301
 86.22 FO

 0302
 88.4 SW

 0401
 93.85 FO

 0402
 94.29 FO

 0403
 0404

 0406
 CO

 0407
 FO

 0408
 FO

 0409
 SW

 0416
 CO

 1201
 86.95 SW

 1202
 FO

 1203
 86.94 SW

 1204
 87.19 SW

 1205
 FO

 1206
 87.36 FO

 1301
 91.17 FO

 1302
 89.78 FO

 1303
 89.78 FO

 1304
 89.48 SW

 1305
 89.24 FO

 1402
 93.19 FO

 1403
 92.94 FO

 0405
 CO

 04 Refno Cover Func Invert Size.xSize.yShape Matl Length Grad CO 26.87 CO 90.21 CO 92.02 VC 46.81 VC 84.26 0 CI VC 13.16 100 CI VC 5.84 91.67 375 CI CO 31.98 27

CI PVC 5.12

The position of underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. The actual positions may be different from those shown on the plan and private pipes, sewers or drains may not be recorded. United Utilities will not accept any liability for any damage caused by the actual positions being different from those shown. United Utilities 2001 The plan is based upon the Ordnance Survey Map with the sanction of the Controller of H.M. Stationery Office. Crown and United Utilities copyrights are reserved. Unauthorised reproduction will infringe these copyrights. OS Sheet No: sd6036sw Scale: 1: 1250 Date: 26/09/2014

WASTE WATER SYMBOLOGY

Foul Surface Combined

Surface Combined Overflow

WW Site Termination

Non Return Valve

Hydrobrake / Vortex

Inspection Chamber

Contaminated Surface Water

Sludge Pumping Station

T Junction/Saddle

Valve Chamber Washout Chamber

WW Treatment Works

Network Storage Tank

Penstock Chamber

LEGEND

DropShaft

Septic Tank Vent Column

Orifice Plate

Blind Manhole

TR Trapezoidal

HO HorseShoe

UN Unspecified

BA Barrel

Bifurcation

▲ ▲ WW Pumping Station

百 百

ST

0 0 0

MANHOLE FUNCTION

FO Foul SW Surface Water

CO Combined OV Overflow

SEWER SHAPE

CI Circular EG Egg OV Oval

FT Flat Top

SQ Square

RE Rectangular

SEWER MATERIAL

Brick

CO Concrete

AC Asbestos Cement

Polyethylene

Reinforced Plastic Matrix

CSB Concrete Segment Bolted CSU Concrete Segment Unbolted

CC Concrete Box Culverted

PSC Plastic/Steel Composite

GRP Glass Reinforced Plastic

GRC Glass Reinforced Concrete

Foul Surface Combined Overflow

Screen Chamber

Discharge Point

→ ← → Outfall

→ Sewer Overflow

Extent of Survey

Manhole, Side Entry

Highway Drain, Private

ABANDONED PIPE

→ MainSewer Rising Main → - - Highway Drain Sludge Main

Sludge Main, Public — 느 - Sludge Main, Private — 🛰 — Sludge Main, S104

CK Control Kiosk

Unspecified

44 Nodes

DI Ductile Iron

PVC Polyvinyl Chloride

Polypropylene Pitch Fibre

MAC Masonry, Coursed

MAR Masonry, Random

Sheet 1 of 1 United

Scale: 1: 1250 Date: 26/09/2014

OS Sheet No: sd6036sw

Printed By: Gareth Hindley

WASTE WATER SYMBOLOGY Surface Combined Overflow Manhole, Side Entry Highway Drain, Private Foul Surface Combined WW Site Termination Sludge Main, Public — 느 - Sludge Main, Private — 🛰 — Sludge Main, S104 Non Return Valve **ABANDONED PIPE** Extent of Survey → MainSewer Rising Main → - - Highway Drain Sludge Main Hydrobrake / Vortex Inspection Chamber Bifurcation Contaminated Surface Water ▲ ▲ WW Pumping Station Sludge Pumping Station →□→ Sewer Overflow T Junction/Saddle Valve Chamber Washout Chamber DropShaft WW Treatment Works ST Septic Tank Vent Column Network Storage Tank Orifice Plate Vortex Chamber Penstock Chamber O O Blind Manhole Foul Surface Combined Overflow Screen Chamber CK Control Kiosk Discharge Point Unspecified → ← → Outfall **LEGEND** MANHOLE FUNCTION FO Foul SW Surface Water CO Combined OV Overflow **SEWER SHAPE** TR Trapezoidal CI Circular EG Egg OV Oval FT Flat Top HO HorseShoe RE Rectangular SQ Square **SEWER MATERIAL** DI Ductile Iron PVC Polyvinyl Chloride Reinforced Plastic Matrix CO Concrete CSB Concrete Segment Bolted CSU Concrete Segment Unbolted Pitch Fibre CC Concrete Box Culverted PSC Plastic/Steel Composite MAC Masonry, Coursed GRC Glass Reinforced Concrete MAR Masonry, Random GRP Glass Reinforced Plastic U Unspecified The position of underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. The actual positions may be different from those shown on the plan and private pipes, sewers or drains may not be recorded. United Utilities will not accept any liability for any damage caused by the actual positions being different from those shown. United Utilities 2001 The plan is based upon the Ordnance Survey Map with the sanction of the Controller of H.M. Stationery Office. Crown and United Utilities copyrights are reserved. Unauthorised reproduction will infringe these copyrights. OS Sheet No: sd5936se Scale: 1: 1250 Date: 26/09/2014 68 Nodes Sheet 1 of 1 United Utilities "ping life flow smoothly

