AGS3 UK TP 18DWH018 - BARROW ROAD WHALLEY GPJ GINT STD AGS 3\_1,GDT 19/4/18

| Project                        |                                  |                         |                                                                            |                         |         |          | Т      | RIAL PIT No      |
|--------------------------------|----------------------------------|-------------------------|----------------------------------------------------------------------------|-------------------------|---------|----------|--------|------------------|
| Job No                         | w Road V                         |                         |                                                                            |                         |         |          |        | TP205            |
| 18DW                           | 1010                             | Date                    | Ground Level (m)                                                           | Co-Ordinates ()         | 10      |          |        | 17205            |
| Contractor                     | 1018                             | 06-04-18                |                                                                            |                         |         |          |        |                  |
|                                | ΓS GEO I                         | _td                     |                                                                            |                         |         |          | Shee   |                  |
|                                | A                                | В                       |                                                                            | C                       | D       |          |        | 1 of 1           |
| 2                              |                                  | B                       |                                                                            |                         | D       |          |        | Legend www.www.w |
| 4                              |                                  | -                       | TD AT A                                                                    |                         |         | <u>4</u> |        |                  |
| Depth No                       |                                  |                         | TRATA                                                                      | _                       |         |          | 7      | S & TESTS        |
| 0.00-0.30                      |                                  | ver TOPSOIL: Brown sand | DESCRIPTION by CLAY, Frequent rootlets                                     | . Occasional coal fragr | nent.   | Depth    | No     | Remarks/Tests    |
| 1.20-2.80                      | Stiff dar<br>subangu<br>Friable. | ies.                    | LAY. Occasional gravel and velly CLAY. Occasional to logies. Rare boulder. |                         |         | 0.80     | ES     |                  |
| Shoring/Supp<br>Stability: Sta | ort:<br>ble                      |                         |                                                                            |                         |         |          | GI     | ENERAL<br>EMARKS |
| D                              | - 2.8                            | B 0.6                   |                                                                            | N<br>A                  | s.      | Dry      | Š.     |                  |
| All dimensions<br>Scale 1:     |                                  | Client David Wilso      | n Homes Method/<br>Plant Us                                                | ed 13t tracked ex       | cavator | Log      | ged By | PH               |

| roject                                     |                                                                                                                                                           |                  |                                 |              |       | TRIAL PIT No       |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|--------------|-------|--------------------|
| Barrow Road                                |                                                                                                                                                           |                  |                                 | <b>TP206</b> |       |                    |
| b No                                       | Date 06.04.19                                                                                                                                             | Ground Level (m) | Co-Ordinates ()                 |              |       |                    |
| 18DWH018                                   | 06-04-18                                                                                                                                                  |                  |                                 |              |       | Sheet              |
| Contractor BETTS GEO                       | ) I +d                                                                                                                                                    |                  |                                 |              |       | 1 of 1             |
| BEI IS OEK                                 | A E                                                                                                                                                       |                  | C                               | D            | 0     | Legend             |
| 2—                                         |                                                                                                                                                           |                  |                                 |              | 2     |                    |
| 4                                          |                                                                                                                                                           | STRATA           | V                               |              |       | PLES & TESTS       |
| Depth No                                   |                                                                                                                                                           | DESCRIPTION      | )N                              |              | Depth | No Remarks/Test    |
| 0.90-2.60 Fi                               | rass over TOPSOIL: Brown and ceramic noted within topsorm orangish brown slightly some to stiff / stiff dark greyish subangular cobbles of various table. | andy CLAY,       |                                 |              | 30    | D                  |
| Shoring/Support: Stability: Stable  2.8  A | B 0.6                                                                                                                                                     | (                | N<br>A                          |              | D     | GENERAL<br>REMARKS |
| All dimensions in                          |                                                                                                                                                           | Wilson Homes M   | lethod/<br>ant Used 13t tracked | d excavator  | L     | ogged By<br>PH     |

| Project<br>Bar         | TOW           | Road W   | /hallev       |             |              |                         |                        |         |           |                | TRIAL PIT No                                               |
|------------------------|---------------|----------|---------------|-------------|--------------|-------------------------|------------------------|---------|-----------|----------------|------------------------------------------------------------|
| Job No                 | 1011          | Ttoda (  | Date          |             | Ground Leve  | l (m)                   | Co-Ordinates ()        |         |           |                | <b>TP207</b>                                               |
| 18D\                   | VH(           | )18      | 06-04         | <b>-</b> 18 |              |                         | _                      |         |           |                |                                                            |
| Contractor             |               |          |               |             |              |                         |                        |         |           | Sh             | eet                                                        |
| BE                     | TTS           | GEO L    | td            |             |              |                         |                        |         |           |                | 1 of 1                                                     |
| 2                      |               | A        |               | В           |              |                         |                        | D       | 2         |                | Legend  WWWWWWWW  XXXXXX  XXXXX  XXXXX  XXXXX  XXXXX  XXXX |
| 4                      |               |          |               | CT          | T) A T) A    |                         |                        |         | <u></u> 4 |                |                                                            |
| Depth                  | No            |          |               | S1          | RATA         | n Inmiori               |                        |         |           | - 1            | ES & TESTS                                                 |
| 0.00-0.25              | 140           | Grass ov | er TOPSOIL: E | rown sandy  | CLAY. Freque | RIPTION ent rootlets, ( | Occasional coal fragn  | nent.   | 0.10      | th No          |                                                            |
| 2.00-3.00              |               |          |               |             |              |                         | I cobble of various li |         | 1.50      | ES             |                                                            |
| horing/Suptability: S  | — 2           | rt:<br>e |               |             |              | 12                      | N<br>4                 |         | 7         | C<br>R<br>Dry, | GENERAL<br>EMARKS                                          |
| D                      |               | 2        | B 0.6         |             |              |                         | 1                      |         |           |                |                                                            |
| All dimension<br>Scale | ns in<br>1:50 | metres   | Client Dav    | id Wilson   | Homes        | Method/<br>Plant Used   | 13t tracked ex         | cavator |           | Logged I       | By<br>PH                                                   |

| Project                        |                                                      |                             |                                              |                         |                     |       | TRI     | AL PIT No                             |
|--------------------------------|------------------------------------------------------|-----------------------------|----------------------------------------------|-------------------------|---------------------|-------|---------|---------------------------------------|
| _                              | load Whalley                                         |                             |                                              |                         |                     |       | ٦.      | TP208                                 |
| Job No                         | Date                                                 |                             | Ground Level (m)                             | Co-Ordin                | nates ()            |       | '       | 1 200                                 |
| 18DWH01                        | 8 06-04                                              | -18                         |                                              |                         |                     |       |         |                                       |
| Contractor                     |                                                      |                             |                                              |                         |                     |       | Sheet   |                                       |
| BETTS (                        | GEO Ltd                                              |                             |                                              |                         |                     |       |         | 1 of 1                                |
|                                | A                                                    | В                           |                                              | С                       | D                   | 0     |         | Legend                                |
| 2                              | A                                                    | В                           |                                              |                         |                     |       |         | * * * * * * * * * * * * * * * * * * * |
| 4 =                            |                                                      |                             |                                              | 8)                      |                     | E_4_  | ) (DI E | a a TEGTO                             |
|                                |                                                      |                             | STRATA                                       |                         |                     |       |         | S & TESTS  Remarks/Tests              |
| Depth No<br>0.00-0.30          | Grass over TOPSOIL:                                  |                             | DESCRIP?                                     | TION                    | al and fragment     | Depth |         | Remarks/Tests                         |
| 0.30-1.60                      | Firm orangish brown s                                | ilty sandy (                | CLAY, Occasional rou                         | inded gravel.           |                     | 0.10  | ES      | **                                    |
| 1.60-3.00                      | Stiff dark greyish brosubangular cobbles of Friable. | vn sandy gr<br>various lith | avelly CLAY. Occasi<br>ologies. Rare boulder | onal to frequent s      | ubrounded to        |       |         |                                       |
| Shoring/Supp<br>Stability: Sta | ort:<br>ble  -2.8  A  B 0                            | .6                          | P T                                          | N                       | ř                   |       | Dry.    | BENERAL<br>EMARKS                     |
| All dimensions                 | s in metres Client                                   | David Wi                    | lson Homes                                   | Method/<br>Plant Used 1 | 3t tracked excavato | r     | Logged  | By PH                                 |

| Project                                 |               | 75. 4.77                            |                                     |                                 |                                     |                                 |                         |           |      |         | TRIAL PIT No                          |
|-----------------------------------------|---------------|-------------------------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------------|-----------|------|---------|---------------------------------------|
| Job No                                  | arrov         | v Road V                            | Vhalley<br>Date                     |                                 | 0 11                                | 165                             |                         |           |      |         | TP209                                 |
| 18D                                     | WH            | 018                                 |                                     | <b>14-18</b>                    | Ground Lev                          | el (m)                          | Co-Ordinates ()         |           |      |         | 17203                                 |
| Contracto                               |               |                                     |                                     | 77-10                           |                                     |                                 |                         | -         |      | - Ch    | neet                                  |
| BI                                      | ETTS          | S GEO L                             | td                                  |                                 |                                     |                                 |                         |           |      | 31,     | 1 of 1                                |
| 0                                       |               | A                                   |                                     | В                               |                                     | C                               |                         | D         | 0    |         | Legend                                |
| 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - |               |                                     |                                     |                                 |                                     |                                 |                         |           |      |         | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |
| 4                                       |               |                                     |                                     |                                 |                                     |                                 | V II                    |           | Ė,   |         |                                       |
| D. d                                    |               |                                     |                                     | S                               | ΓRATA                               |                                 |                         |           | S.   | AMPL.   | ES & TESTS                            |
| Depth<br>0.00-0.35                      | No            | Grass ov                            | er TOPSOIL:                         | Brown sandy                     | DESC                                | RIPTION                         | Occasional coal fragme  | 59.00     | Dept | h No    | Remarks/Tests                         |
| 0.35-1.80                               |               | Soft to fit<br>Slight ins           | rm damp orang<br>tability. Right    | gish brown sa<br>side of pit co | andy CLAY. Ra<br>ollapsed betwee    | are coal fragn<br>n 0.35m and l | nent.<br>.80m.          |           | 1.00 | ES      |                                       |
| 1.80-2.90                               |               | Firm to st<br>to subang<br>Friable. | iff/stiff dark ;<br>ular cobbles of | greyish brow<br>various lithe   | n sandy gravell<br>ologies. Rare bo | y CLAY, Oc<br>oulder.           | casional to frequent su | ibrounded |      |         |                                       |
| horing/Su<br>tability: 0                | .35n          | n - 1.8m                            |                                     | ability Co                      | ollapse on rig                      | ght side of p                   | oit.                    |           |      | R       | ENERAL<br>EMARKS<br>.8m - Damp.       |
|                                         |               | .8                                  | B 0.6                               |                                 |                                     |                                 |                         |           |      |         |                                       |
| All dimensic<br>Scale                   | ns in<br>1:50 | metres                              | Client Day                          | rid Wilson                      | Homes                               | Method/<br>Plant Used           | 13t tracked exce        | avator    |      | ogged B | y<br>PH                               |

| roject                                         |                                                        |                               |                              |                           |                     |                | TRIA           | L PIT No         |
|------------------------------------------------|--------------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------|----------------|----------------|------------------|
| _                                              | oad Whalley                                            |                               |                              |                           |                     |                | T              | P210             |
| ob No                                          | Date                                                   | Gro                           | und Level (m)                | Co-Ordinates              | 0                   |                |                | 210              |
| 18DWH018                                       | 3 06-04-18                                             |                               |                              |                           |                     |                |                |                  |
| Contractor                                     |                                                        |                               |                              |                           |                     |                | Sheet          | C 1              |
| BETTS G                                        | EO Ltd                                                 |                               |                              |                           |                     |                |                | of 1             |
| 2                                              | A                                                      | В                             |                              | C                         | D                   |                |                | egend            |
| <u>4</u> – – – – – – – – – – – – – – – – – – – |                                                        | CITTO .                       | ATTA                         |                           |                     | L <sub>4</sub> | MPLES          | & TESTS          |
|                                                |                                                        | STR                           | ATA                          | N T                       |                     | Depth          | No             | Remarks/Tests    |
| Depth No                                       | Grass over TOPSOIL: Bro                                | over condu C                  | DESCRIPTION AV Frequent root |                           |                     |                |                |                  |
| 0.00-0.30                                      | Firm to stiff orangish brov                            |                               |                              |                           |                     | 0.10           | ES             |                  |
| Shoring/Supp Stability: Stal                   | Stiff greyish brown grave<br>boulders are subrounded t | lly cobbly ve<br>o subangular | ry sandy CLAY, O             | ccasional boulder. d      | Gravel, cobbles and | 1.50           | ES             |                  |
| Shoring/Supp<br>Stability: Stal                | A B 0.6                                                |                               |                              | N<br>+                    |                     |                | G<br>R<br>Dry. | ENERAL<br>EMARKS |
| All dimension                                  | D 111 111-0-0-0                                        | wid Wilsor                    | Homes N                      | Method/<br>Plant Used 13t | tracked excavator   |                | Logged         | By<br>PH         |

