

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

02/08/2018

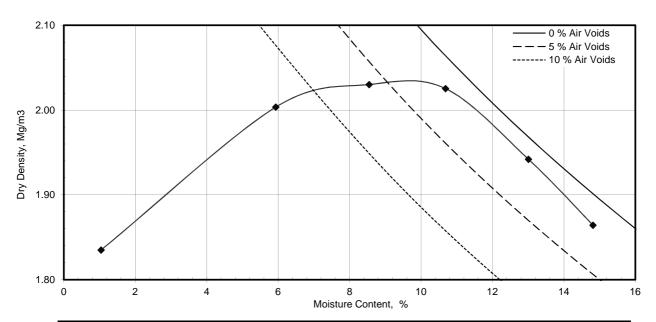
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

Dry Density / Moisture Content Relationship **Light Compaction**

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	Delta-Simons Suite GB Barclay House 35 Whitworth Street West Manchester M1 5NG	Client Reference: 18-0886-03 Job Number: 18-93466 Date Sampled: 12/07/2018 Date Received: 16/07/2018 Date Tested: 31/07/2018
Contact: Site Name:	Rachel Stringer Clitheroe Road, Whalley	Sampled By: Melanie Booth
Site Address:	Not Given	

TESTRESULTS		
Laboratory Reference:	1006186	
Hole No.:	AP01	Depth Top [m]: 0.00
Sample Reference:	Stockpile	Depth Base [m]: Not Given
Sample Description:	Dark brown very gravelly slightly sandy slightly clayey SILT	Sample Type: B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m³	2.65
As received Moisture Content	%	1.0
Maximum Dry Density	Mg/m³	2.03
Optimum Moisture Content	%	9.6

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager **Geotechnical Section**

Piotuli

Date Reported:

02/08/2018

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

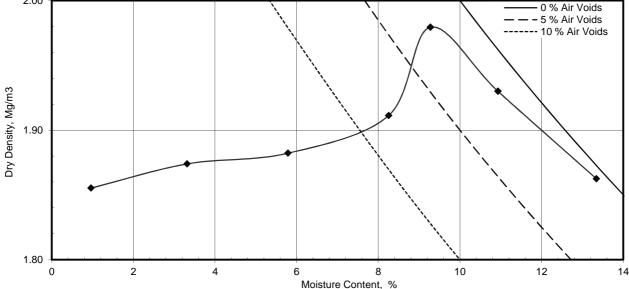
The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Dry Density / Moisture Content Relationship Light Compaction i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	Delta-Simons Suite GB Barclay House 35 Whitworth Street West Manchester M1 5NG	Client Reference: 18-0886-03 Job Number: 18-93466 Date Sampled: 12/07/2018 Date Received: 16/07/2018 Date Tested: 31/07/2018
Contact: Site Name: Site Address:	Rachel Stringer Clitheroe Road, Whalley Not Given	Sampled By: Melanie Booth

TEST RESULTS


 Laboratory Reference:
 1006187

 Hole No.:
 AP02

 Sample Reference:
 Stockpile

 Sample Description:
 Greyish brown slightly gravelly slightly sandy clayey SILT

 2.00
 2.00

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m³	2.50
As received Moisture Content	%	1.0
Maximum Dry Density	Mg/m³	1.98
Optimum Moisture Content	%	9.3

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

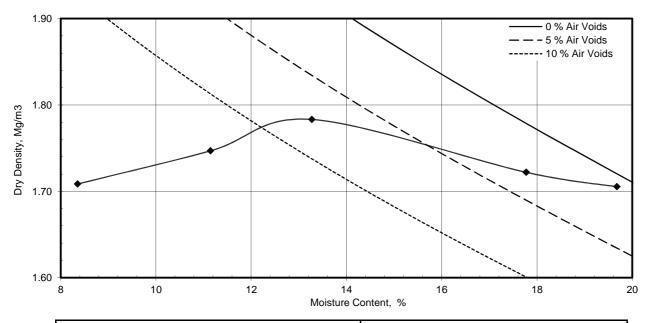
Signed:

Darren Berrill Geotechnical General Manager

Date Reported: 02/08/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland." for and on behalf of i2 Analytical Ltd

Dry Density / Moisture Content Relationship Light Compaction i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS


Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	Delta-Simons Suite GB Barclay House 35 Whitworth Street West Manchester M1 5NG	Client Reference: 18-0886-03 Job Number: 18-93466 Date Sampled: 12/07/2018 Date Received: 16/07/2018 Date Tested: 31/07/2018
Contact: Site Name: Site Address:	Rachel Stringer Clitheroe Road, Whalley Not Given	Sampled By: Melanie Booth

TEST RESULTS

Laboratory Reference: Hole No.: Sample Reference: Sample Description: 1006194 TP113 Not Given Yellowish brown sandy CLAY

Depth Top [m]: 0.80 Depth Base [m]: Not Given Sample Type: B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m³	2.60
As received Moisture Content	%	18
Maximum Dry Density	Mg/m³	1.78
Optimum Moisture Content	%	13

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Postuli

Date Reported: 02/0

d: 02/08/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

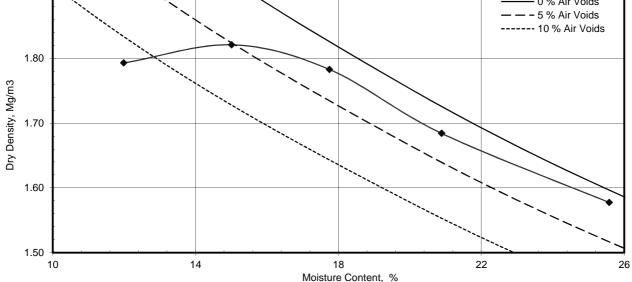
Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

Dry Density / Moisture Content Relationship Light Compaction

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	Delta-Simons Suite GB Barclay House 35 Whitworth Street West Manchester M1 5NG	Client Reference: 18-0886-03 Job Number: 18-93466 Date Sampled: 12/07/2018 Date Received: 16/07/2018 Date Tested: 31/07/2018
Contact: Site Name: Site Address:	Rachel Stringer Clitheroe Road, Whalley Not Given	Sampled By: Melanie Booth

TEST RESULTS

Laboratory Reference: 1006195 TP119 Depth Top [m]: 2.00 Hole No .: Not Given Depth Base [m]: Not Given Sample Reference: Brown sandy CLAY Sample Type: B Sample Description: 1.90 0 % Air Voids – – – 5 % Air Voids

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m³	2.70
As received Moisture Content	%	26
Maximum Dry Density	Mg/m³	1.82
Optimum Moisture Content	%	13

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager **Geotechnical Section**

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

Date Reported:

02/08/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1

Rachel Stringer Delta-Simons Suite GB Barclay House 35 Whitworth Street West Manchester M1 5NG

t: 01613028128

e: Rachel.Stringer@deltasimons.com

Analytical Report Number : 18-93463

Project / Site name:	Clitheroe Road, Whalley	Samples received on:	16/07/2018
Your job number:	18-0886.03	Samples instructed on:	19/07/2018
Your order number:	DS39658	Analysis completed by:	26/07/2018
Report Issue Number:	1	Report issued on:	26/07/2018
Samples Analysed:	10 soil samples		

fat Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number: 18-93463

Project / Site name: Clitheroe Road, Whalley

Your Order No: DS39658

Lab Sample Number				1006169	1006170	1006171	1006172	1006173
Sample Reference			TP102	TP104	TP107	TP110	TP113	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)			0.26	2.60	1.00	2.50	2.00	
Date Sampled			11/07/2018	12/07/2018	12/07/2018	11/07/2018	12/07/2018	
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	12	15	6.5	7.9	21
Total mass of sample received	ka	0.001	NONE	0.80	0.91	0.59	0.51	0.71