SEWER RECORDS

Refno Cover Func Invert Size.xSize.yShape Matl Length Grad

Appendix 3B: Miller Homes Proposals

Online Storage (AQUAcells) = 1500 FURTHER TOPOGRAPHICAL SURVEY WORK IS REQUIRED TO ESTABLISH THE EXTENT OF RISING MAIN / GRAVITY SEWER. THE DESIGN WILL DISCHARGE INTO A GRAVITY SEWER AT THE EARLIEST OPPORTUNITY (ON THE BASIS THAT THIS IS A MORE COST EFFECTIVE SOLUTION). Storage Pond / AQUAcell arrangement Providing 520m3 storage to accomodate 1/100yr storms plus 30% Climate Change. Proposed Hydro brake manhole to surface water outfall at circa 15//secs Ditch invert level overburden, approximately 250mm Stone in with timber kicker boards Approx line of new surface water drain The client must not amend any drawing, design or other intellectual property produced by REC Ltd. without permission in writing from REC Ltd. in advance of any amendments being made. In the event that such written **Surface Water** permission is not obtained in advance of the amendments being made, REC Discharge Ltd. shall not be liable for any damage and/or losses occuring as a result of the amended drawing, design or intellectual property. Notes: Client Job Title Resource and Environmental Job No: 44661

320130132P

Resource & Environmental Consultants Ltd

Consultants Ltd
Osprey House, Pacific Quay
Manchester, M50 2UE
Tel: 0161 868 1300
Fax: 0161 868 1301 E-mail: sales@recItd.co.uk Website: www.recItd.co.uk

Preston Road, Longridge

Miller Homes

Drawn by: R. Willoughby

Approved by: L. Waterhouse

Scale: 1:1000 @ A1

Drawing Title

44661p1r1-001 Conceptual Drainage Feasibility Plan

Appendix 4: Existing Run Off Rates

HR Wallingford Greenfield Runoff Estimation for Sites

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:

Lees Roxburgh

Site name:

Site East

Site location:

Longridge

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site coordinates

Latitude:

53.81825° N

Longitude: 2.61115° W

Reference: 6198798

Date:

2017-12-12T08:24:48

Mothod	ماما	av
Method	010	gy

IH124

Site characteristics

Total site area (ha)	3.407

Methodology

Qbar estimation method	Calculate	from SPR	and SAAR
SPR estimation method Calculate f		from SOIL	type
		Default	Edited
SOIL type		4	4
HOST class			
SPR/SPRHOST		0.47	0.47

Hydrological characteristics	Default	Edited
SAAR (mm)	1091	1091
Hydrological region	10	10
Growth curve factor: 1 year	0.87	0.87
Growth curve factor: 30 year	1.7	1.7
Growth curve factor: 100 year	2.08	2.08

Notes:

(1) Is Q _B	R < 2.0 l/s/ha?
-----------------------	-----------------

(2) Are flow rates < 5.0 l/s?

(3) Is SPR/SPRHOST ≤ 0.3?

Greenfield runoff rates	Default	Edited
Qbar (I/s)	27.64	27.64
1 in 1 year (I/s)	24.05	24.05
1 in 30 years (I/s)	47	47
1 in 100 years (I/s)	57.5	57.5

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:

Lees Roxburgh

Site name:

Site West

Site location:

Longridge

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site coordinates

Latitude:

53.81852° N

Longitude: 2.61104° W

Reference: 6198795

Date:

2017-12-12T08:19:49

Method	0	logy

IH124

Site characteristics

Total site area (ha)	Total	site	area	(ha)	
----------------------	-------	------	------	------	--

8.147

Methodology

Qbar estimation method Calculate		from SPR	and SAAR
SPR estimation method	Calculate from SOIL type		type
		Default	Edited
SOIL type		4	4
HOST class			
SPR/SPRHOST		0.47	0.47

Hydrological characteristics	Default	Edited
SAAR (mm)	1091	1091
Hydrological region	10	10
Growth curve factor: 1 year	0.87	0.87
Growth curve factor: 30 year	1.7	1.7
Growth curve factor: 100 year	2.08	2.08

Notes:

(1) I	s Q	< 2.0	I/s/ha?
(1) 1	S WRAE	, ~ 2.0	1/5/114!

(2) Are flow rates < 5.0 l/s?

(3) Is SPR/SPRHOST ≤ 0.3?

Greenfield runoff rates	Default	Edited
Qbar (I/s)	66.11	66.11
1 in 1 year (I/s)	57.51	57.51
1 in 30 years (I/s)	112.38	112.38
1 in 100 years (I/s)	137.5	137.5

Appendix 5: Drainage Proposals

Lees Roxburgh Drg. No. 6196/01-07 Rev A