| Project                      | D J V                                | L71 11                                      |                           |                |                        |                        |         |      |          | TRIAL PIT No                     |
|------------------------------|--------------------------------------|---------------------------------------------|---------------------------|----------------|------------------------|------------------------|---------|------|----------|----------------------------------|
| Job No                       | row Road V                           | Date                                        |                           | Ground Level   | (m)                    | Co-Ordinates ()        |         |      |          | TP211                            |
|                              | VH018                                | 06-04-1                                     | .8                        | Ground Level   | (111)                  | Co-Ordinates ()        |         |      |          |                                  |
| Contractor                   |                                      |                                             |                           |                |                        |                        |         |      | Sh       | eet                              |
| BET                          | TTS GEO L                            | td                                          |                           |                |                        |                        |         |      |          | 1 of 1                           |
| 1                            | A                                    |                                             | В                         |                | C                      | 1                      | D       |      |          | Legend                           |
| 3                            |                                      |                                             | STI                       | RATA           |                        |                        |         | 3    | A.) (D)  |                                  |
| Depth N                      | No                                   |                                             | 811                       |                |                        |                        |         |      |          | ES & TESTS                       |
| 0.00-0.25                    |                                      | er TOPSOIL: Bro                             | wn sandy (                | DESCE          | CIPTION nt rootlets. O | ccasional coal fragn   | nent    | Dep  | th No    | Remarks/Tests                    |
| 0.25-0.50                    |                                      | irm orangish brown                          |                           |                |                        |                        |         | -    |          |                                  |
| 0.50-1.20                    | Firm to s                            | 0.50                                        | oravelly v                | ery sandy CL   |                        | ole of various litholo |         |      |          |                                  |
| 1.90-3.00                    | Stiff grey<br>cobbles of<br>Friable. | vish brown sandy g<br>of various lithologic | ravelly CL<br>es. Rare bo | AY. Occasional | al to frequent         | subrounded to suba     | ngular  | 1.70 | D        |                                  |
| Shoring/Sup<br>Stability: St | port:<br>able                        |                                             |                           |                | ý.                     | N                      |         |      | R        | GENERAL<br>EMARKS<br>.9m - Damp. |
| D                            | 2.8 — A                              | B 0.6                                       | 1171                      |                |                        | <b>†</b>               | - II    |      |          |                                  |
| All dimension<br>Scale 1     | s in metres<br>1:50                  | Client David                                | Wilson I                  | Iomes          | Method/<br>Plant Used  | 13t tracked ex         | cavator |      | Logged I | By<br>PH                         |

| Project           |                      |         |       |         |              |                  |                |                            |                   |                            |                    | BOREHO              | )LE     | No                      |
|-------------------|----------------------|---------|-------|---------|--------------|------------------|----------------|----------------------------|-------------------|----------------------------|--------------------|---------------------|---------|-------------------------|
|                   | ow Roa               |         |       |         |              | e:               | 1()            | Co-Ordi                    |                   |                            |                    | WS2                 | 201     |                         |
| Job No            | W TO 1 O             | Date    |       | . 04 10 |              | Ground Le        | evel (m)       | Co-Orai                    | nates ()          |                            |                    |                     |         |                         |
| 18DW              | H018                 |         | - 06  | 5-04-18 |              |                  |                |                            |                   |                            |                    | Sheet               |         |                         |
| Contractor        | TS GEO               | bt I C  |       |         |              |                  |                |                            |                   |                            |                    | 1 of                | 1       |                         |
| SAMPL             |                      |         | Г     |         |              |                  |                | STRAT                      | 'A                |                            |                    |                     |         | snt                     |
| SAIVIFL           |                      | Test    | Water | Reduced |              | Depth            |                |                            |                   |                            |                    | -                   | Geology | Instrument/<br>Backfill |
| Depth             | Type<br>No           | Result  | 8     | Level   | Legend       | (Thick-<br>ness) |                |                            | DESCRI            |                            |                    |                     | ğ       | Inst                    |
|                   |                      |         |       |         | www.         | 0.30             | Grass over     | TOPSOIL: F                 | Brown damp<br>nt. | sandy CLA                  | Y. Frequen         | t rootlets.         |         |                         |
|                   |                      |         |       |         | ===          |                  | Firm orangi    | ish brown / b              | rown slightl      | y sandy CL                 | AY.                |                     |         |                         |
|                   |                      |         |       |         |              | ŧ .              |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | (1.40)           |                |                            |                   |                            |                    |                     |         |                         |
| <u> </u>          |                      |         |       |         |              | 1                |                |                            |                   |                            |                    |                     |         | E                       |
|                   |                      |         |       | *       | ===          | 1.70             |                |                            |                   |                            |                    |                     |         | le                      |
|                   |                      |         |       |         | - V - V      | -                | Firm brown     | i slightly san             | dy CLAY.          |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | (0.60)<br>2.30   |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | -                | Stiff slightle | y sandy grav<br>subrounded | elly CLAY         | Occasiona<br>or of various | l cobble. Grant li | avel and thologies. |         |                         |
|                   |                      |         |       |         | -            | (0.70)           |                | subrounded                 | o stronigan       |                            |                    | Ü                   |         |                         |
|                   |                      |         |       |         | -0           | 3.00             |                |                            |                   |                            |                    |                     |         |                         |
| £                 |                      |         |       |         |              |                  |                |                            |                   |                            |                    |                     |         |                         |
| Ė                 |                      |         |       |         |              | Ē                |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | Ė                |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              |                  |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | Ē                |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | E                |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         | 1     |         |              | Ē.               |                |                            |                   |                            |                    |                     |         |                         |
| ē ,               |                      |         | 1     |         |              | -                |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | Ē.               |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | ŧ                |                |                            |                   |                            |                    |                     |         |                         |
| F                 |                      |         | 1     |         |              | E                |                |                            |                   |                            |                    |                     |         |                         |
| Ī                 |                      |         |       |         |              | -                |                |                            |                   |                            |                    |                     |         |                         |
| ļ.                |                      |         |       |         |              | -                |                |                            |                   |                            |                    |                     |         |                         |
| Ė                 |                      |         |       |         |              | E                |                |                            |                   |                            |                    |                     |         |                         |
| ţ                 |                      | 1       |       |         |              | Ē                |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              | Ė                |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              |                  |                |                            |                   |                            |                    |                     |         |                         |
| Do                | ring De              | orece o | nd V  | Vater O | hservat      | tions            | 1              | Chisellin                  | g                 | Water                      | Added              | GEN                 | ERA     | L                       |
| Date              | Time                 | Depti   |       | Cas     | ing<br>Dia m | n Water<br>Dpt   | From           | То                         | Hours             | From                       | То                 | REM                 | ARK     | S                       |
|                   |                      |         |       | Берш    | Din. III     |                  |                |                            |                   |                            |                    | Dry.                |         |                         |
|                   |                      | -       |       |         |              |                  |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              |                  |                |                            |                   |                            |                    |                     |         |                         |
|                   |                      |         |       |         |              |                  | I              | 1                          |                   |                            |                    |                     |         |                         |
| 201               |                      |         |       |         |              |                  |                |                            |                   |                            | .4                 |                     |         |                         |
| Bo Date  All dime |                      |         | Clie  | nt Do-  | id W/31      | son Home         | e Me           | ethod/                     |                   |                            |                    | Logged By           |         |                         |
| All dime          | ensions in cale 1:50 | metres  | Cite  | ıı Dav  | via Wil      | POH LIOHU        | Pla            | int Used                   | Compe             | titor Rig                  |                    | J. F                | H       |                         |

| Project<br>Bar | row Ro     | ad Whal        | ley   |                  |          |                           |            |              |                       |           |              | BORE                                 |            |             |
|----------------|------------|----------------|-------|------------------|----------|---------------------------|------------|--------------|-----------------------|-----------|--------------|--------------------------------------|------------|-------------|
| Job No         |            | Da             | te    |                  |          | Ground L                  | evel (m)   | Co-          | -Ordinates (          | )         |              | - WS                                 | 202        | 2           |
| 18DV           | VH018      |                | 0     | 6-04-18          | 3        | SF:                       |            |              |                       |           |              |                                      |            |             |
| Contractor     |            |                |       |                  |          |                           |            |              |                       |           |              | Sheet                                |            |             |
| BET            | TTS GE     | EO Ltd         |       |                  |          |                           |            |              |                       |           |              | 1 0                                  | of 1       |             |
| SAMPL          | ES & 7     | TESTS          | h     |                  |          |                           |            | STR          | ATA                   |           |              |                                      | Γ.         | 1,111       |
| Depth          | Type<br>No | Test<br>Result | Water | Reduced<br>Level | Legend   | Depth<br>(Thick-<br>ness) |            |              | DES                   | CRIPTION  | Ī            |                                      | Geology    | Instrument/ |
|                |            |                |       |                  | www      |                           | Grass ove  | r TOPSOI     | L: Brown d            | amp sandy | CLAY. Fre    | quent rootlets.                      | 0          |             |
|                |            |                |       |                  |          |                           | Firm oran  | al coal frag | gment.<br>n sandy CLA | AY.       |              |                                      |            |             |
|                |            |                |       |                  |          | (0.70)                    |            | -            |                       |           |              |                                      |            |             |
|                |            |                |       |                  | ō        | 0.90                      |            | iff brown s  | lightly sand          | v CLAY (  | Occasional o | ravel and cobble                     |            | ı           |
|                |            |                |       |                  | 0        | ţ                         | Refusal or | n cobble / l | boulder at 1.         | 80m.      | occasional g | ravel and cobble.                    |            | 200         |
|                |            |                |       |                  | 0-0      | (0.90)                    |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  | <u>-</u> | 1.80                      |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          | -                         |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            | ,           |
|                | -          |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       | 10        |              |                                      |            |             |
|                |            |                |       |                  |          | =                         |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              | *                                    |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              | 1                                    |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       | - 1              |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  | ŀ        | -                         |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  | E        |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  | Ė        |                           |            |              |                       |           |              | 1                                    |            |             |
|                |            |                |       |                  | F        | -                         |            |              |                       |           |              |                                      |            |             |
|                |            |                |       | -                | E        |                           |            |              |                       |           |              |                                      |            |             |
|                |            | . 1            |       |                  | ŧ        |                           |            |              |                       |           | 134          |                                      |            |             |
|                |            |                |       |                  | Ē        |                           |            |              |                       |           |              |                                      |            |             |
|                |            | ress and       | Wat   | er Obse          | ervation |                           | (          | Chisellin    | g                     | Water     | Added        | GENER                                | AL         |             |
| Date T         | ime        | Depth          | De    | Casing pth   Dis | a. mm    | Water<br>Dpt              | From       | То           | Hours                 | From      | To           | REMAR                                | KS         |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              | 1.2m - Land drain<br>Moderate inflow | 1 <b>-</b> |             |
|                |            |                |       | - 1              |          |                           |            |              |                       |           |              | 1.8m - Refusal or                    | or wate    | er<br>ei    |
|                |            |                |       |                  |          |                           |            |              |                       |           |              | :01                                  |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           |              |                                      |            |             |
|                |            |                |       |                  |          |                           |            |              |                       |           | 7            |                                      |            |             |
| II dimension   | ns in met  | res Clie       | ent   | David V          | Wilson   | Homes                     | Metho      | od/          |                       |           |              | Logged By                            |            | _           |
| Scale          | 1:50       |                |       |                  |          |                           | Plant 1    | Used         | Competi               | tor Rig   |              | PH                                   |            |             |