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.0	8.1	8.1	8.4	7.7
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	26	17	16	15	73
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.013	0.0086	0.0081	0.0075	0.036
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	mg/l	1.25	MCERTS	13.0	8.6	8.1	7.5	36.3

Analytical Report Number: 18-93463

Project / Site name: Clitheroe Road, Whalley

Your Order No: DS39658

Lab Sample Number				1006174	1006175	1006176	1006177	1006178
Sample Reference				TP123	TP127	TP135	TP139	TP142
Sample Number				None Supplied				
Depth (m)	1.90	0.30	3.00	0.50	1.70			
Date Sampled	12/07/2018	13/07/2018	09/07/2018	10/07/2018	13/07/2018			
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	12	15	12	19
Total mass of sample received	ka	0.001	NONE	0.90	0.53	0.50	0.56	0.63

General	Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.7	7.3	7.7	7.3	8.2
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	43	29	350	31	110
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.022	0.014	0.18	0.015	0.053
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	mg/l	1.25	MCERTS	21.6	14.4	176	15.4	53.3

Analytical Report Number : 18-93463

Project / Site name: Clitheroe Road, Whalley

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1006169	TP102	None Supplied	0.26	Brown sandy loam with gravel.
1006170	TP104	None Supplied	2.60	Brown sand with gravel.
1006171	TP107	None Supplied	1.00	Light brown sand with gravel.
1006172	TP110	None Supplied	2.50	Light brown sand with gravel.
1006173	TP113	None Supplied	2.00	Brown clay and sand with gravel.
1006174	TP123	None Supplied	1.90	Brown clay and sand with gravel.
1006175	TP127	None Supplied	0.30	Brown loam and clay with vegetation.
1006176	TP135	None Supplied	3.00	Brown clay and sand.
1006177	TP139	None Supplied	0.50	Brown loam and clay with vegetation.
1006178	TP142	None Supplied	1.70	Brown clay.

Analytical Report Number : 18-93463

Project / Site name: Clitheroe Road, Whalley

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Appendix D – Soil Chemical Analysis Results

Environment | Health & Safety | Sustainability

Rachel Stringer Delta-Simons Suite GB Barclay House 35 Whitworth Street West Manchester M1 5NG

t: 01613028128

e: Rachel.Stringer@deltasimons.com

Analytical Report Number : 18-92912

Project / Site name:	Whalley	Samples received on:	12/07/2018
Your job number:	18-0886.03	Samples instructed on:	18/07/2018
Your order number:	DS39619	Analysis completed by:	24/07/2018
Report Issue Number:	1	Report issued on:	24/07/2018
Samples Analysed:	13 soil samples		

LAS Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Iss No 18-92912-1 Whalley 18-0886.03

Your Order No: DS39619

Lab Sample Number		1002928	1002929	1002930	1002931	1002932		
Sample Reference				DS101	DS101	DS102	DS103	DS104
Sample Number				None Supplied				
Depth (m)				0.00-0.25	1.80-2.00	1.50-1.60	2.90-3.00	0.00-0.40
Date Sampled				11/07/2018	11/07/2018	11/07/2018	11/07/2018	11/07/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.1	24	14	12	6.0
Total mass of sample received	kg	0.001	NONE	0.98	1.3	1.3	1.4	1.1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-	-	Not-detected
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.34	< 0.05	< 0.05	< 0.05	0.15
Anthracene	mg/kg	0.05	MCERTS	0.15	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.47	< 0.05	< 0.05	< 0.05	0.25
Pyrene	mg/kg	0.05	MCERTS	0.42	< 0.05	< 0.05	< 0.05	0.21
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.31	< 0.05	< 0.05	< 0.05	0.13
Chrysene	mg/kg	0.05	MCERTS	0.26	< 0.05	< 0.05	< 0.05	0.18
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.34	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.09	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.25	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.63	< 0.80	< 0.80	< 0.80	0.92
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	4.6	9.8	6.8	11
Barium (aqua regia extractable)	mg/kg	1	MCERTS	76	-	-	-	86
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.60	-	-	-	0.66
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	-	-	-	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.6	0.4	0.7	1.0	0.6
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	-	-	-	< 1.2
Chromium (III)	mg/kg	1	NONE	22	7.8	16	13	18
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	7.6	16	13	18
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	16	12	19	24
Lead (aqua regia extractable)	mg/kg	1	MCERTS	47	11	14	16	52
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	16	21	22	17
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.8	< 1.0	< 1.0	1.8	1.9
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	74	45	74	66	75

Your Order No: DS39619

Lab Sample Number	Lab Sample Number					1002930	1002931	1002932
Sample Reference				DS101	DS101	DS102	DS103	DS104
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)		0.00-0.25	1.80-2.00	1.50-1.60	2.90-3.00	0.00-0.40		
Date Sampled				11/07/2018	11/07/2018	11/07/2018	11/07/2018	11/07/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics			-					
Benzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
p & m-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
o-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	13	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	18	< 10	< 10	< 10	< 10

Your Order No: DS39619

Lab Sample Number		1002933	1002934	1002935	1002936	1002937		
Sample Reference				DS105	DS106	DS108	DS110	DS110
Sample Number				None Supplied				
Depth (m)				0.00-0.25	0.00-0.25	2.20-2.50	0.00-0.40	2.50-2.60
Date Sampled				11/07/2018	10/07/2018	10/07/2018	10/07/2018	10/07/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.0	8.1	14	9.2	14
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.4	1.1	1.6
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	Not-detected	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.65	0.83	< 0.05	0.40	< 0.05
Anthracene	mg/kg	0.05	MCERTS	0.13	0.12	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.69	1.0	< 0.05	0.48	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.58	0.86	< 0.05	0.45	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.32	0.44	< 0.05	0.22	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.34	0.60	< 0.05	0.27	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.34	0.53	< 0.05	0.22	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.24	0.29	< 0.05	0.15	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.35	0.45	< 0.05	0.22	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.21	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.27	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.64	5.64	< 0.80	2.41	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	12	5.4	17	3.3
Barium (aqua regia extractable)	mg/kg	1	MCERTS	76	99	-	260	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.63	0.88	-	1.1	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	0.6	-	0.4	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	0.9	0.6	1.5	0.7
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	-	< 1.2	-
Chromium (III)	mg/kg	1	NONE	22	23	17	26	12
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	23	16	26	12
Copper (aqua regia extractable)	mg/kg	1	MCERTS	27	20	18	19	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	41	32	13	31	9.4
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	25	27	39	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.7	2.1	2.0	3.7	4.3
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	77	81	63	95	63

Analytical Report Number: 18-92912 Project / Site name: Whalley Your Order No: DS39619

Lab Sample Number				1002933	1002934	1002935	1002936	1002937
Sample Reference				DS105	DS106	DS108	DS110	DS110
Sample Number				None Supplied				
Depth (m)				0.00-0.25	0.00-0.25	2.20-2.50	0.00-0.40	2.50-2.60
Date Sampled	11/07/2018	10/07/2018	10/07/2018	10/07/2018	10/07/2018			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
p & m-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
o-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	3.5	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	12	< 2.0	4.5
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	14	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	17	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	47	< 10	18
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	2.5	6.8	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	16	19	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	24	35	< 10	< 10

Your Order No: DS39619

Lab Sample Number		1002938	1002939	1002940			
Sample Reference				DS111	DS111	DS112	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.00-0.30	1.30-1.40	0.00-0.20	
Date Sampled				10/07/2018	10/07/2018	11/07/2018	
Time Taken				None Supplied	None Supplied	None Supplied	
			Þ				
An electrical Process for	-	Limit of detection	Accreditation Status				
Analytical Parameter	Units	ted mit	creditat Status				
(Soil Analysis)	ស	igi ef	us				
		_	9				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	5.3	13	10	
Total mass of sample received	kg	0.001	NONE	0.93	1.1	1.0	
		_			-	-	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	
Speciated PAHs	-						I
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	├ ──── ├ ────
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Phenanthrene Anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
Fluoranthene	<u>, , , , , , , , , , , , , , , , , , , </u>	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Pyrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	
Heavy Metals / Metalloids			1				r
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.6	10	12	
Barium (aqua regia extractable)	mg/kg	1	MCERTS	150	-	77	├ ──── ├ ────
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.82	-	0.77	l – – – – – – – – – – – – – – – – – – –
Boron (water soluble)	mg/kg	0.2	MCERTS	1.4	-	0.5	l
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.7 < 1.2	0.7	0.4	ł – – – – – – – – – – – – – – – – – – –
Chromium (hexavalent) Chromium (III)	mg/kg	1.2	MCERTS	<u>< 1.2</u> 24	- 34	< 1.2 28	<u>} </u> }
Chromium (III) Chromium (aqua regia extractable)	mg/kg mg/kg	1	NONE MCERTS	24	34	28	<u>} </u> }
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	18	34	17	1 1
Lead (aqua regia extractable)	mg/kg ma/ka	1	MCERTS	33	20	50	<u> </u>
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	l
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	45	21	l
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	2.2	< 1.0	1.7	1 1
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	95	81	66	1

Analytical Report Number: 18-92912 Project / Site name: Whalley Your Order No: DS39619

Lab Sample Number				1002938	1002939	1002940		
Sample Reference				DS111	DS111	DS112		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)	0.00-0.30	1.30-1.40	0.00-0.20					
Date Sampled	10/07/2018	10/07/2018	11/07/2018					
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-		-	
Benzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
Toluene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
Ethylbenzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
p & m-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
o-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	11	< 10	< 10	

Analytical Report Number : 18-92912

Project / Site name: Whalley

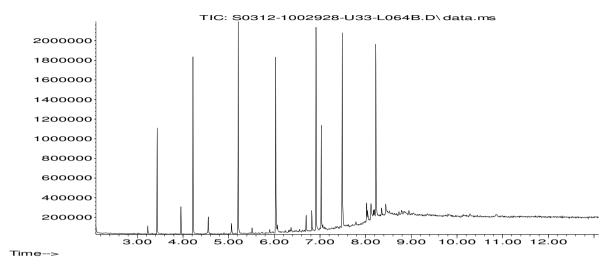
* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

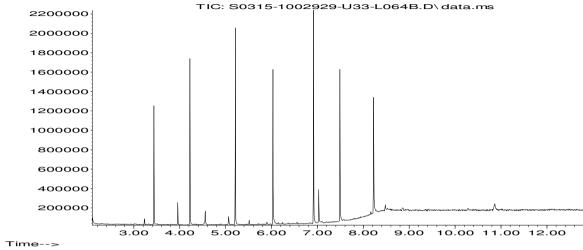
Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1002928	DS101	None Supplied	0.00-0.25	Brown loam and sand with vegetation.
1002929	DS101	None Supplied	1.80-2.00	Brown sand.
1002930	DS102	None Supplied	1.50-1.60	Brown clay and sand.
1002931	DS103	None Supplied	2.90-3.00	Brown sand with vegetation.
1002932	DS104	None Supplied	0.00-0.40	Brown loam and sand with vegetation.
1002933	DS105	None Supplied	0.00-0.25	Brown loam and sand with vegetation and gravel.
1002934	DS106	None Supplied	0.00-0.25	Brown loam and sand with vegetation and gravel.
1002935	DS108	None Supplied	2.20-2.50	Brown clay.
1002936	DS110	None Supplied	0.00-0.40	Brown loam and sand with vegetation and gravel.
1002937	DS110	None Supplied	2.50-2.60	Brown clay and sand.
1002938	DS111	None Supplied	0.00-0.30	Brown loam and clay with vegetation and gravel
1002939	DS111	None Supplied	1.30-1.40	Brown clay.
1002940	DS112	None Supplied	0.00-0.20	Brown loam and clay with vegetation.

Analytical Report Number : 18-92912

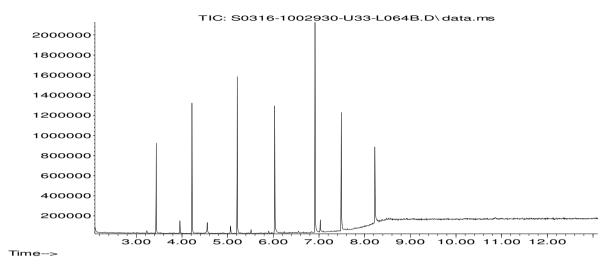
Project / Site name: Whalley

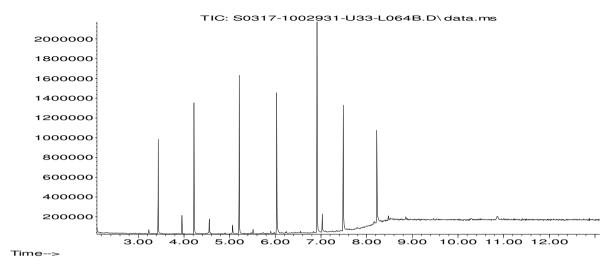

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

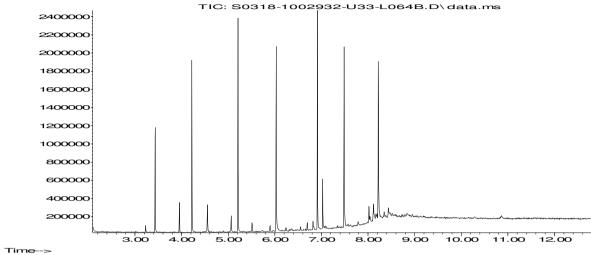

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

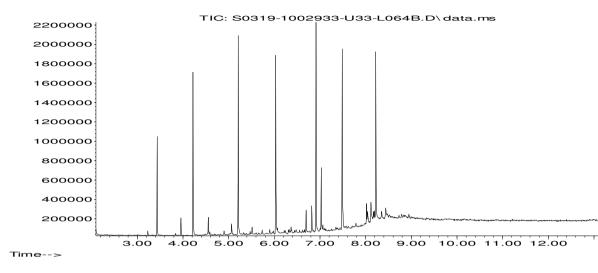
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