| Project    |             |                                                   |       |                  |          |                           |            |                | 1             |               |             | BOREHO        | OLE :   | No         |
|------------|-------------|---------------------------------------------------|-------|------------------|----------|---------------------------|------------|----------------|---------------|---------------|-------------|---------------|---------|------------|
| Barr       | ow Road     | ad Whalley  Date Ground Level (m) Co-Ordinates () |       |                  |          |                           |            |                |               |               |             | WS            | 203     |            |
| Iob No     |             | Dat                                               | e     |                  |          | Ground Le                 | evel (m)   |                |               |               |             |               |         |            |
| 18DW       | /H018       |                                                   | 0     | 6-04-18          |          |                           |            |                | 01 4          |               | _           |               |         |            |
| Contractor |             |                                                   |       |                  |          |                           |            |                |               |               |             | Sheet         | C 1     |            |
| BET        | TS GEO      | ) Ltd                                             |       |                  |          |                           |            |                |               |               |             | 1 o           | 1 1     | -          |
| SAMPL      | ES & TI     | ESTS                                              | L.    |                  |          |                           |            | STRAT          | Γ <b>A</b>    |               |             |               | 56      | nent       |
| Depth      | Type<br>No  | Test<br>Result                                    | Water | Reduced<br>Level | Legend   | Depth<br>(Thick-<br>ness) |            |                | DESCRI        |               |             |               | Geology | Instrument |
|            |             |                                                   |       |                  | WWW.     | 0.30                      | Grass over | TOPSOIL: I     | Brown damp    | sandy CLA     | Y. Freque   | nt rootlets.  |         |            |
|            |             |                                                   |       |                  |          | 0.50                      | Firm dam   | orangish bro   | own sandy C   | LAY.          |             |               |         |            |
|            |             |                                                   |       |                  | ==:      | (0.90)                    |            |                |               |               |             |               |         | ı          |
|            | 1           |                                                   |       |                  | ΞΞ       | (0.90)                    |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | 1.20                      |            | 003            | 1             | OI AN         |             |               |         | E          |
|            |             |                                                   |       |                  | 0        | ļ                         | Firm to st | ff brown san   | dy gravelly ( | LAY.          |             |               |         | ŀĒ         |
|            |             |                                                   |       |                  | -        | (0.80)                    |            |                |               |               |             |               |         | E          |
|            |             |                                                   |       |                  |          | 2.00                      |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | 2                         | No Recov   | ery - Assume   | ed pushing a  | cobble dow    | n.          |               |         | E          |
|            | 1           |                                                   |       |                  |          | (0.60)                    |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | 2.60                      | Firm to st | iff sandy grav | velly CLAY.   | . Occasional  | cobbles. C  | Gravel and    |         |            |
|            |             |                                                   |       | -                |          | (0.40)                    | cobbles a  | e subrounded   | l to subangu  | lar of variou | s sizes and | lithologies.  |         |            |
|            |             |                                                   |       |                  |          |                           |            |                |               |               |             | 4             |         |            |
|            |             |                                                   |       |                  |          |                           |            |                |               |               |             |               |         |            |
|            |             |                                                   |       | 1                |          | Ē                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          |                           |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | E                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | E                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | E                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | -                         |            |                |               |               |             |               |         | 1          |
|            |             |                                                   |       |                  |          | F                         |            |                |               |               |             |               |         | 1          |
|            |             |                                                   | 1     | 0.1              |          | [                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  | 1 2      | ţ                         |            |                |               |               |             |               |         |            |
|            | 1           |                                                   |       |                  |          | E                         |            |                |               |               |             |               |         | 1          |
|            |             |                                                   |       |                  |          | F                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | E                         |            |                |               |               |             |               |         |            |
|            |             | 1                                                 |       |                  |          | E                         |            |                |               |               |             |               |         |            |
|            |             |                                                   | 4     |                  |          | Ē                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | F                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | Ė                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | E                         |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          | -                         |            |                |               |               |             |               |         |            |
| Do         | ring Pro    | orece a                                           | nd V  | Vater O          | hservat  | ions                      | 1          | Chisellin      | ıg            | Water         | Added       | GEN           | ERAI    |            |
| Date       | Time        | Depth                                             |       | Cas              | ing      | Water<br>Dpt              | From       |                | Hours         | From          | То          | REM           | ARK     | S          |
| Date       | IIIIO       | Dopa                                              | +     | Depin            | Dia, mr  | u Dpt                     |            |                |               |               |             | 2.0m - 2.6m - | No re   | cove       |
|            |             |                                                   |       |                  |          |                           |            | 7,90           |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          |                           |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          |                           |            |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          |                           | 1          |                |               |               |             |               |         |            |
|            |             |                                                   |       |                  |          |                           |            |                |               |               |             |               |         |            |
| All dime   | nsions in 1 | metres                                            | Clie  | nt Day           | vid Wils | son Home                  | es M       | ethod/         | Carre         | titor Dia     |             | Logged By     | ·H      |            |
| S          | cale 1:50   |                                                   |       |                  |          |                           | Pl         | ant Used       | Compe         | titor Rig     |             | 1             | п       |            |

| Project      |            |                |        |                  |              |                           |               |                          |                            |              |              | BOREH                         | OLE     | No                      |
|--------------|------------|----------------|--------|------------------|--------------|---------------------------|---------------|--------------------------|----------------------------|--------------|--------------|-------------------------------|---------|-------------------------|
| Barr         | ow Roa     | d Whal         | ley    |                  |              |                           | *             |                          |                            |              |              | WS                            | 204     |                         |
| Job No       |            | Da             | ite    |                  |              | Ground Lo                 | evel (m)      | Co-Or                    | dinates ()                 |              |              | 110                           | LUT     | •                       |
| 18DW         | H018       |                | 0      | 6-04-18          | 3            |                           |               |                          |                            |              |              |                               |         |                         |
| Contractor   |            |                | - 2    |                  |              |                           |               |                          |                            |              |              | Sheet                         | C 1     |                         |
| BET          | TS GEO     | O Ltd          |        |                  |              |                           |               |                          |                            |              |              | 1 0                           | of 1    | T                       |
| SAMPLI       | ES & T     | ESTS           | 1      |                  |              |                           |               | STRA                     | TA                         |              |              |                               | 55      | nent/                   |
| Depth        | Type<br>No | Test<br>Result | Water  | Reduced<br>Level | Legend       | Depth<br>(Thick-<br>ness) |               |                          |                            | IPTION       |              |                               | Geology | Instrument/<br>Backfill |
|              |            |                |        |                  | WWWW         | 0.25                      | Grass over T  | OPSOIL:                  | Brown dam                  | p sandy CL   | AY. Freque   | nt rootlets.                  |         |                         |
|              |            |                | =      |                  |              | (1.75)                    | Firm to stiff | orangish t               | orown / brov               | n slightly s | andy lamina  | ed CLAY,                      |         |                         |
|              |            |                |        |                  |              | 2.00                      | Cure 1        | models by                |                            | arollis CLAX | / Qaasiana   | il to fraquent                |         |                         |
|              |            |                |        |                  |              | (1.00)                    | Friable.      | eyish brov<br>to subangu | n sandy gra<br>lar cobbles | of various l | thologies. R | l to frequent<br>are boulder. |         |                         |
|              |            |                |        |                  |              |                           |               |                          | 9                          |              | q            |                               |         |                         |
|              | •          | 3              |        |                  | 4            |                           |               |                          |                            |              |              |                               | 5       |                         |
| Bori         | ing Pro    | gress a        | nd W   | ater Ob          | servati      | ions                      |               | Chisellin                | g                          | Water        | Added        | GENI                          | RAL     | ,                       |
| Date         | Time       | Depth          | 1 1    | Casi<br>Depth    | ng<br>Dia mm | Water<br>Dpt              | From          | То                       | Hours                      | From         | То           | REMA                          | ARKS    | 5                       |
| Bori<br>Date | ·          |                |        | Septit           | 2m, mil.     | . Dpt                     |               |                          |                            | 11           | ē            | Dry.                          |         |                         |
| All dimens   | sions in m | netres         | Client | Davi             | id Wils      | on Homes                  | Meth<br>Plant | od/<br>Used              | Compet                     | itor Rig     |              | Logged By P                   | ——<br>H |                         |

|                        | row Roa             | ad Whall |       |                    |         |                  |                              |           |                       |                    |                             | BOREF                      |         |             |
|------------------------|---------------------|----------|-------|--------------------|---------|------------------|------------------------------|-----------|-----------------------|--------------------|-----------------------------|----------------------------|---------|-------------|
| Job No<br>18 <b>DV</b> | VH018               | Dat      |       | 6-04-18            | 3       | Ground L         | evel (m)                     | Co-0      | Ordinates ()          | :::                |                             | VVS                        | 205     | )           |
| Contractor             |                     | !        |       |                    |         |                  |                              |           |                       |                    |                             | Sheet                      | _       | _           |
| BET                    | TS GE               | O Ltd    |       |                    |         |                  |                              |           |                       |                    |                             |                            | of 1    |             |
| SAMPL                  | ES & T              | ESTS     | Τ.    |                    |         |                  |                              | STR       | ATA                   |                    |                             |                            |         | T =         |
| Depth                  | Туре                | Test     | Water | Reduced            |         | Depth            |                              |           |                       |                    |                             |                            | Geology | la la       |
| Берш                   | No                  | Result   |       | Level              | Legend  | (Thick-<br>ness) |                              |           |                       | RIPTION            |                             |                            | Geol    | Instrument/ |
|                        |                     |          |       |                    | NWWW.   | 0.30             | Grass over T<br>Occasional o | OPSOII    | L: Brown dar<br>ment. | np sandy C         | LAY. Freq                   | quent rootlets.            |         |             |
|                        |                     |          |       | 8                  |         | (1.20)           |                              | rangish   | brown sandy           | CLAY. Coangular of | occasional c<br>various siz | cobbles. Gravel<br>ses and |         | 75.5        |
|                        |                     |          |       |                    |         | 1.50             |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  | No Recovery                  | / - Assui | med pushing           | a cobble do        | own.                        |                            |         |             |
|                        |                     | -        |       |                    |         | -                |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         | (1.50)           |                              |           |                       |                    |                             |                            |         | 2.18        |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         | 3.00             |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         | Г           |
|                        |                     |          |       |                    |         | 6                |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    | -                           |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    | -       |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             | î.                         |         |             |
|                        |                     |          |       |                    |         |                  |                              |           | 15                    |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
| Borir                  | ng Prog             | ress and | Wa    | ter Obs            | ervatio | ns               | Cl                           | nisellin  | ıg                    | Water              | Added                       | GENE                       | RAL     | _           |
| Date                   | Гime                | Depth    | D     | Casing<br>epth   D | ia. mm  | Water<br>Dpt     | From                         | То        | Hours                 | From               | То                          | REMA                       | RKS     |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             | 1.5m - 3.0m - N            | o reco  | ver         |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
|                        |                     |          |       |                    |         |                  |                              |           |                       |                    |                             |                            |         |             |
| All dimension          | ons in me<br>: 1:50 | tres Cli | ient  | David              | Wilson  | Homes            | Method<br>Plant U            | /         | Competi               | ton Die            |                             | Logged By PH               |         |             |

| Project       | arry Da        | od Wholi       |       |                    |            |                           |                          |                  |                      |              |               | BORE                       | IOLE    | N           |
|---------------|----------------|----------------|-------|--------------------|------------|---------------------------|--------------------------|------------------|----------------------|--------------|---------------|----------------------------|---------|-------------|
| Job No        | .OW NO         | ad Whall       |       |                    |            | Ground L                  | evel (m)                 | Co-              | Ordinates ()         |              |               | - ws                       | 206     | ;           |
| 18DW          | / <b>H</b> 018 |                |       | 6-04-18            | 3          |                           | ()                       |                  | Oraniales ()         |              |               |                            |         |             |
| Contractor    |                |                |       |                    |            |                           |                          |                  |                      |              |               | Sheet                      |         |             |
| BET           | TS GE          | O Ltd          |       |                    |            |                           |                          |                  |                      |              |               | 1                          | of 1    |             |
| SAMPL         | ES & T         | ESTS           | la la |                    |            |                           |                          | STR              | ATA                  |              |               |                            | Π       | T/tue       |
| Depth         | Type<br>No     | Test<br>Result | Water | Reduced<br>Level   | Legend     | Depth<br>(Thick-<br>ness) |                          |                  |                      | CRIPTION     |               |                            | Geology | Inctmiment/ |
| 0.10          | ES             |                |       |                    | www.       | 0.30                      | Grass over<br>Occasional | TOPSOI coal frag | L: Brown da<br>ment. | ımp sandy (  | CLAY, Freq    | uent rootlets.             |         |             |
|               |                |                |       |                    |            | (0.50)                    |                          |                  | brown sligh          | tly sandy C  | LAY.          |                            |         |             |
|               |                |                |       |                    | 0 =        | 0.80                      | Firm to stif             | Tande a          | manally CLA          | V 0          |               | 6 1 1                      |         |             |
|               |                |                |       |                    |            | -                         | cobbles are              | subround         | led to suban         | gular of var | ious sizes ar | Gravel and dithologies.    |         | ě           |
|               |                |                |       |                    | 0          | (1.00)                    | Refused on               | cobble /         | boulder.             |              |               |                            |         | 1           |
|               |                |                |       |                    |            | 1.80                      |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    | 1.1.       |                           |                          |                  |                      |              |               |                            |         | Ė           |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  | 2.                   |              |               |                            |         |             |
|               |                |                |       |                    |            | -                         |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               | -                          |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
| •             |                |                |       | 1                  | ŀ          |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
| Borin         | g Prog         | ress and       | Wat   | ter Obse           | ervation   | 18                        |                          | hisellin         | σ                    | Water        | Added         | CENE                       |         | _           |
|               | ime            | Depth          |       | Casing<br>pth   Di |            | Water<br>Dpt              | From                     | То               | Hours                | From         | To            | GENEI<br>REMA              |         |             |
|               |                |                | 150   | J. 1               | u. ,,,,,,, | Брі                       |                          |                  |                      |              |               | 0.8m - 1.8m - D            | amp.    |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               | 1.8m - Refusal of boulder. | n cobb  | le          |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            |                           |                          |                  |                      |              |               |                            |         |             |
|               |                |                |       |                    |            | - F                       |                          | 19               |                      |              |               |                            |         |             |
| All dimension | ns in met      | res Cli        | ent   | David '            | Wilson     | Homes                     | Method                   |                  |                      |              |               | Logged By                  |         |             |
| Scale         | 1:50           |                |       |                    |            |                           | Plant U                  |                  | Competi              | tor Rig      |               | PH                         |         |             |