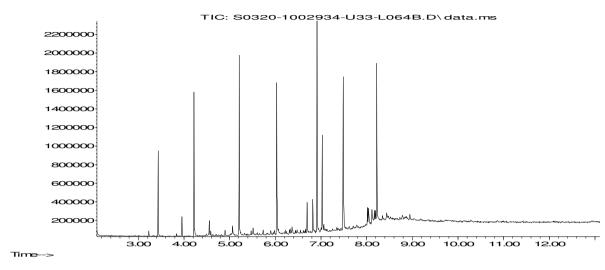

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

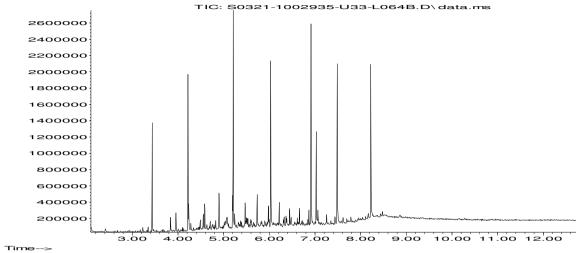


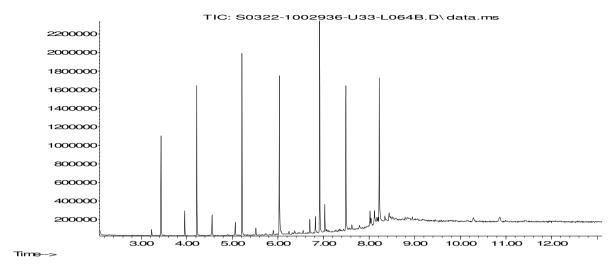


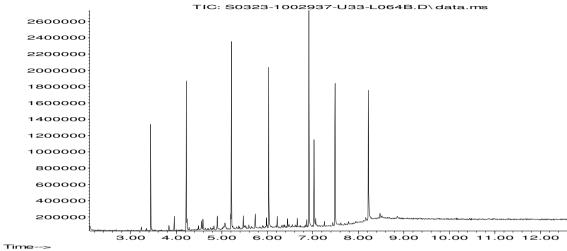
-

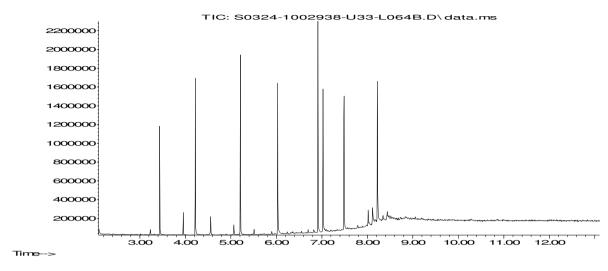


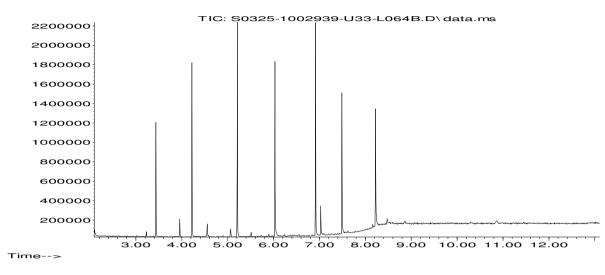


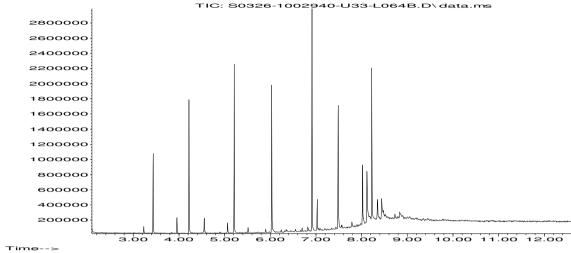









Abundanœ



· · ·

Appendix E – Groundwater Chemical Analysis Results

Environment | Health & Safety | Sustainability

Rachel Stringer Delta-Simons Suite GB Barclay House 35 Whitworth Street West Manchester M1 5NG

t: 01613028128

e: Rachel.Stringer@deltasimons.com

Analytical Report Number : 18-94783

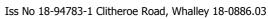
Project / Site name:	Clitheroe Road, Whalley	Samples received on:	01/08/2018
Your job number:	18-0886.03	Samples instructed on:	01/08/2018
Your order number:	DS39967	Analysis completed by:	08/08/2018
Report Issue Number:	1	Report issued on:	08/08/2018
Samples Analysed:	7 water samples		

HAL Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.


Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

f: 01923 237404 **e:** reception@i2analytical.com

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 18-94783

Project / Site name: Clitheroe Road, Whalley

Your Order No: DS39967 Lab Sample Number 1013857 1013858 1013859 1013860 1013861 Sample Reference DS111 DS112 DS103 DS110 DS107 Sample Number None Supplied Depth (m) 31/07/2018 31/07/2018 31/07/2018 31/07/2018 31/07/2018 Date Sampled None Supplied None Supplied None Supplied None Supplied None Supplied Time Taken Accreditation Status Limit of detection Analytical Parameter Units (Water Analysis) General Inorganics

pH	pH Units	N/A	ISO 17025	7.0	7.2	6.5	7.1	7.1
Sulphate as SO₄	µg/l	45	ISO 17025	27400	33500	12900	19400	24600
Sulphate as SO₄	mg/l	0.045	ISO 17025	27.4	33.5	12.9	19.4	24.6

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.21	-	-	-	-
Barium (dissolved)	µg/l	0.06	ISO 17025	120	-	-	-	-
Beryllium (dissolved)	µg/l	0.1	ISO 17025	< 0.1	-	-	-	-
Boron (dissolved)	µg/l	10	ISO 17025	27	-	-	-	-
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.06	-	-	-	-
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	-	-	-	-
Chromium (III)	µg/l	1	NONE	< 1.0	-	-	-	-
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.4	-	-	-	-
Copper (dissolved)	µg/l	0.5	ISO 17025	3.2	-	-	-	-
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	-	-	-	-
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	-	-	-	-
Nickel (dissolved)	µg/l	0.5	ISO 17025	3.2	-	-	-	-
Selenium (dissolved)	µg/l	0.6	ISO 17025	< 0.6	-	-	-	-
Zinc (dissolved)	µg/l	0.5	ISO 17025	4.0	-	-	-	-

Monoaromatics

µg/l	1	ISO 17025	< 1.0	-	-	-	-
µg/l	1	ISO 17025	< 1.0	-	-	-	-
µg/l	1	ISO 17025	< 1.0	-	-	-	-
µg/l	1	ISO 17025	< 1.0	-	-	-	-
µg/l	1	ISO 17025	< 1.0	-	-	-	-
µg/l	1	ISO 17025	< 1.0	-	-	-	-
•	µg/l µg/l µg/l µg/l	μg/l 1 μg/l 1 μg/l 1 μg/l 1	μg/l 1 ISO 17025 μg/l 1 ISO 17025 μg/l 1 ISO 17025 μg/l 1 ISO 17025 μg/l 1 ISO 17025	μg/l 1 ISO 17025 < 1.0 μg/l 1 ISO 17025 < 1.0	μg/l 1 ISO 17025 < 1.0 - μg/l 1 ISO 17025 < 1.0	μg/l 1 ISO 17025 < 1.0 - - μg/l 1 ISO 17025 < 1.0 - -	µg/l 1 ISO 17025 < 1.0 - - - µg/l 1 ISO 17025 < 1.0 - - - µg/l 1 ISO 17025 < 1.0 - - - µg/l 1 ISO 17025 < 1.0 - - - µg/l 1 ISO 17025 < 1.0 - - -

Analytical Report Number: 18-94783

Project / Site name: Clitheroe Road, Whalley

Lab Sample Number				1013857	1013858	1013859	1013860	1013861
Sample Reference				DS111	DS112	DS103	DS110	DS107
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	-	-	-	-
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	-	-	-	-
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	-	-	-	-
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	-	-	-	-
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	-	-	-	-
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	-	-	-	-
Aliphatic >C10 - C12	µg/l	10	ISO 17025	< 10	-	-	-	-
Aliphatic >C12 - C16	µg/l	10	ISO 17025	< 10	-	-	-	-
Aliphatic >C16 - C21	µg/l	10	ISO 17025	< 10	-	-	-	-
Aliphatic >C21 - C35	µg/l	10	ISO 17025	< 10	-	-	-	-
Aliphatic >C10 - C35	µg/I	10	ISO 17025	< 10	-	-	-	-
		10	100 170	. 10				
Aromatic >C10 - C12 Aromatic >C12 - C16	µg/l	10 10	ISO 17025	< 10	-	-	-	-
Aromatic >C12 - C16 Aromatic >C16 - C21	µg/l	10	ISO 17025	< 10		_	-	-
	µg/l	-	ISO 17025	< 10	-	-		-
Aromatic >C21 - C35 Aromatic >C10 - C35	µg/I µg/I	10 10	ISO 17025 ISO 17025	< 10 < 10	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 18-94783

Project / Site name: Clitheroe Road, Whalley

Your Order No: DS39967

Lab Sample Number				1013862	1013863		
Sample Reference				DS102	DS101		
Sample Number				None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied		
Date Sampled				31/07/2018	31/07/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics

pH	pH Units	N/A	ISO 17025	6.4	6.3		
Sulphate as SO₄	µg/l	45	ISO 17025	7630	8870		
Sulphate as SO₄	mg/l	0.045	ISO 17025	7.6	8.9		

Heavy Metals / Metalloids

µg/l	0.15	ISO 17025	0.22	0.36			
µg/l	0.06	ISO 17025	68	160			
µg/l	0.1	ISO 17025	< 0.1	< 0.1			
µg/l	10	ISO 17025	22	22			
µg/l	0.02	ISO 17025	0.19	0.47			
µg/l	5	ISO 17025	< 5.0	< 5.0			
µg/l	1	NONE	< 1.0	< 1.0			
µg/l	0.2	ISO 17025	< 0.2	< 0.2			
µg/l	0.5	ISO 17025	0.9	7.8			
µg/l	0.2	ISO 17025	< 0.2	< 0.2			
µg/l	0.05	ISO 17025	< 0.05	< 0.05			
µg/l	0.5	ISO 17025	1.6	4.9			
µg/l	0.6	ISO 17025	0.7	0.8			
µg/l	0.5	ISO 17025	4.1	9.7			
	hð\I hð\I hð\I hð\I hð\I hð\I hð\I hð\I	µg/l 0.06 µg/l 0.1 µg/l 10 µg/l 10 µg/l 5 µg/l 1 µg/l 0.2 µg/l 0.2 µg/l 0.5 µg/l 0.5 µg/l 0.55 µg/l 0.55 µg/l 0.6	Impli 0.06 ISO 17025 µg/I 0.1 ISO 17025 µg/I 0.1 ISO 17025 µg/I 10 ISO 17025 µg/I 0.02 ISO 17025 µg/I 5 ISO 17025 µg/I 5 ISO 17025 µg/I 0.2 ISO 17025 µg/I 0.5 ISO 17025 µg/I 0.5 ISO 17025 µg/I 0.6 ISO 17025	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Monoaromatics

Benzene	µg/l	1	ISO 17025	< 1.0	-		
Toluene	µg/l	1	ISO 17025	< 1.0	-		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	-		
p & m-xylene	µg/l	1	ISO 17025	< 1.0	-		
o-xylene	µg/l	1	ISO 17025	< 1.0	-		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	-		

Analytical Report Number: 18-94783

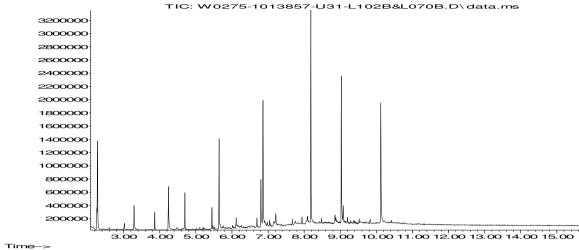
Project / Site name: Clitheroe Road, Whalley

Lab Sample Number				1013862	1013863		
Sample Reference				DS102	DS101		
Sample Number				None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied		
Date Sampled				31/07/2018	31/07/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	-		
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	-		
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	-		
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	-		
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	-		
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	-		
Aliphatic >C10 - C12	µg/l	10	ISO 17025	< 10	-	1	1
Aliphatic > C12 - C16	µg/l	10	ISO 17025	< 10	-		
Aliphatic >C16 - C21	μg/l	10	ISO 17025	< 10	-	1	1
Aliphatic >C21 - C35	µg/l	10	ISO 17025	< 10	-	 1	1
Aliphatic >C10 - C35	μg/l	10	ISO 17025	< 10	-		
					-	-	-
Aromatic >C10 - C12	µg/l	10	ISO 17025	< 10	-		
Aromatic >C12 - C16	µg/l	10	ISO 17025	< 10	-		
Aromatic >C16 - C21	µg/l	10	ISO 17025	< 10	-		
Aromatic >C21 - C35	µg/l	10	ISO 17025	< 10	-		
Aromatic >C10 - C35	µg/l	10	ISO 17025	< 10	-		

U/S = Unsuitable Sample I/S = Insufficient Sample

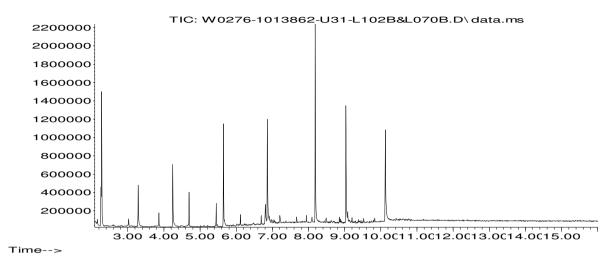
Analytical Report Number : 18-94783

Project / Site name: Clitheroe Road, Whalley


Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
TPH C10-C35 by GCxGC-FID	Determination of total petroleum hydrocarbons in water by GC x GC FID with carbon banding aliphatic and aromatic C10-C35. Accredited Matrices SW,GW,PW.	In-house method	L101B-PL	w	ISO 17025
TPH Chromatogram in Water	TPH Chromatogram in Water.	In-house method	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Abundance