### APPENDIX D

- (i) Contamination Test Results
- (ii) Geotechnical Test Results



### SUMMARY OF CONTAMINATION ANALYSIS: METALS

Whalley Rd, Barrow 18DWH018 05/06/2018

Project Name Project No Date

| SOIL TYPE                | TS     | TS     | NS    | TS     | TS    | NS    | TS    | NS     | TS    | TS    | NS    | TS    | NS    | TS    | NS    | TS    | NS    | TS    |
|--------------------------|--------|--------|-------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SAMPLE LOCATION          | TP201  | TP202  | TP202 | TP203  | TP204 | TP204 | TP205 | TP205  | TP206 | TP207 | TP207 | TP208 | TP208 | TP209 | TP209 | TP210 | TP210 | WS206 |
| DEPTH (m)                | 0,10   | 0,10   | 0.80  | 0.10   | 0.10  | 0,50  | 0.10  | 0.80   | 0.10  | 0.10  | 1,50  | 0.10  | 0.70  | 0.10  | 1.00  | 0.10  | 1.50  | 0.10  |
| рH                       | 7.32   | 6.69   | 7.49  | 6.88   | 6.58  | 6.87  | 6.7   | 7.34   | 6.69  | 7.35  | 8 02  | 7.61  | 7.82  | 7.52  | 7.85  | 6.76  | 8.07  | 6.24  |
| Sulphate (water soi 2:1) | < 0.01 | < 0.01 | <0.01 | < 0.01 | <0.01 | <0.01 | 0.01  | <0.01  | <0.01 | 0.04  | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0 02  | <0.01 | <0.01 |
| Organic matter           | В      | 9.1    | 1.9   | 11.6   | 6.4   | 1.8   | 6.5   | 2.1    | 7     | 6.4   | 2.9   | 6.4   | 22    | 52    | 15    | 91    | 3     | 11.1  |
| Arsenic                  | 6      | 7      | 6     | 7      | 5     | 2     | 5     | 4      | 6     | 5     | 4     | 7     | 5     | 6     | 4     | 12    | 3     | 11    |
| Cadmium                  | 0.9    | 1.1    | 1.2   | 0.9    | 1.1   | 1,1   | 1     | 1.4    | 1.1   | 1.1   | 1.2   | 0.9   | 1.1   | 0.7   | 0.9   | 0.9   | 0.7   | 1     |
| Copper                   | 23     | 33     | 24    | 25     | 19    | 14    | 22    | 23     | 25    | 23    | 24    | 22    | 18    | 21    | 11    | 43    | 12    | 43    |
| Chromium (hexavalent)    | <1     | <1     | <1    | <1     | <1    | <1    | <1    | <1     | <1    | <1    | <1    | <1    | <1    | <1    | <1    | <1    | <1    | <1    |
| Lead                     | 75     | 78     | 28    | 97     | 48    | 20    | 46    | 29     | 63    | 54    | 25    | 40    | 24    | 42    | 22    | 102   | 15    | 91    |
| Mercury                  | <0.17  | <0.17  | <0.17 | < 0.17 | <0.17 | <0.17 | <0.17 | < 0.17 | <0.17 | <0.17 | 0.36  | 0.31  | <0.17 | 0.44  | 0.21  | 0.73  | 0.48  | <0.17 |
| Nickel                   | 30     | 31     | 55    | 25     | 28    | 32    | 29    | 56     | 30    | 30    | 43    | 24    | 38    | 18    | 26    | 30    | 23    | 28    |
| Selenium                 | - 4    | 2      | 1     | <1     | 1     | 1     | 2     | 2      | <1    | 1     | 2     | <1    | <1    | <1    | <1    | 1     | 2     | 1     |
| Zinc                     | 127    | 123    | 98    | 109    | 119   | 86    | 101   | 75     | 137   | 125   | 95    | 99    | 132   | 89    | 82    | 136   | 67    | 133   |
| Aebeetos in Soil         | 0      | 0      | 0     | 0      | 0     | 0     | 0     | . 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Asbestos Matrix          | 0      | 0      | . 0   | 0      | 0     | 0     | 0     | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | - 0   |
| Quantification           | 0      | 0      | 0     | 0      | 0     | 0     | 0     | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Organic matter           |        | 191    | 1.9   | 11.8   | 64    | 1.8   | 10    | 21     |       | 6.4   | 29    | 6.4   | 22    | 5.2   | 1.5   | 3.1   | 3     | 100   |

| Metals                   | Mean Value<br>Tost* | Ra                          | nge                          | AtRials 2017 (mg/kg)               | AtRiek 2017 (mg/kg)                | DEFRA     |
|--------------------------|---------------------|-----------------------------|------------------------------|------------------------------------|------------------------------------|-----------|
| motars                   | us <sub>m</sub>     | Largest<br>Value<br>(mg/ke) | Smallest<br>Value<br>(mg/kg) | With Homegrown<br>Produce (1% SOM) | With Homegrown<br>Praduce (5% SOM) | C4SL 2017 |
| pH                       | 7.44                | 8,07                        | 6.24                         |                                    |                                    | 100       |
| Sulphate (water sol 2:1) | 0.02                | 0.04                        | 0.01                         |                                    |                                    | 16.       |
| Organic matter           | 7.03                | 11 60                       | 1.50                         |                                    |                                    |           |
| Arsenic                  | 6.85                | 12 00                       | 2.00                         | 32                                 | 32                                 | 37        |
| Cadmium                  | 1.09                | 1,40                        | 0.70                         | 10                                 | 10                                 | 22,1      |
| Copper                   | 27.19               | 43.00                       | 11.00                        | 4730                               | 4790                               |           |
| Chromium (hexavalent)    | 1.00                | <1                          | st.                          | 3 62                               | 3,63                               | 20.5      |
| Lead                     | 61,50               | 102 00                      | 15,00                        |                                    |                                    | 200       |
| Mercury                  | 0.32                | 0.73                        | <0.17                        | 8,81                               | 15.8                               |           |
| Nickel                   | 36,16               | 56.00                       | 18.00                        | EA/ATRis                           | k withdrawn Aug 2015               | -         |
| Selenium                 | 1.47                | 2.00                        | <1                           | 375                                | 375                                | 1.5       |
| Zinc                     | 116.56              | 137.00                      | 67.00                        | 20000                              | 20300                              | 1.4       |

NOTE:
Any individual results and mean value tests above SGVs are shown RED highlighted.
Any outlier values which exceed relevant SGVs are shown in red.

\* - De salcations for the men valve lest instude outliers
"-Results for the determinent are assessed with no beckground levels silver into account
Results are expressed as migRig unless otherwise stated.

ALL RESULTS PRESENTED AGE ASSESSED LINDER THE COMBINED CLEA ASSESSMENT CRITERION AS QUITLINED WITHIN SPASSIUMING NO FREE PRODUCT WAS DESDIVED DURING PRECIOUSNESSED CONTAMINATION.

SOVs an detailed from the EA 2009 SOVs which are taken from Affect 2015 Callagory 4 streeting levels have been adopted by the EA and have been included as new guidance.

New The SOV for formed instructive have been asked as a manufacture of the Conference of the C

TS Topsol, MG Made Ground and N Natural Ground

### SUMMARY OF CONTAMINATION ANALYSIS: TPH

Project Name Project No Whalley Rd, Barrow 18DWH018 05/06/2018

SOIL TYPE TS TS NS TS TS NS TS TS NS TS NS TS TS NS TS NS TS NS SAMPLE LOCATION TP202 TP203 TP204 TP204 TP205 TP205 TP206 TP207 TP207 TP208 TP208 TP209 TP209 TP210 TP210 WS206 TP201 TP202 DEPTH (Im) All >C5-C6 0.70 0.10 1.00 0.10 1,50 0.10 0.10 0.10 0.80 0.10 0.10 1.50 0.10 0.10 0.10 0.80 0,10 0,50 <0.01 < 0.01 < 0.01 < 0.05 < 0.01 <0.01 <0.01 Ali >C6-C8 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 Ali >C8-C10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0,01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 < 0.01 Ali >C10-C12 <0,1 <0.1 < 0.1 <0.1 <0.1 <0.1 < 0.1 < 0.1 < 0.1 <0.1 <0.1 <0.1 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 0.1 Ali >C12-C16 <0.1 <0.1 <0.1 <0\_1 < 0.1 < 0.1 <0\_1 <0\_1 <0.1 <0.1 Ali >C16-C21 <0.1 <0.1 <0.1 <0.1 <0,1 <0.1 <0.1 <0.1 <0.1 <0.1 <0\_1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.1 <0.1 < 0.1 <0.1 All >C21-C35 < 0.1 < 0.1 < 0.1 < 0.1 <0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Total Aliphatics Aro >C5-C7 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 < 0.1 < 0.1 <0.1 <0,1 <0.1 <0.01 < 0.01 <0.01 <0.01 <0.05 < 0.01 <0.01 <0.01 <0,01 <0,01 <0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.01 < 0.01 < 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 < 0.01 <0.01 <0.01 <0.01 <0.05 Aro >C7-C8 < 0.01 Aro >C8-C9 Aro >C9-C10 <0.05 <0.05 <0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.01 <0.01 <0.01 < 0.01 < 0.01 <0.01 < 0.01 < 0.01 <0.01 < 0.01 < 0.01 < 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 < 0.01 < 0.01 <0.01 < 0.01 <0,01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.1 <0.1 Aro >C10-C12 <0.1 <0.1 <0,1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0,1 <0,1 <0.1 <0.1 Aro >C12-C16 < 0.1 < 0.1 <0.1 < 0.1 < 0.1 < 0.1 <0.1 <0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0\_1 <0,1 <0.1 <0.1 0\_7 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 Aro >C21-C35 <0.1 <0\_1 <0.1 <0,1 < 0.1 < 0.1 <0.1 <0.1 0.4 <0.1 1.4 <0\_1 < 0.1 <0.1 <0.1 1.1 <0.1 23 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 Total Aromatics TPH (All & Aro) <0.1 <0.1 < 0.1 <0.1 <0.1 <0.1 < 0.1 <0,1 <0.1 <0.1 <0.1 <0.1 < 0.1 1.1 <0.1 <0.1 <0.1 < 0.01 BTEX - Benzene < 0.01 <0,01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0,01 <0,01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01 BTEX - Toluene <0.01 <0,01 <0.01 < 0.01 <0.01 <0,01 <0,01 <0.01 <0.01 < 0.01 <0.01 <0.01 < 0.01 < 0.01 <0.01 <0.01 <0,05 <0.01 BTEX - Ethyl Benzene < 0.01 <0.01 < 0.01 < 0.01 < 0.01 <0.01 < 0.01 <0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <0.05 < 0.01 <0.01 < 0.01 <0.01 < 0.05 < 0.01 BTEX - m & p Xylene <0.01 < 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 < 0.01 <0.01 < 0.01 < 0.01 <0.01 <0.01 2.2 <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 BTEX - o Xylene <0.01 <0.01 < 0.01 <0.01 <0.01 <0.01 <0.01 <0,01 <0.01 <0.01 < 0.01 < 0.01 <0.01 < 0.01 <0\_01 MTBE < 0.01 <0,01 < 0.01 < 0.01 < 0.01 < 0.01 <0.01 < 0.01 <0.01 <0\_01 Organic Matter