Abundance

Appendix F – Gas and Groundwater Monitoring Data

Environment | Health & Safety | Sustainability

	0:14					0111		0							40.00			WEATHER	Start	End	
	Site	Name				Clither	roe Road, V	vnalley				Job numbe	er		18-08	886.03		Time	14.30	16.45	
	C 1	ant				T (1		Truct										Pressure (mb)	1019	1019	
	CI	ent				iraπo	ord Housing	riust			i	Recorded b	у		F	R		Wind speed (m/s)	4.47	4.91	
	Date (DD/	ΜΜ/ΥΥΥΥ)					19/07/2018	5										Wind Dir. (from)	W	W	
	Gas A	nalyser				GFM436	(Gas Kit M	1) -12535			١	isit Numb/	er			1		Temperature (°C)	22.00	22.00	
	Reading	s at start		CH₄ ('	% v/v)	<0.1	CO ₂ (% v/v)	<0.1	O ₂ (%	% v/v)		20.8	H ₂ S	(ppm)	0		Dry/Rain/Snow/Ice	DRY	DRY	
	General o	comments																Rising/Falling Trend (for the three days before visit)			
						G	ROUND G	AS	_		-			GR	OUNDWA	TER					
	Fl	ow	с	H₄	c	O2	c	D ₂	H₂S	со	voc	Diff. Pressure	Atmos. Pressure	o free uct	water	base		Not	6 5		
Ref	V	hr	%	v/v	%	v/v	%	v/v		ppm		Pres	Atn Pres	Depth to free product	Depth to water	Depth to base	(e.g. wat	er colour, sheen, odour, damage		flooded ground etc.)	
	Mat	Steady	Mat	Steady	Mat	steady	MIT	Steady	Mat	Mat	Mat	mb	mb					· · · · •		- ,	
	Ň	5				। জ ∕numbers,			as and flow		for groun	dwater are	entered in	m the sheet	m	m	1				
DS101	<0.1	<0.1	<0.1	<0.1	1.9	1.9	19.8	19.8	<0.1	<0.1		<0.1	1010		3.41	4.00					
DS102	0.3	<0.1	<0.1	<0.1	4.2	4.2	18.6	18.6	<0.1	<0.1		<0.1	1009		3.10	4.49					
DS103	0.3	<0.1	<0.1	<0.1	2.0	2.0	19.9	19.9	<0.1	<0.1		<0.1	1009		3.73	4.05		Sediment at base.			
DS105	<0.1	<0.1	<0.1	<0.1	1.7	1.7	19.2	19.2	<0.1	<0.1		<0.1	1010		DRY	3.55					
DS106	<0.1	<0.1	<0.1	<0.1	3.0	3.0	18.0	18.0	<0.1	<0.1		<0.1	1010		DRY	4.52					
DS107	<0.1	<0.1	<0.1	<0.1	2.2	2.2	19.2	19.2	<0.1	<0.1		<0.1	1010		3.00	4.22		Sediment	at base.		
DS110	<0.1	<0.1	<0.1	<0.1	2.9	2.9	19.0	19.1	<0.1	<0.1		<0.1	1010		2.23	4.50					
DS111	<0.1	<0.1	<0.1	<0.1	0.3	0.3	20.3	20.4	<0.1	<0.1		<0.1	1010		3.36	4.44					
DS112	<0.1	<0.1	<0.1	<0.1	0.9	0.9	20.3	20.4	<0.1	<0.1		<0.1	1009		3.64	4.72					
																	1				
Document			Version: 1.	-		Issue Date			Author: J F							Authorised	d By:K Hugl	nes			
© Delta-Si	mons Envir	onmental C	onsultants	Limited. No	o part of thi	is document	t may be re	produced u	nless prior v	vritten pern	nission has	been grant	ed.							leltasimons	

	Site	Name				Clither	roe Road, V	/holloy/				Job numbe			19.0	386.03		WEATHER	Start	End	
	Sile	Name				Cittlei	oe Road, v	vnalley				Job numbe	er -		10-00	500.03		Time	9.37	13.44	
	CI	ent				Troffe	ord Housing	Truct										Pressure (mb)	1013	1013	
		on				Traile	sid Housing	Tust			F	Recorded b	у		F	RR		Wind speed (m/s)	4.91	16.25	
	Date (DD/	ΜΜ/ΥΥΥΥ)					31/07/2018	6										Wind Dir. (from)	SSW	SW	
	Gas A	nalyser				•						isit Numb				2		Temperature (°C)	17.00	19.00	
	Reading	s at start		CH4 (9	% v/v)	<0.1	CO ₂ (% v/v)	<0.1	O ₂ (%	% v/v)		20.4	H ₂ S	(ppm)	0		Dry/Rain/Snow/Ice	DRY	DRY	
	General o	comments																Rising/Falling Trend (for the three days before visit)			
						G	ROUND G	AS							OUNDWA	TER					
	Fle	ow	с	H₄	с	0 ₂	c	02	H₂S	со	voc	Diff. Pressure	Atmos. Pressure	o free uct	water	base		Not	es		
Ref	V	hr	%	v/v	%	v/v	%	v/v		ppm		Pres	Atr Pres	Depth to free product	Depth to wate	Depth to base	(e.g. wat	er colour, sheen, odour, damage		, flooded ground etc.)	
	Mat	Steady	Mat	Steady	Mat	steady	MIT	Steady	Mat	Mat	Mat	mb	mb	m	ă m	ă m	4				
	•	~~ ~		ം ulae requir			"<0.1" for	് ground ga	as and flow	-	for ground	dwater are	entered in			1 10	-				
DS101	0.6	<0.1	<0.1	<0.1	1.4	1.4	19.8	19.8	<0.1	<0.1		<0.1	1006		3.50	4.00		Sediment	at base.		
DS102	<0.1	<0.1	<0.1	<0.1	3.8	3.8	18.7	18.7	<0.1	<0.1		<0.1	1004		2.98	4.49					
DS103	<0.1	<0.1	<0.1	<0.1	1.6	1.6	19.8	19.8	<0.1	<0.1		<0.1	1005		3.74	4.02		Sediment at base.			
DS105	<0.1	<0.1	<0.1	<0.1	1.3	1.3	19.5	19.5	<0.1	<0.1		<0.1	1005		DRY	3.54		Sediment at base.			
DS106	<0.1	<0.1	<0.1	<0.1	0.1	0.1	20.4	20.6	<0.1	<0.1		<0.1	1004		DRY	4.52					
DS107	<0.1	<0.1	<0.1	<0.1	1.9	1.9	19.4	19.4	<0.1	<0.1		<0.1	1005		3.15	4.08		Sediment	at base.		
DS110	<0.1	<0.1	<0.1	<0.1	2.4	2.4	19.1	19.1	<0.1	<0.1		<0.1	1003		2.34	4.50					
DS111	<0.1	<0.1	<0.1	<0.1	0.5	0.5	20.2	20.2	<0.1	<0.1		<0.1	1001		3.44	4.45					
DS112	<0.1	<0.1	<0.1	<0.1	0.8	0.8	20.1	20.2	<0.1	<0.1		<0.1	1003		3.83	4.72					
															1	1	1				
																			<u> </u>		
Document I © Delta-Sin		onmental C	Version: 1.		o part of thi	Issue Date		produced u	Author: J R nless prior v			been grant	ed.			Authorised	d By:K Hug	nes		deltasimons	

	0.14						Des 1 M	() - II							40.0			WEATHER	Start	End
	Site	Name				Clithei	roe Road, V	vnalley				Job numbe	er		18-0	886.03		Time	15:30	16:50
	C1	ont				Troff	and Housing	Truct										Pressure (mb)	1005	1005
		ent				nand	ord Housing	nust			F	Recorded b	у		F	RR		Wind speed (m/s)	9.00	9.00
	Date (DD/	ΜΜ/ΥΥΥΥ)					09/08/2018	;										Wind Dir. (from)	SW	SW
	Gas A	nalyser								-	۱	isit Numb	er			3		Temperature (°C)	19.00	19.00
	Reading	s at start		CH₄ (9	% v/v)	0.0	CO ₂ (% v/v)	0.0	O ₂ (%	% v/v)		20.6	H ₂ S	(ppm)	0		Dry/Rain/Snow/Ice	DRY	DRY
	General o	comments																Rising/Falling Trend (for the three days before visit)		
						G	ROUND G	AS							ROUNDWA	TER				
	Fle	ow	с	H₄	с	0 ₂	c	02	H₂S	со	voc	Diff. Pressure	Atmos. Pressure	o free uct	water	base		Not	es	
Ref	V	hr		v/v	%	v/v	%	v/v		ppm	1	Pres	Atn Pres	Depth to free product	Depth to wate	Depth to base	(e.g. wat	er colour, sheen, odour, damage		flooded ground etc.)
	Mat	Steady	Mat	Steady	Mat	Steady	MIT	Steady	Mat	Mat	Mat	mb	mb	 	ق m	ă m	-			
	•	5		ം ulae requir	e that only		"<0.1" for	് ground ga	as and flow			dwater are	entered in				-			
DS101	0.0	0.0	0.0	0.0	0.4	0.4	20.4	20.4	0	0		0.0	1004		3.54	4.43				
DS102	0.0	0.0	0.0	0.0	1.8	1.8	19.4	19.4	0	0		0.0	1005		3.26	4.07				
DS103	0.0	0.0	0.0	0.0	2.0	2.0	19.5	19.5	0	0		0.0	1004		DRY	4.54				
DS105	0.0	0.0	0.0	0.0	2.2	2.2	19.1	19.1	0	0		0.0	1003		2.46	4.45				
DS106	0.0	0.0	0.0	0.0	0.7	0.7	20.1	20.1	0	0		0.0	1003		4.19	4.71				
DS107	0.0	0.0	0.0	0.0	1.3	1.3	19.4	19.4	0	0		0.0	1004		DRY	3.54				
DS110	0.0	0.0	0.0	0.0	1.9	1.8	19.7	19.7	0	0		0.0	1004		3.75	4.02				
DS111	0.0	0.0	0.0	0.0	1.5	1.4	19.7	19.8	0	0		0.0	1005		3.52	4.04				
DS112	0.0	0.0	0.0	0.0	3.7	3.7	18.8	18.8	0	0		0.0	1004		3.01	4.49				
													ł – – –	ł – – –						
														1						
													1	1						
													1	1						
Document I © Delta-Sir		onmental C	Version: 1.		o part of thi	Issue Date		produced u		Rhoades / S written pern		been grant	ed.			Authorised	d By:K Hug	nes		deltasimons

						0111									10.0			WEATHER	Start	End
	Site	Name				Clither	roe Road, V	Vhalley				Job numbe	er		18-0	886.03		Time	9.00	11:30
	C 11	ent				Troff	ord Housing	Truet										Pressure (mb)	1010	1012
		ent				Tranc		nust			F	Recorded b	ру		F	RR		Wind speed (m/s)	4.91	4.91
	Date (DD/	ΜΜ/ΥΥΥΥ)					21/08/2018	1										Wind Dir. (from)	SW	SW
	Gas Ar	nalyser				GFM436	(Gas Kit M	-				/isit Numb	er			4		Temperature (°C)	19.00	19.00
	Reading	s at start		CH₄ ('	% v/v)	<0.1	CO ₂ (% v/v)	<0.1	O ₂ (%	% v/v)		20.6	H₂S	(ppm)	<0.1		Dry/Rain/Snow/Ice	DRY	DRY
	General c	comments																Rising/Falling Trend (for the three days before visit)		
						G	ROUND G	AS				•			ROUNDWA					
	Fle	ow	с	H₄	с	O ₂	c	D ₂	H₂S	со	voc	Diff. Pressure	Atmos. Pressure	o free uct	water	base		Not	26	
Ref	V	hr	%	v/v	%	v/v	%	v/v		ppm		Pres	Atn Pres	Depth to free product	Depth to water	Depth to I	(e.g. wat	er colour, sheen, odour, damage		looded ground etc.)
	Mat	Steady	Mat	Steady	Mat	cteady	Min	Steady	Mat	Mat	Mat	mb	mb				Ì		0 17	ι,
	<i>h</i> .	Ste		් ulae requir		<u></u> .	•	് around a	s and flow		v	dwater are	entered in	m the sheet	m	m	-			
DS101	<0.1	<0.1	<0.1	0.1	1.7	1.7	19.3	19.3	<0.1	<0.1	-	0.1	1012	-	3.54	4.04				
DS102	0.3	<0.1	<0.1	0.1	3.7	3.7	18.5	18.5	0.3	<0.1	-	0.1	1012	-	3.64	4.48				
DS103	0.3	<0.1	<0.1	0.1	2.2	2.2	19.1	19.1	0.3	<0.1	-	0.1	1012	-	3.75	4.02				
DS105	<0.1	<0.1	<0.1	0.1	1.9	1.9	18.5	18.5	<0.1	<0.1	-	0.1	1012	-	DRY	3.54				
DS106	<0.1	<0.1	<0.1	0.1	2.9	2.9	17.2	17.2	<0.1	<0.1	-	0.1	1010	-	DRY	4.53				
DS107	<0.1	<0.1	<0.1	0.1	2.1	2.1	18.6	18.7	<0.1	<0.1	-	0.1	1011	-	3.21	4.04				
DS110	<0.1	<0.1	<0.1	0.1	2.4	2.4	18.0	18.0	<0.1	<0.1	-	0.1	1010	-	2.52	4.44				
DS111	<0.1	<0.1	<0.1	0.1	0.3	0.3	20.0	20.1	<0.1	<0.1	-	0.1	1009	-	3.89	4.49				
DS112	<0.1	<0.1	<0.1	0.1	0.6	0.6	19.8	19.8	<0.1	<0.1	-	0.1	1010	-	4.19	4.70				
															-					
												ł – – –								
												1								
						<u> </u>							<u> </u>							
												1	1							
												1								
Document N © Delta-Sin		onmental C	Version: 1. onsultants		o part of thi	Issue Date		produced u		Rhoades / S written pern		been grant	ted.			Authorised	d By:K Hugl	nes		leltasimons

	-																	WEATHER	Start	End	
	Site	Name				Clither	roe Road, V	Vhalley				Job numbe	er		18-0	886.03		Time	13.30	16.00	
	0	ent				Te-#1	and Housin	Truct										Pressure (mb)	1013	1015	
		ent				Tano	ord Housing	Trust			F	Recorded b	у		F	RR		Wind speed (m/s)	4.02	4.47	
	Date (DD/	ΜΜ/ΥΥΥΥ)					03/09/2018	;										Wind Dir. (from)	W	W	
	Gas A	nalyser				GFM436	(Gas Kit M	1) -12535		-		/isit Numb	er			5		Temperature (°C)	18.00	18.00	
	Reading	s at start		CH₄ ('	% v/v)	<0.1	CO ₂ (% v/v)	<0.1	O ₂ (%	% v/v)		20.5	H ₂ S	(ppm)	<0.1		Dry/Rain/Snow/Ice	RAIN	RAIN	
	General o	comments																Rising/Falling Trend (for the three days before visit)			
						G	ROUND G	AS							ROUNDWA	TER					
	FI	ow	с	H₄	с	0 ₂	c	02	H₂S	со	voc	Diff. Pressure	Atmos. Pressure	o free uct	water	base		Not	es.		
Ref	V	hr	%	v/v	%	v/v	%	v/v		ppm		Pres	Atn Pres	Depth to free product	Depth to water	Depth to base	(e.g. wat	er colour, sheen, odour, damage		looded ground etc.)	
	Mat	Steady	Mat	Steady	Mat	cteady	Min	Steady	Mat	Mat	Mat	mb	mb				Ì		0 17	c ,	
	v	5				∣ం∼ ∕numbers,	•	് ground ga	as and flow	•	for ground	dwater are	entered in	m the sheet	m	m					
DS101	<0.1	<0.1	<0.1	<0.1	2.0	2.0	18.7	18.7	<0.1	<0.1	-	<0.1	1015	-	NR	4.04					
DS102	<0.1	<0.1	<0.1	<0.1	3.4	3.4	18.5	18.5	<0.1	<0.1	-	<0.1	1015	-	NR	4.49					
DS103	<0.1	<0.1	<0.1	<0.1	2.5	2.5	18.6	18.6	<0.1	<0.1	-	<0.1	1015	-	NR	4.05					
DS105	3.2	<0.1	<0.1	<0.1	1.9	1.9	19.8	19.8	<0.1	<0.1	-	<0.1	1015	-	NR	3.55					
DS106	<0.1	<0.1	<0.1	<0.1	3.0	3.0	16.7	16.7	<0.1	<0.1	-	<0.1	1013	-	NR	4.43					
DS107	<0.1	<0.1	<0.1	<0.1	2.4	2.4	18.2	18.2	<0.1	<0.1	-	<0.1	1012	-	NR	4.04					
DS110	<0.1	<0.1	<0.1	<0.1	2.5	2.5	17.1	17.1	<0.1	<0.1	-	<0.1	1013	-	NR	4.54					
DS111	<0.1	<0.1	<0.1	<0.1	0.2	0.2	19.8	19.8	<0.1	<0.1	-	<0.1	1012	-	NR	4.44					
DS112	<0.1	<0.1	<0.1	<0.1	0.5	0.5	19.8	19.8	<0.1	<0.1	-	<0.1	1014	-	NR	4.40					
																		NR = Not Recorded	d (equipment fault)		
												ł – – –	ł – – –								
						1						1	1		1		1				
												1	1		1						
-																	<u> </u>				
Document			Version: 1.	-		Issue Date				Rhoades / S						Authorised	d By:K Hug	hes			
© Delta-Si	mons Envir	onmental C	onsultants	Limited. No	o part of thi	is document	t may be re	produced u	niess prior v	written perr	nission has	been grant	ed.							leltasimons	