| ТРН                  | Mean Value<br>Test * | Test * Range                |                              | AlRisk 2017 (mg/kg)<br>Residential with Home<br>Grown Produce | AtRisk 2017 (mg/kg)<br>Residential with Home<br>Grown Produce | DEFRA C4SL 2017                   |
|----------------------|----------------------|-----------------------------|------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|
|                      | USm                  | Largest<br>Value<br>(mg/kg) | Smallest<br>Value<br>(mg/kg) | 1% SOM WITHOUT Free<br>Product***                             | en soe without Free<br>Production                             | 65-00M WITHOUT Free<br>Production |
| Ali >C5-C6           | 0.02                 | <0.01                       | < 0.01                       | 42,7                                                          | 369                                                           | :=                                |
| Ali >C6-C8           | 0.02                 | < 0.01                      | < 0.01                       | 99,3                                                          | 1240                                                          |                                   |
| Ali >C8-C10          | 0.02                 | <0.01                       | < 0.01                       | 13,9                                                          | 204                                                           |                                   |
| Ali >C10-C12         | 0.10                 | <0.1                        | <0.1                         | 81,7                                                          | 1180                                                          |                                   |
| Ali >C12-C16         | 0.10                 | <0.1                        | <0.1                         | 385                                                           | 4130                                                          |                                   |
| Ali >C16-C21         | 0.10                 | <0.1                        | <0.1                         | 210000                                                        | 210100                                                        |                                   |
| Ali >C21-C35         | 0.10                 | <0.1                        | <0.1                         | 210000                                                        | 210100                                                        |                                   |
| Total Aliphatics     | 0.10                 | <0.1                        | <0.1                         |                                                               |                                                               |                                   |
| Aro >C5-C7           | 0.02                 | < 0.01                      | < 0.01                       | 0,137                                                         | 0,871                                                         |                                   |
| Aro >C7-C8           | 0.02                 | < 0.01                      | <0.01                        | 113                                                           | 780                                                           |                                   |
| Aro >C8-C9           | 0.02                 | < 0.01                      | <0.01                        | 20,5                                                          | 232                                                           |                                   |
| Aro >C9-C10          | 0.02                 | <0.01                       | <0.01                        | 20,5                                                          | 232                                                           |                                   |
| Aro >C10-C12         | 0.10                 | <0.1                        | <0.1                         | 70                                                            | 468                                                           | _ G1                              |
| Aro >C12-C16         | 0.10                 | <0.1                        | <0.1                         | 165                                                           | 830                                                           | - a                               |
| Aro >C16-C21         | 0.27                 | 0.90                        | <0.1                         | 319                                                           | 1040                                                          | 296                               |
| Aro >C21-C35         | 0.32                 | 1.40                        | <0.1                         | 1120                                                          | 1710                                                          | 30                                |
| Total Aromatics      | 0.51                 | 2,30                        | <0.1                         |                                                               |                                                               |                                   |
| TPH (Ali & Aro)      | 0.51                 | 2.30                        | <0.1                         |                                                               |                                                               |                                   |
| BTEX - Benzene       | 0.02                 | <0.01                       | <0.01                        | 0,0493                                                        | 0.33                                                          | 0,871                             |
| BTEX - Toluene       | 0.02                 | < 0.01                      | <0.01                        | 113                                                           | 780                                                           |                                   |
| BTEX - Ethyl Benzene | 0.02                 | < 0.01                      | <0.01                        | 50.7                                                          | 453                                                           | (3)                               |
| BTEX - m & p Xylene  | 0.02                 | <0.01                       | <0.01                        | 24                                                            | 312                                                           | (Fall                             |
| BTEX - o Xylene      | 0.02                 | <0.01                       | < 0.01                       | 26,4                                                          | 336                                                           | (0)                               |
| MTBE                 | 0.02                 | <0.01                       | < 0.01                       | 27.6                                                          | 220                                                           |                                   |

|                      | UU Drinking Water<br>Guidelines |
|----------------------|---------------------------------|
| Ī                    | PE Threshold                    |
| Total BTEX<br>&MTBE  | 0.1                             |
| EC5-EC10 Ali<br>Aro  | 2                               |
| EC10-EC16<br>Ali-Aro | 10                              |
| EC16-EG40<br>All-Aro | 500                             |

Results expressed as mighig air dried unless otherwise stated

### NOTE

For the Purpose of this investigation-results will be assessed against RESIGENTIAL OUIGELINES WITH HOMEGROWN PRODUCE WITH NO FREE PRODUCT.

<sup>\* -</sup> The calculations for the mean value test include outliers

<sup>&</sup>quot;" THESE RESULTS PRESENTED ARE ASSESSED UNDER THE COMBINED CLEA ASSESSMENT CRITERION AS OUTLINED WITHIN SR4 ASSUMING NO FREE PRODUCT WAS DESERVED DURING FIELDWORK-SEE GUIDANCE NOTES ON CONTAMINATION."



### SUMMARY OF CONTAMINATION ANALYSIS: PAH

Project Name Project No Date

Whalley Rd, Barrow 18DWH018 05/06/18

| SOIL TYPE             | TS     | TS    | NS    | TS    | TS    | NS     | TS     | NS    | TS     | TS     | NS     | TS     | NS     | TS     | NS     |
|-----------------------|--------|-------|-------|-------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
| SAMPLE LOCATION       | TP201  | TP202 | TP202 | TP203 | TP204 | TP204  | TP205  | TP205 | TP206  | TP207  | TP207  | TP208  | TP208  | TP209  | TP209  |
| DEPTH (m)             | 0.10   | 0.10  | 0.80  | 0.10  | 0.10  | 0.50   | 0.10   | 0.80  | 0.10   | 0.10   | 1.50   | 0.10   | 0.70   | 0.10   | 1.00   |
| Acenaphthene          | <0.01  | <0.01 | <0.01 | 0.01  | 0.01  | <0.01  | < 0.01 | <0.01 | <0.01  | <0.01  | <0.01  | 0.01   | <0.01  | 0.04   | <0.01  |
| Acenaphthylene        | <0.01  | <0.01 | <0.01 | <0.01 | <0.01 | <0.01  | <0.01  | <0.01 | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  | <0.01  |
| Anthracene            | <0.02  | <0.02 | <0.02 | <0.02 | 0.03  | <0.02  | <0.02  | <0.02 | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | 0,05   | <0.02  |
| Benzo(a)anthracene    | <0.04  | <0.04 | <0.04 | 0.07  | 0.12  | < 0.04 | <0.04  | <0.04 | 0.12   | 0.05   | < 0.04 | 0.11   | <0.04  | 0.25   | <0.04  |
|                       | <0.04  | <0.04 | <0.04 | 0.06  | 0.12  | < 0.04 | <0.04  | <0.04 | 0,12   | <0.04  | <0.04  | 0.11   | <0.04  | 0.25   | <0.04  |
| Benzo(a)pyrene        | <0.05  | <0.05 | <0.05 | 0.09  | 0.18  | <0.05  | < 0.05 | <0.05 | 0.17   | 0.07   | <0.05  | 0.16   | <0.05  | 0.33   | <0.05  |
| Benzo(b)fluoranthene  | <0.05  | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | < 0.05 | <0.05 | < 0.05 | <0.05  | < 0.05 | <0.05  | <0.05  | 0.12   | <0.05  |
| Benzo(ghi)perylene    | <0.07  | <0.07 | <0.07 | <0.07 | <0.07 | <0.07  | < 0.07 | <0.07 | < 0.07 | < 0.07 | <0.07  | < 0.07 | <0.07  | 0.12   | <0.07  |
| Benzo(k)fluoranthene  | <0.06  | <0.06 | <0.06 | 0.1   | 0.16  | <0.06  | <0.06  | <0.06 | 0.16   | < 0.06 | <0.06  | 0,16   | <0.06  | 0.33   | <0.06  |
| Chrysene              |        | <0.04 | <0.04 | <0.04 | <0.04 | <0.04  | <0.04  | <0.04 | <0.04  | < 0.04 | <0.04  | <0.04  | <0.04  | <0.04  | <0.04  |
| Dibenzo(ah)anthracene | <0.04  |       | <0.04 | 0.17  | 0.27  | <0.08  | <0.08  | <0.08 | 0.26   | 0.13   | <0.08  | 0,26   | <0.08  | 0.59   | <0.08  |
| Fluoranthene          | <0.08  | <0.08 |       | <0.01 | <0.01 | <0.01  | <0.01  | <0.01 | <0.01  | <0.01  | <0.01  | < 0.01 | < 0.01 | 0.01   | <0.01  |
| Fluorene              | <0.01  | <0.01 | <0.01 |       | 0.09  | <0.03  | <0.03  | <0.03 | 0.09   | <0.03  | < 0.03 | 0.09   | < 0.03 | 0.16   | <0.03  |
| Indeno(123-cd)pyrene  | <0.03  | <0.03 | <0.03 | 0.04  |       |        | <0.03  | <0.03 | <0.03  | <0.03  | <0.03  | <0.03  | <0.03  | < 0.03 | < 0.03 |
| Naphthalene           | <0.03  | <0.03 | <0.03 | <0.03 | <0.03 | <0.03  | _      |       |        |        | <0.03  | 0.13   | <0.03  | 0.27   | <0.03  |
| Phenanthrene          | <0.03  | 0.06  | <0.03 | 0.13  | 0,13  | <0.03  | 0.04   | <0.03 | 0.1    | 0.07   |        | _      | <0.07  | 0.54   | <0.07  |
| Pyrene                | < 0.07 | <0.07 | <0.07 | 0.16  | 0,24  | <0.07  | <0.07  | <0.07 | 0.23   | 0.12   | <0.07  | 0.25   |        | 5.2    | 1.5    |
| Organic Matter        | (8)    | 0.1   | 1.9   | 11.6  | 6.4   | 1.8    | 6.5    | 2.1   | -7     | 0,4    | 2,9    | 0.4    | 2.2    | J.Z    | 1.0    |

| PAH                   | Mean Value<br>Test " | Rai                         | nge                          | AtRisk 2017 (mg/kg)<br>Residential with Home<br>Grown Produce | AtRiek 2017 (mg/kg)<br>Residential with Home<br>Grown Produce | DEFRA's C4SL 2017                 |
|-----------------------|----------------------|-----------------------------|------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|
|                       | US <sub>ps</sub>     | Largest<br>Value<br>(mg/kg) | Smallest<br>Value<br>(mg/kg) | 1% SOM WITHOUT Free<br>Product***                             | EN COMMITHOUT Free<br>Product***                              | EN SOM WITHOUT Free<br>Product*** |
| Acenaphthene          | 0.02                 | 0.04                        | <0.01                        | 608                                                           | 2760                                                          |                                   |
| Acenaphthylene        | 0.01                 | <0.01                       | <0.01                        |                                                               |                                                               |                                   |
| Anthracene            | 0.03                 | 0.05                        | < 0.02                       | 10200                                                         | 26200                                                         |                                   |
| Benzo(a)enthracena    | 0.10                 | 0.25                        | <0.04                        | 4.52                                                          | 8.54                                                          |                                   |
| Benzo(a)pyrene        | 0.10                 | 0.25                        | < 0.04                       | 1,51                                                          | 2.05                                                          | 4.95                              |
| Benzo(b)fluoranthene  | 0.14                 | 0.33                        | <0.05                        | 7.72                                                          | 9.86                                                          |                                   |
| Benzo(ghi)perylene    | 0.06                 | 0.12                        | <0.05                        | 96.2                                                          | 103                                                           |                                   |
| Benzo(k)fluoranthene  | 0.08                 | 0.12                        | <0.07                        | 84.4                                                          | 100                                                           |                                   |
| Chrysene              | 0.14                 | 0.33                        | <0.06                        | 585                                                           | 927                                                           |                                   |
| Dibenzo(ah)anthracene | 0.04                 | <0.04                       | <0.04                        | 0.838                                                         | 11                                                            |                                   |
| Fluoranthene          | 0.24                 | 0.59                        | <0.08                        | 983                                                           | 2980                                                          | i i                               |
| Fluorene              | 0.01                 | 0.02                        | <0.01                        | 735                                                           | 2610                                                          |                                   |
| Indeno(123-cd)pyrene  | 0.07                 | 0.16                        | <0.03                        | 7.31                                                          | 9.75                                                          | 2.0                               |
| Naphthalene           | 0.03                 | < 0.03                      | <0.03                        | 0.829                                                         | 12.2                                                          | *                                 |
| Phenanthrene          | 0.13                 | 0.27                        | <0.03                        |                                                               |                                                               | 24                                |
| Pyrene                | 0.22                 | 0.54                        | <0.07                        | 668                                                           | 2120                                                          |                                   |

Results expressed as mg/kg air dried unless otherwise stated.

For the Purpose of this investigation- results will be assessed agains RESIDENTIAL GUIDELINES-WITH HOMEGROWN PRODUCE WITH NO FREE PRODUCT.

<sup>\*\*\*</sup> THESE RESULTS PRESENTED ARE ASSESSED UNDER THE COMBINED CLEA ASSESSMENT CRITERION AS OUTLINED WITHIN SR4 <u>ASSUMING NO FREE PRODUC</u>T WAS OBSERVED DURING FIELDWORK- SEE 'GUIDANCE NOTES ON CONTAMINATION'.