Site Name						0111		() - II							40.0	200.00		WEATHER	Start	End
	Site	Name		Clitheroe Road, Whalley					Job number			18-0886.03				Time	14:00	15:30		
	C 11	ent		Trofford Housing Trust											Pressure (mb)	1008	1008			
		ent		Trafford Housing Trust					Recorded by		F	R		Wind speed (m/s)	6.70	7.15				
	Date (DD/	ΜΜ/ΥΥΥΥ)		11/09/2018												Wind Dir. (from)	WSW	WSW		
	Gas Ar	nalyser		GFM436 (Gas Kit 2) - 12788						Visit Number		6			Temperature (°C)	16.00	16.00			
	Readings at start			CH₄ (%	% v/v)	0.0	CO ₂ (% v/v)	0.0	O ₂ (%	% v/v)		20.4	H ₂ S	(ppm)	0		Dry/Rain/Snow/Ice	DRY	DRY
	General comments											Rising/Falling Trend (for the three days before visit)								
						G	ROUND G	AS						GR	OUNDWA	TER				
	Fle	ow	с	H₄	с	0 ₂	0 ₂ I		H₂S	со	voc	Diff. Diff. Pressure Atmos.	o free Ict water hase		base	Notes		6 5		
Ref	l/hr				% v/v		% v/v		ppm			Pres	Atn Pres	Depth to free product	Depth to wate	Depth to base	(e.g. wat	er colour, sheen, odour, damage		flooded ground etc.)
	Mat	Steady	Mat	Steady	Mat	Steady	MIT	Steady	Wat	Mat	Mat	mb	mb	 	De m			-		
	v	6		െ ulae requir	v		•	ground ga	as and flow	-	-	dwater are	entered in			m	1			
DS101	<0.1	<0.1	<0.1	<0.1	0.1	0.2	20.3	20.4	<0.1	<0.1	-	<0.1	1008	-	4.04	4.42				
DS102	<0.1	<0.1	<0.1	<0.1	2.3	2.3	18.2	18.2	<0.1	<0.1	-	<0.1	1009	-	3.21	4.05				
DS103	<0.1	<0.1	<0.1	<0.1	0.1	0.1	20.4	20.4	<0.1	<0.1	-	<0.1	1009	-	DRY	4.50				
DS105	<0.1	<0.1	<0.1	<0.1	2.5	2.5	16.8	16.8	<0.1	<0.1	-	<0.1	1007	-	2.57	4.42				
DS106	<0.1	<0.1	<0.1	<0.1	0.2	0.2	20.0	20.3	<0.1	<0.1	-	<0.1	1007	-	4.41	4.70				
DS107	<0.1	<0.1	<0.1	<0.1	1.9	1.9	18.7	18.8	<0.1	<0.1	-	<0.1	1009	-	DRY	3.51				
DS110	<0.1	<0.1	<0.1	<0.1	2.4	2.4	18.7	18.7	<0.1	<0.1	-	<0.1	1008	-	3.75	4.00				
DS111	<0.1	<0.1	<0.1	<0.1	2.0	2.0	18.8	18.8	<0.1	<0.1	-	<0.1	1008	-	3.56	4.02				
DS112	<0.1	<0.1	<0.1	<0.1	3.0	3.0	18.7	18.7	<0.1	<0.1	-	<0.1	1009	-	4.09	4.49				
																1	1			
															1					
Document I © Delta-Sin		onmental C	Version: 1. onsultants		o part of thi	Issue Date		produced u	Author: J R			been grant	ed.			Authorised	d By:K Hug	nes		deltasimons

Appendix G – Risk Definitions

Environment | Health & Safety | Sustainability

Risk Definitions

The following methodology is based on the methodology presented in CIRIA C552 Contaminated Land Risk Assessment: A Guide to Good Practice 2001. It requires the classification of the:

- ▲ Magnitude of the potential consequence (severity) of the Risk occurring: and
- ▲ Magnitude of the Probability (likelihood) of the Risk occurring.

The classifications are then compared to indicate the risk presented by each pollutant linkage.

Consequence to Receptor Definition Matrix

	Human Health	Controlled Waters	Buildings/Services	
Severe Consequence	Acute or chronic permanent impact on human health.	Sensitive controlled water pollution ongoing, or just about to occur.	Catastrophic collapse	
Medium Consequence	Chronic permanent impact on human health	Gradual pollution of sensitive controlled water	Degradation of materials	
Mild Consequence	Chronic temporary impact on human health	Gradual pollution of non- sensitive controlled water	Damage to building rendering it unsafe.to occupy (eg foundation damage resulting in instability).	
Minor Consequence	Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc).	Slight discoloration of water	Easily repairable effects of damage to buildings, structures and services, i.e discoloration of concrete	

Probability Definitions

Probability	Definition in Context
Higher	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution.
	Positive evidence of source, pathway and receptor.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
	Suspect source, pathway, and receptor
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur.
	However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term
	No evidence of hazard, pathway, and receptor

Document No: D124	Version: 1.0	Issue Date: 13/01/17	Author: R Griffiths	Authorised by: Exec Group	Page: 1 of 2			
© Delta-Simons Environmental Consultants Limited. No part of this document may be reproduced unless prior written permission has been granted.								

Standard Risk Matrix

		Consequence/ Magnitude of impact					
		Severe	Medium	Mild	Minor		
×.	High	Very High	High	Moderate	Moderate/Low		
ability	Likely	High	Moderate	Moderate/low	Low		
Probabil	Low Likelihood	Moderate	Moderate/low	Low	Very Low		
	Unlikely	Moderate/low	Low	Very Low	Very Low		

Classified risks and likely action

Significance Level	Definition/Comments
Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening.
	This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
	Demonstrable contaminated land situation, highest threat & liability level, urgent action recommended.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard.
	Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the longer term.
	Likely contaminated land situation, risk assessment and action recommended.
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, if is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild
	Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
	Plausible contaminated land situation, risk assessment and possible action recommended.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
	Unlikely contaminated land situation, possible risk assessment and possible action.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.
	Negligible risk, no action recommended except vigilance for changes in conditions.

Document No: D124	Version: 1.0	Issue Date: 13/01/17	Author: R Griffiths	Authorised by: Exec Group	Page: 2 of 2			
© Delta-Simons Environmental Consultants Limited. No part of this document may be reproduced unless prior written permission has been granted.								