### **FINAL ANALYTICAL TEST REPORT**

**Envirolab Job Number:** 

18/02614

**Issue Number:** 

Date: 24 April, 2018

Client:

Betts Geo Environmental

Old Marsh Farm Barns Welsh Road

Sealand Flintshire

UK

CH5 2LY

**Project Manager:** 

Betts Geolab/Paul Harrison

**Project Name:** 

Whalley Rd, Barrow

**Project Ref:** 

18DWH018

**Order No:** 

BG2716

**Date Samples Received:** 

09/04/18

**Date Instructions Received:** 

10/04/18

**Date Analysis Completed:** 

23/04/18

Prepared by:

Approved by:

Melanie Marshall

MMarshall

**Laboratory Coordinator** 

Georgia King

Admin & Client Services Supervisor







Client Project Name: Whalley Rd, Barrow

|                                                      |            |            |            |            | Cilentrio  | ect Ref: 101 | 37711010   |            |                |            |
|------------------------------------------------------|------------|------------|------------|------------|------------|--------------|------------|------------|----------------|------------|
| ab Sample ID                                         | 18/02614/1 | 18/02614/2 | 18/02614/3 | 18/02614/4 | 18/02614/5 | 18/02614/6   | 18/02614/7 | 18/02614/8 |                |            |
| Client Sample No                                     |            |            |            |            |            |              |            |            |                |            |
| Client Sample ID                                     | TP201      | TP201      | TP202      | TP202      | TP203      | TP203        | TP204      | TP204      |                |            |
| Depth to Top                                         | 0.10       | 1.50       | 0.10       | 0.80       | 0.10       | 1.20         | 0.10       | 0.50       |                |            |
| Depth To Bottom                                      |            | 2          |            |            |            |              |            |            |                |            |
| Date Sampled                                         | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18    | 06-Apr-18  | 06-Apr-18  |                | et         |
| Sample Type                                          | Soil - ES  | Soil - D   | Soil - ES  | Soil - ES  | Soil - ES  | Soil - D     | Soil - ES  | Soil - ES  | y <sub>2</sub> | Method ref |
| Sample Matrix Code                                   | 6E         | 6A         | 6E         | 6E         | 6E         | 6A           | 6E         | 5E         | Units          | Met        |
| % Stones >10mm <sub>A</sub>                          | <0.1       | 11.1       | <0.1       | <0.1       | <0.1       | 5.6          | <0.1       | <0.1       | % w/w          | A-T-044    |
| pH <sub>D</sub> <sup>M#</sup>                        | 7.32       | 8.08       | 6.69       | 7.49       | 6.88       | 7.72         | 6.58       | 6.87       | рН             | A-T-031s   |
| Sulphate (water sol 2:1) <sub>D</sub> <sup>M#</sup>  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | 0.06         | <0.01      | <0.01      | g/l            | A-T-026s   |
| Cyanide (free) <sub>A</sub> <sup>M#</sup>            | <1         | 1000       | <1         | <1         | <1         | 3.5          | <1         | <1         | mg/kg          | A-T-042sFC |
| Cyanide (total) <sub>A</sub> <sup>M#</sup>           | <1         |            | <1         | <1         | <1         | •            | <1         | <1         | mg/kg          | A-T-042sTC |
| Phenois - Total by HPLC <sub>A</sub>                 | <0.2       | *          | <0.2       | <0.2       | <0.2       | *            | <0.2       | <0.2       | mg/kg          | A-T-050s   |
| Organic matter <sub>D</sub> <sup>M#</sup>            | 8.0        | *5         | 9.1        | 1.9        | 11.6       | *            | 6.4        | 1.8        | % w/w          | A-T-032 O  |
| Arsenic <sub>D</sub> <sup>M#</sup>                   | 6          | *5         | 7          | 6          | 7          | ž.           | 5          | 2          | mg/kg          | A-T-024s   |
| Cadmium <sub>o</sub> <sup>M#</sup>                   | 0.9        |            | 1.1        | 1.2        | 0.9        | •            | 1.1        | 1.1        | mg/kg          | A-T-024s   |
| Copper <sub>D</sub> <sup>M#</sup>                    | 23         | *          | 33         | 24         | 25         |              | 19         | 14         | mg/kg          | A-T-024s   |
| Chromium (hexavalent) <sub>D</sub>                   | <1         | 2          | <1         | <1         | <1         |              | <1         | <1         | mg/kg          | A-T-040s   |
| Lead <sub>D</sub> <sup>M#</sup>                      | 75         |            | 78         | 28         | 97         |              | 48         | 20         | mg/kg          | A-T-024s   |
| Mercury <sub>D</sub>                                 | <0.17      |            | <0.17      | <0.17      | <0.17      |              | <0.17      | <0.17      | mg/kg          | A-T-024s   |
| Nickel <sub>D</sub> <sup>M#</sup>                    | 30         | *          | 31         | 55         | 25         |              | 28         | 32         | mg/kg          | A-T-024s   |
| Selenium <sub>D</sub> <sup>M#</sup>                  | <1         | *          | 2          | 1          | <1         | 8            | 11         | 1          | mg/kg          | A-T-024s   |
| Zinc <sub>o</sub> <sup>M#</sup>                      | 127        |            | 123        | 98         | 109        |              | 119        | 86         | mg/kg          | A-T-024s   |
| VPH total (>C5-C10) <sub>A</sub> #                   | <0.01      |            | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg          | A-T-022s   |
| 1.01 % Moisture BS1377 1990 pt2 cl3.2 <sub>A</sub> # | -          | Appended   |            |            | e e        | Appended     |            | •          |                | Subcon S   |
| 1.02 Atterburg 4Pt BS1377 1990 pt2 cl4.4,5.3+5.4     | 2          | Appended   | :•         | (*         | 2.         | Appended     |            | •          |                | Subcon S   |



Client Project Name: Whalley Rd, Barrow

| Lab Sample ID                                         | 18/02614/1 | 18/02614/2     | 18/02614/3 | 18/02614/4 | 18/02614/5 | 18/02614/6 | 18/02614/7 | 18/02614/8 |       |            |
|-------------------------------------------------------|------------|----------------|------------|------------|------------|------------|------------|------------|-------|------------|
| Client Sample No                                      |            |                |            |            |            |            |            |            |       |            |
| Client Sample ID                                      | TP201      | TP201          | TP202      | TP202      | TP203      | TP203      | TP204      | TP204      |       |            |
| Depth to Top                                          | 0.10       | 1.50           | 0.10       | 0.80       | 0.10       | 1.20       | 0.10       | 0.50       |       |            |
| Depth To Bottom                                       |            |                |            |            |            |            |            |            |       |            |
| Date Sampled                                          | 06-Apr-18  | 06-Apr-18      | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  |       |            |
| Sample Type                                           | Soil - ES  | Soil - D       | Soil - ES  | Soil - ES  | Soil - ES  | Soil - D   | Soil - ES  | Soll - ES  |       | ā Pē       |
| Sample Matrix Code                                    | 6E         | 6A             | 6E         | 6E         | 6E         | 6A         | 6E         | 5E         | Units | Method ref |
| Asbestos in Soil (inc. matrix)                        |            |                |            |            |            |            |            |            |       |            |
| Asbestos in soil <sub>A</sub> #                       | NAD        | 7 <del>4</del> | NAD        | NAD        | NAD        |            | NAD        | NAD        |       | A-T-046    |
| Asbestos ACM - Suitable for Water<br>Absorption Test? | N/A        | *              | N/A        | N/A        | N/A        |            | N/A        | N/A        |       |            |



Client Project Name: Whalley Rd, Barrow

| Lab Sample ID                                 | 18/02614/1 | 18/02614/2 | 18/02614/3 | 18/02614/4 | 18/02614/5 | 18/02614/6 | 18/02614/7 | 18/02614/8 |         |            |
|-----------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|---------|------------|
| Client Sample No                              |            |            |            |            |            |            |            |            |         |            |
| Client Sample ID                              | TP201      | TP201      | TP202      | TP202      | TP203      | TP203      | TP204      | TP204      |         |            |
| Depth to Top                                  | 0.10       | 1.50       | 0.10       | 0.80       | 0.10       | 1.20       | 0.10       | 0.50       |         |            |
| Depth To Bottom                               |            |            |            |            |            |            |            |            |         |            |
| Date Sampled                                  | 06-Apr-18  |         | ē          |
| Sample Type                                   | Soil - ES  | Soil - D   | Soil - ES  | Soil - ES  | Soil - ES  | Soil - D   | Soil - ES  | Soil - ES  | <u></u> | Method ref |
| Sample Matrix Code                            | 6E         | 6A         | 6E         | 6E         | 6E         | 6A         | 6E         | 5E         | Units   | Met        |
| PAH-16MS                                      |            |            |            |            |            |            |            |            |         |            |
| Acenaphthene <sub>A</sub> <sup>M#</sup>       | <0.01      | 23         | <0.01      | <0.01      | 0.01       | *          | 0.01       | <0.01      | mg/kg   | A-T-018s   |
| Acenaphthylene <sub>A</sub> <sup>M#</sup>     | <0.01      |            | <0.01      | <0.01      | <0.01      |            | <0.01      | <0.01      | mg/kg   | A-T-019s   |
| Anthracene <sub>A</sub> <sup>M#</sup>         | <0.02      | ¥          | <0.02      | <0.02      | <0.02      |            | 0.03       | <0.02      | mg/kg   | A-T-019s   |
| Benzo(a)anthracene <sub>A</sub> <sup>M#</sup> | <0.04      | 2          | <0.04      | <0.04      | 0.07       |            | 0.12       | <0.04      | mg/kg   | A-T-019s   |
| Benzo(a)pyrene <sub>A</sub> M#                | <0.04      | -          | <0.04      | <0.04      | 0.06       | *          | 0.12       | <0.04      | mg/kg   | A-T-019s   |
| Benzo(b)fluoranthene <sub>A</sub> M#          | <0.05      | 4          | <0.05      | <0.05      | 0.09       | *          | 0.18       | <0.05      | mg/kg   | A-T-018s   |
| Benzo(ghi)perylene <sub>A</sub> <sup>M#</sup> | <0.05      | -          | <0.05      | <0.05      | <0.05      | 8 3        | <0.05      | <0.05      | mg/kg   | A-T-019s   |
| Benzo(k)fluoranthene <sub>A</sub> M#          | <0.07      |            | <0.07      | <0.07      | <0.07      | 8          | <0.07      | <0.07      | mg/kg   | A-T-019s   |
| Chrysene <sub>A</sub> <sup>M#</sup>           | <0.06      | -          | <0.06      | <0.06      | 0.10       | *          | 0.16       | <0.06      | mg/kg   | A-T-019s   |
| Dibenzo(ah)anthracene <sub>A</sub> M#         | <0.04      | 8          | <0.04      | <0.04      | <0.04      | 2          | <0.04      | <0.04      | mg/kg   | A-T-019s   |
| Fluoranthene <sub>A</sub> <sup>M#</sup>       | <0.08      | 8          | <0.08      | <0.08      | 0.17       | :=         | 0.27       | <0.08      | mg/kg   | A-T-018s   |
| Fluorene <sub>A</sub> <sup>M#</sup>           | <0.01      |            | <0.01      | <0.01      | <0.01      | 95         | <0.01      | <0.01      | mg/kg   | A-T-019s   |
| Indeno(123-cd)pyrene <sub>A</sub> M#          | <0.03      | 4          | <0.03      | <0.03      | 0.04       | æ          | 0.09       | <0.03      | mg/kg   | A-T-018s   |
| Naphthalene <sub>A</sub> M#                   | <0.03      | Ē          | <0.03      | <0.03      | <0.03      | ;*         | <0.03      | <0.03      | mg/kg   | A-T-019s   |
| Phenanthrene <sub>A</sub> M#                  | <0.03      | 8          | 0.06       | <0.03      | 0.13       |            | 0.13       | <0.03      | mg/kg   | A-T-018s   |
| Pyrene <sub>A</sub> <sup>M#</sup>             | <0.07      | 3          | <0.07      | <0.07      | 0.16       | (F)        | 0.24       | <0.07      | mg/kg   | A-T-019s   |
| PAH (total 16) <sub>A</sub> M#                | <0.08      |            | <0.08      | <0.08      | 0.86       | 190        | 1.35       | <0.08      | mg/kg   | A-T-019s   |



Client Project Name: Whalley Rd, Barrow

| Lab Sample ID                       | 18/02614/1 | 18/02614/2 | 18/02614/3 | 18/02614/4 | 18/02614/5 | 18/02614/6   | 18/02614/7 | 18/02614/8 | T     |            |
|-------------------------------------|------------|------------|------------|------------|------------|--------------|------------|------------|-------|------------|
| Client Sample No                    |            |            |            |            |            |              |            |            | 1     |            |
| Client Sample ID                    | TP201      | TP201      | TP202      | TP202      | TP203      | TP203        | TP204      | TP204      | 1     |            |
| Depth to Top                        | 0.10       | 1.50       | 0.10       | 0.80       | 0.10       | 1.20         | 0.10       | 0.50       | 1     |            |
| Depth To Bottom                     |            |            | >:         |            |            |              |            |            | 1     |            |
| Date Sampled                        | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18  | 06-Apr-18    | 06-Apr-18  | 06-Apr-18  |       |            |
| Sample Type                         | Soil - ES  | Soil - D   | Soil - ES  | Soil - ES  | Soil - ES  | Soil - D     | Soil - ES  | Soil - ES  | 1     | d ref      |
| Sample Matrix Code                  | 6E         | 6A         | 6E         | 6E         | 6E         | 6A           | 6E         | 5E         | Units | Method ref |
| TPH CWG                             |            |            |            |            |            |              |            |            |       |            |
| Ali >C5-C6 <sub>A</sub> #           | <0.01      |            | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| Ali >C6-C8 <sub>A</sub> "           | <0.01      | 2          | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| Ali >C8-C10 <sub>A</sub> #          | <0.01      | *          | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| Ali >C10-C12 <sub>A</sub> #         | <0.1       | ×          | <0.1       | <0.1       | <0.1       |              | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Ali >C12-C16 <sub>A</sub> #         | <0.1       |            | <0.1       | <0.1       | <0.1       |              | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Ali >C16-C21 <sub>A</sub> #         | <0.1       |            | <0.1       | <0.1       | <0.1       |              | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Ali >C21-C35 <sub>A</sub> #         | <0.1       | ž.         | <0.1       | <0.1       | <0.1       |              | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Total Aliphatics <sub>A</sub>       | <0.1       | 2          | <0.1       | <0.1       | <0.1       |              | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Aro >C5-C7 <sub>A</sub> #           | <0.01      | s ·        | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| Aro >C7-C8 <sub>A</sub> #           | <0.01      | 2          | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| Aro >C8-C9 <sub>A</sub> #           | <0.01      |            | <0.01      | <0.01      | <0.01      | 3 <b>:</b> 1 | <0.01      | <0.01      | mg/kg | A-T-022s   |
| Aro >C9-C10 <sub>A</sub> #          | <0.01      |            | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| Aro >C10-C12 <sub>A</sub> #         | <0.1       |            | <0.1       | <0.1       | <0.1       |              | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Aro >C12-C16 <sub>A</sub> #         | <0.1       | 120        | <0.1       | <0.1       | <0.1       | 3.5          | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Aro >C16-C21 <sub>A</sub> #         | <0.1       | na         | <0.1       | <0.1       | <0.1       | S#1          | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Aro >C21-C35 <sub>A</sub> #         | <0.1       | 92         | <0.1       | <0.1       | <0.1       |              | <0.1       | <0.1       | mg/kg | A-T-023s   |
| Total Aromatics <sub>A</sub>        | <0.1       |            | <0.1       | <0.1       | <0.1       | (9)          | <0.1       | <0.1       | mg/kg | A-T-023s   |
| TPH (Ali & Aro) <sub>A</sub>        | <0.1       | 520        | <0.1       | <0.1       | <0.1       | (#)          | <0.1       | <0.1       | mg/kg | A-T-023s   |
| BTEX - Benzene <sub>A</sub> #       | <0.01      | (a)        | <0.01      | <0.01      | <0.01      | :•:          | <0.01      | <0.01      | mg/kg | A-T-022s   |
| STEX - Toluene <sub>A</sub> #       | <0.01      | (2)        | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| STEX - Ethyl Benzene <sub>A</sub> * | <0.01      | 99         | <0.01      | <0.01      | <0.01      | 1.*          | <0.01      | <0.01      | mg/kg | A-T-022s   |
| STEX - m & p Xylene <sub>A</sub> "  | <0.01      | 120        | <0.01      | <0.01      | <0.01      | (*           | <0.01      | <0.01      | mg/kg | A-T-022s   |
| STEX - o Xylene <sub>A</sub> #      | <0.01      | 9          | <0.01      | <0.01      | <0.01      |              | <0.01      | <0.01      | mg/kg | A-T-022s   |
| MTBE <sub>A</sub> "                 | <0.01      |            | <0.01      | <0.01      | <0.01      | -            | <0.01      | <0.01      | mg/kg | A-T-0225   |



Client Project Name: Whalley Rd, Barrow

| Lab Sample ID                                                      | 18/02614/9 | 18/02614/10 | 18/02614/11 | 18/02614/12 | 18/02614/13  | 18/02614/14 | 18/02614/15 | 18/02614/16 |                |             |
|--------------------------------------------------------------------|------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|----------------|-------------|
| Client Sample No                                                   |            |             | (*          |             |              |             |             |             |                |             |
| Client Sample ID                                                   | TP205      | TP205       | TP206       | TP206       | TP207        | TP207       | TP208       | TP208       |                |             |
| Depth to Top                                                       | 0.10       | 0.80        | 0.10        | 1.30        | 0.10         | 1.50        | 0.10        | 0.70        |                |             |
| Depth To Bottom                                                    |            |             |             |             |              |             |             |             |                |             |
| Date Sampled                                                       | 06-Apr-18  | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18    | 06-Арг-18   | 06-Apr-18   | 06-Apr-18   |                | <b>a</b>    |
| Sample Type                                                        | Soil - ES  | Soil - ES   | Soil - ES   | Soil - D    | Soil - ES    | Soil - ES   | Soil - ES   | Soil - ES   | υ <sub>ν</sub> | Method ref  |
| Sample Matrix Code                                                 | 6E         | 6E          | 6E          | 6E          | 6E           | 6A          | 6AE         | 6A          | Units          | Met         |
| % Stones >10mm <sub>A</sub>                                        | <0.1       | <0.1        | <0.1        | <0.1        | <0.1         | <0.1        | 2.0         | 5.3         | % w/w          | A-T-044     |
| pH <sub>D</sub> <sup>M#</sup>                                      | 6.70       | 7.34        | 6.69        | 7.80        | 7.35         | 8.02        | 7.61        | 7.82        | рН             | A-T-031s    |
| Sulphate (water sol 2:1) <sub>D</sub> <sup>M#</sup>                | 0.01       | <0.01       | <0.01       | 0.04        | 0.04         | <0.01       | <0.01       | <0.01       | g/l            | A-T-026s    |
| Cyanide (free) <sub>A</sub> M#                                     | <1         | <1          | <1          | *           | <1           | <1          | <1          | <1          | mg/kg          | A-T-042sFCN |
| Cyanide (total) <sub>A</sub> M#                                    | <1         | <1          | <1          | *           | <1           | <1          | <1          | <1          | mg/kg          | A-T-042sTCN |
| Phenois - Total by HPLC <sub>A</sub>                               | <0.2       | <0.2        | <0.2        | 6           | <0.2         | <0.2        | <0.2        | <0.2        | mg/kg          | A-T-050s    |
| Organic matter <sub>0</sub> <sup>M#</sup>                          | 6.5        | 2.1         | 7.0         | *           | 6.4          | 2.9         | 6.4         | 2.2         | % w/w          | A-T-032 OM  |
| Arsenic <sub>D</sub> <sup>M#</sup>                                 | 5          | 4           | 6           |             | 5            | 4           | 7           | 5           | mg/kg          | A-T-024s    |
| Cadmium <sub>D</sub> ™#                                            | 1.0        | 1.4         | 1.1         |             | 1.1          | 1.2         | 0.9         | 1.1         | mg/kg          | A-T-024s    |
| Copper <sub>D</sub> <sup>M#</sup>                                  | 22         | 23          | 25          | -           | 23           | 24          | 22          | 18          | mg/kg          | A-T-024s    |
| Chromium (hexavalent) <sub>D</sub>                                 | <1         | <1          | <1          |             | <1           | <1          | <1          | <1          | mg/kg          | A-T-049s    |
| Lead <sub>D</sub> <sup>M#</sup>                                    | 46         | 29          | 63          | *           | 54           | 25          | 40          | 24          | mg/kg          | A-T-024s    |
| Mercury <sub>D</sub>                                               | <0.17      | <0.17       | <0.17       | *           | <0.17        | 0.36        | 0.31        | <0.17       | mg/kg          | A-T-024s    |
| Nickel <sub>D</sub> <sup>M#</sup>                                  | 29         | 56          | 30          |             | 30           | 43          | 24          | 38          | mg/kg          | A-T-024s    |
| Selenium <sub>D</sub> <sup>M#</sup>                                | 2          | 2           | <1          |             | 1            | 2           | <1          | <1          | mg/kg          | A-T-024s    |
| Zinc <sub>D</sub> <sup>M#</sup>                                    | 101        | 75          | 137         | ÷           | 125          | 95          | 99          | 132         | mg/kg          | A-T-024s    |
| VPH total (>C5-C10) <sub>A</sub> #                                 | <0.01      | <0.01       | <0.01       | :-          | <0.01        | <0.01       | <0.01       | <0.01       | mg/kg          | A-T-022s    |
| 1.01 % Moisture BS1377 1990 pt2 cl3.2 <sub>A</sub> #               | 4          | 12          |             | Appended    | 590          |             |             | 2           |                | Subcon SS   |
| 1.02 Atterburg 4Pt BS1377 1990 pt2<br>cl4.4,5.3+5.4 <sub>A</sub> " |            | 7.          | æ           | Appended    | ( <b>*</b> ) |             | -           | 3           |                | Subcon SS   |



Client Project Name: Whalley Rd, Barrow

| Lab Sample ID                                         | 18/02614/9 | 18/02614/10 | 18/02614/11 | 18/02614/12 | 18/02614/13 | 18/02614/14 | 18/02614/15 | 18/02614/16 |       |            |
|-------------------------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|------------|
| Client Sample No                                      |            |             |             |             |             |             |             | 12          |       |            |
| Client Sample ID                                      | TP205      | TP205       | TP206       | TP206       | TP207       | TP207       | TP208       | TP208       |       |            |
| Depth to Top                                          | 0.10       | 0.80        | 0.10        | 1.30        | 0.10        | 1.50        | 0.10        | 0.70        |       |            |
| Depth To Bottom                                       |            |             |             |             |             |             |             |             |       |            |
| Date Sampled                                          | 06-Apr-18  | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   |       |            |
| Sample Type                                           | Soil - ES  | Soil - ES   | Soil - ES   | Soil - D    | Soil - ES   | Soil - ES   | Soil - ES   | Soil - ES   |       | d ref      |
| Sample Matrix Code                                    | 6E         | 6E          | 6E          | 6E          | 6E          | 6A          | 6AE         | 6A          | Units | Method ref |
| Asbestos in Soil (inc. matrix)                        |            |             |             |             |             |             |             |             |       | -          |
| Asbestos in soil <sub>A</sub> #                       | NAD        | NAD         | NAD         | 2           | NAD         |             | NAD         | NAD         |       | A-T-04     |
| Asbestos ACM - Suitable for Water<br>Absorption Test? | N/A        | N/A         | N/A         |             | N/A         | 3           | N/A         | N/A         |       |            |



Client Project Name: Whalley Rd, Barrow

|                                                  |            |             |             |             | Official 10 | ect Ret: 18 | D4411010    |             |       |            |
|--------------------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|------------|
| Lab Sample ID                                    | 18/02614/9 | 18/02614/10 | 18/02614/11 | 18/02614/12 | 18/02614/13 | 18/02614/14 | 18/02614/15 | 18/02614/16 |       |            |
| Client Sample No                                 |            |             |             |             |             |             |             |             |       |            |
| Client Sample ID                                 | TP205      | TP205       | TP206       | TP206       | TP207       | TP207       | TP208       | TP208       |       |            |
| Depth to Top                                     | 0.10       | 0.80        | 0.10        | 1.30        | 0.10        | 1.50        | 0.10        | 0.70        |       |            |
| Depth To Bottom                                  |            |             |             |             |             |             |             |             |       |            |
| Date Sampled                                     | 06-Apr-18  | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   |       |            |
| Sample Type                                      | Soil - ES  | Soil - ES   | Soil - ES   | Soil - D    | Soil - ES   | Soil - ES   | Soil - ES   | Soil - ES   |       | Method ref |
| Sample Matrix Code                               | 6E         | 6E          | 6E          | 6E          | 6E          | 6A          | 6AE         | 6A          | Units | Meth       |
| PAH-16MS                                         |            |             |             |             |             |             |             |             |       |            |
| Acenaphthene <sub>A</sub> <sup>M#</sup>          | <0.01      | <0.01       | <0.01       | *           | <0.01       | <0.01       | 0.01        | <0.01       | mg/kg | A-T-019s   |
| Acenaphthylene <sub>A</sub> <sup>M#</sup>        | <0.01      | <0.01       | <0.01       |             | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-019s   |
| Anthracene <sub>A</sub> <sup>M#</sup>            | <0.02      | <0.02       | <0.02       | *           | <0.02       | <0.02       | <0.02       | <0.02       | mg/kg | A-T-018s   |
| Benzo(a)anthracene <sub>A</sub> M#               | <0.04      | <0.04       | 0.12        | *           | 0.05        | <0.04       | 0.11        | <0.04       | mg/kg | A-T-018s   |
| Benzo(a)pyrene <sub>A</sub> <sup>M#</sup>        | <0.04      | <0.04       | 0.12        |             | <0.04       | <0.04       | 0.11        | <0.04       | mg/kg | A-T-019s   |
| Benzo(b)fluoranthene <sub>A</sub> M#             | <0.05      | <0.05       | 0.17        | *           | 0.07        | <0.05       | 0.16        | <0.05       | mg/kg | A-T-019s   |
| Benzo(ghi)perylene <sub>A</sub> <sup>M#</sup>    | <0.05      | <0.05       | <0.05       | *           | <0.05       | <0.05       | <0.05       | <0.05       | mg/kg | A-T-019s   |
| Benzo(k)fluoranthene, M#                         | <0.07      | <0.07       | <0.07       | *           | <0.07       | <0.07       | <0.07       | <0.07       | mg/kg | A-T-019s   |
| Chrysene <sub>A</sub> <sup>M#</sup>              | <0.06      | <0.06       | 0.16        |             | <0.06       | <0.06       | 0.16        | <0.06       | mg/kg | A-T-018s   |
| Dibenzo(ah)anthracene <sub>A</sub> <sup>M#</sup> | <0.04      | <0.04       | <0.04       |             | <0.04       | <0.04       | <0.04       | <0.04       | mg/kg | A-T-019s   |
| Fluoranthene <sub>A</sub> M#                     | <0.08      | <0.08       | 0.26        | *           | 0.13        | <0.08       | 0.26        | <0.08       | mg/kg | A-T-019s   |
| Fluorene <sub>A</sub> <sup>M#</sup>              | <0.01      | <0.01       | <0.01       | *.          | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-019s   |
| Indeno(123-cd)pyrene <sub>A</sub> <sup>M#</sup>  | <0.03      | <0.03       | 0.09        |             | <0.03       | <0.03       | 0.09        | <0.03       | mg/kg | A-T-018s   |
| Naphthalene <sub>A</sub> M#                      | <0.03      | <0.03       | <0.03       | *           | <0.03       | <0.03       | <0.03       | <0.03       | mg/kg | A-T-019s   |
| Phenanthrene <sub>A</sub> <sup>M#</sup>          | 0.04       | <0.03       | 0.10        | *           | 0.07        | <0.03       | 0.13        | <0.03       | mg/kg | A-T-019s   |
| Pyrene <sub>A</sub> <sup>M#</sup>                | <0.07      | <0.07       | 0.23        | *           | 0.12        | <0.07       | 0.25        | <0.07       | mg/kg | A-T-019s   |
| PAH (total 16) <sub>A</sub> M#                   | <0.08      | <0.08       | 1.25        | *           | 0.46        | <0.08       | 1.30        | <0.08       | mg/kg | A-T-019s   |



Client Project Name: Whalley Rd, Barrow

| Lab Sample ID                       | 18/02614/9 | 18/02614/10 | 18/02614/11 | 18/02614/12      | 18/02614/13 | 18/02614/14 | 18/02614/15 | 18/02614/16 |       |            |
|-------------------------------------|------------|-------------|-------------|------------------|-------------|-------------|-------------|-------------|-------|------------|
| Client Sample No                    |            |             |             |                  |             |             |             |             |       |            |
| Client Sample ID                    | TP205      | TP205       | TP206       | TP206            | TP207       | TP207       | TP208       | TP208       |       |            |
| Depth to Top                        | 0.10       | 0.80        | 0.10        | 1.30             | 0.10        | 1.50        | 0.10        | 0.70        |       |            |
| Depth To Bottom                     |            |             |             |                  |             |             |             |             |       |            |
| Date Sampled                        | 06-Apr-18  | 06-Apr-18   | 06-Apr-18   | 06-Apr-18        | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   |       | <b>-</b>   |
| Sample Type                         | Soil - ES  | Soil - ES   | Soil - ES   | Soil - D         | Soil - ES   | Soil - ES   | Soil - ES   | Soil - ES   |       | Method ref |
| Sample Matrix Code                  | 6E         | 6E          | 6E          | 6E               | 6E          | 6A          | 6AE         | 6A          | Units | Meth       |
| TPH CWG                             |            |             |             |                  |             |             |             |             |       |            |
| Ali >C5-C6 <sub>A</sub> #           | <0.01      | <0.01       | <0.01       | F#1              | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| Ali >C6-C8 <sub>A</sub> #           | <0.01      | <0.01       | <0.01       | · **             | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| Ali >C8-C10 <sub>A</sub> #          | <0.01      | <0.01       | <0.01       | 500              | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| Ali >C10-C12 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        | 141              | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Ali >C12-C16 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        | 943              | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Ali >C16-C21 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        | 3 <b>2</b> 2     | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Ali >C21-C35 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        | (4)              | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Total Aliphatics <sub>A</sub>       | <0.1       | <0.1        | <0.1        |                  | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Aro >C5-C7 <sub>A</sub> #           | <0.01      | <0.01       | <0.01       | 30               | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| Aro >C7-C8 <sub>A</sub> #           | <0.01      | <0.01       | <0.01       |                  | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| Aro >C8-C9 <sub>A</sub> *           | <0.01      | <0.01       | <0.01       | <b>3</b>         | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| Aro >C9-C10 <sub>A</sub> "          | <0.01      | <0.01       | <0.01       | <b>E</b> 8       | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| Aro >C10-C12 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        | <u> </u>         | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Aro >C12-C16 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        | 3                | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Aro >C16-C21 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        |                  | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Aro >C21-C35 <sub>A</sub> #         | <0.1       | <0.1        | <0.1        |                  | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| Total Aromatics <sub>A</sub>        | <0.1       | <0.1        | <0.1        |                  | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| TPH (Ali & Aro) <sub>A</sub>        | <0.1       | <0.1        | <0.1        |                  | <0.1        | <0.1        | <0.1        | <0.1        | mg/kg | A-T-023s   |
| BTEX - Benzene <sub>A</sub> #       | <0.01      | <0.01       | <0.01       |                  | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| BTEX - Toluene <sub>A</sub> #       | <0.01      | <0.01       | <0.01       |                  | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| BTEX - Ethyl Benzene <sub>A</sub> # | <0.01      | <0.01       | <0.01       | 18               | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| BTEX - m & p Xylene <sub>A</sub> #  | <0.01      | <0.01       | <0.01       | y <del>ā</del> l | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| BTEX - o Xylene <sub>A</sub> #      | <0.01      | <0.01       | <0.01       | <u> </u>         | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |
| MTBE <sub>A</sub> #                 | <0.01      | <0.01       | <0.01       |                  | <0.01       | <0.01       | <0.01       | <0.01       | mg/kg | A-T-022s   |



Client Project Name: Whalley Rd, Barrow

|                                                               |              |             |             |             | Onone i io   | ject kei: 10 | 51111010 |          |             |
|---------------------------------------------------------------|--------------|-------------|-------------|-------------|--------------|--------------|----------|----------|-------------|
| Lab Sample ID                                                 | 18/02614/17  | 18/02614/18 | 18/02614/19 | 18/02614/20 | 18/02614/21  | 18/02614/22  |          |          |             |
| Client Sample No                                              |              |             |             |             |              |              |          |          |             |
| Client Sample ID                                              | TP209        | TP209       | TP210       | TP210       | TP211        | WS206        |          |          |             |
| Depth to Top                                                  | 0.10         | 1.00        | 0.10        | 1.50        | 1.70         | 0.10         |          |          |             |
| Depth To Bottom                                               |              |             |             |             |              |              |          | 1        |             |
| Date Sampled                                                  | 06-Apr-18    | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18    | 06-Apr-18    |          | 1        | _           |
| Sample Type                                                   | Soil - ES    | Soil - ES   | Soil - ES   | Soil - ES   | Soil - D     | Soil - ES    | . *      |          | Method ref  |
| Sample Matrix Code                                            | 6AE          | 6A          | 6E          | 6AE         | 6E           | 6E           |          | - Pairts | Meth        |
| % Stones >10mm <sub>A</sub>                                   | 5.4          | 10.2        | <0.1        | 19.2        | <0.1         | <0.1         |          | % w/w    | A-T-044     |
| pH <sub>D</sub> <sup>M#</sup>                                 | 7.52         | 7.85        | 6.76        | 8.07        | 8.04         | 6.24         |          | рН       | A-T-031s    |
| Sulphate (water sol 2:1) <sub>D</sub> M#                      | <0.01        | <0.01       | 0.02        | <0.01       | 0.05         | <0.01        |          | g/l      | A-T-028s    |
| Cyanide (free) <sub>A</sub> <sup>M#</sup>                     | <1           | <1          | <1          | <1          | É            | .<1          |          | mg/kg    | A-T-042sFCN |
| Cyanide (total) <sub>A</sub> M#                               | <1           | <1          | <1          | <1          | Æ            | <1           |          | mg/kg    | A-T-042sTCN |
| Phenois - Total by HPLCA                                      | <0.2         | <0.2        | <0.2        | <0.2        |              | <0.2         |          | mg/kg    | A-T-050s    |
| Organic matter <sub>D</sub> M#                                | 5.2          | 1.5         | 9.1         | 3.0         | 13(          | 11.1         |          | % w/w    | A-T-032 OM  |
| Arsenic <sub>D</sub> <sup>M#</sup>                            | 6            | 4           | 12          | 3           | 151          | 11           |          | mg/kg    | A-T-024s    |
| Cadmium <sub>D</sub> <sup>M#</sup>                            | 0.7          | 0.9         | 0.9         | 0.7         | 350          | 1.0          |          | mg/kg    | A-T-024s    |
| Copper <sub>D</sub> <sup>M#</sup>                             | 21           | 11          | 43          | 12          | \$ <u>18</u> | 43           |          | mg/kg    | A-T-024s    |
| Chromium (hexavalent) <sub>D</sub>                            | <1           | <1          | <1          | <1          |              | <1           |          | mg/kg    | A-T-040s    |
| Lead <sub>D</sub> <sup>M#</sup>                               | 42           | 22          | 102         | 15          | 151          | 91           |          | mg/kg    | A-T-024s    |
| Mercury <sub>D</sub>                                          | 0.44         | 0.21        | 0.73        | 0.48        | 182          | <0.17        |          | mg/kg    | A-T-024s    |
| Nickel <sub>D</sub> <sup>M#</sup>                             | 18           | 26          | 30          | 23          | 20           | 28           |          | mg/kg    | A-T-024s    |
| Selenium <sub>D</sub> <sup>M#</sup>                           | <1           | <1          | 1           | 2           | 1(\$2        | 1            |          | mg/kg    | A-T-024s    |
| Zinc <sub>D</sub> <sup>M#</sup>                               | 89           | 82          | 136         | 67          | (5)          | 133          |          | mg/kg    | A-T-024s    |
| VPH total (>C5-C10) <sub>A</sub> #                            | <0.01        | <0.01       | <0.01       | <0.01       |              | <0.01        |          | mg/kg    | A-T-022s    |
| 1.01 % Moisture BS1377 1990 pt2 cl3.2 <sub>A</sub> #          | 120          | Appended    | :::         | :*:         | Appended     |              |          |          | Subcon SS   |
| 1.02 Atterburg 4Pt BS1377 1990 pt2 cl4.4,5.3+5.4 <sub>A</sub> | H <b>3</b> 0 | Appended    | <b></b>     | 33k         | Appended     | . <b>*</b> 5 |          |          | Subcon SS   |



Client Project Name: Whalley Rd, Barrow

| Lab Sample ID                                         | 18/02614/17 | 18/02614/18 | 18/02614/19 | 18/02614/20 | 18/02614/21 | 18/02614/22 |  |       |            |
|-------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--|-------|------------|
| Client Sample No                                      |             |             |             |             |             |             |  |       |            |
| Client Sample ID                                      | TP209       | TP209       | TP210       | TP210       | TP211       | WS206       |  |       |            |
| Depth to Top                                          | 0.10        | 1.00        | 0.10        | 1.50        | 1.70        | 0.10        |  |       |            |
| Depth To Bottom                                       |             |             |             |             |             |             |  |       |            |
| Date Sampled                                          | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   |  |       | _          |
| Sample Type                                           | Soll - ES   | Soll - ES   | Soil - ES   | Soil - ES   | Soil - D    | Soil - ES   |  | _     | Method ref |
| Sample Matrix Code                                    | 6AE         | 6A          | 6E          | 6AE         | 6E          | 6E          |  | Units | Meth       |
| Asbestos in Soil (Inc. matrix)                        |             | H           |             |             |             |             |  |       |            |
| Asbestos in soil <sub>A</sub> #                       | NAD         | - King      | NAD         | 01<br>      | 3.00        | NAD         |  |       | A-T-045    |
| Asbestos ACM - Suitable for Water<br>Absorption Test? | N/A         | (%)         | N/A         | 245         | 55.5        | N/A         |  |       |            |



Client Project Name: Whalley Rd, Barrow

|                                                 |             |             |             |             |             | ect Net. 10 |     |       |            |
|-------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|-------|------------|
| Lab Sample ID                                   | 18/02614/17 | 18/02614/18 | 18/02614/19 | 18/02614/20 | 18/02614/21 | 18/02614/22 |     |       |            |
| Client Sample No                                |             |             |             |             |             |             |     |       |            |
| Client Sample ID                                | TP209       | TP209       | TP210       | TP210       | TP211       | WS206       |     |       |            |
| Depth to Top                                    | 0.10        | 1.00        | 0.10        | 1.50        | 1.70        | 0.10        |     |       |            |
| Depth To Bottom                                 |             |             |             |             |             |             | 2   |       |            |
| Date Sampled                                    | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   |     |       | <b></b>    |
| Sample Type                                     | Soil - ES   | Soil - ES   | Soil - ES   | Soil - ES   | Soil - D    | Soil - ES   |     | 1     | Method ref |
| Sample Matrix Code                              | 6AE         | 6A          | 6E          | 6AE         | 6E          | 6E          |     | Units | Meth       |
| PAH-16MS                                        |             |             |             |             |             |             |     |       |            |
| Acenaphthene <sub>A</sub> <sup>M#</sup>         | 0.04        | <0.01       | 0.03        | <0.01       | ÷3          | 0.04        |     | mg/kg | A-T-018s   |
| Acenaphthylene <sub>A</sub> <sup>M#</sup>       | <0.01       | <0.01       | <0.01       | <0.01       |             | <0.01       |     | mg/kg | A-T-018s   |
| Anthracene <sub>A</sub> ™#                      | 0.05        | <0.02       | 0.05        | <0.02       | 8           | 0.05        |     | mg/kg | A-T-018s   |
| Benzo(a)anthracene <sub>A</sub> <sup>M#</sup>   | 0.25        | <0.04       | 0.20        | <0.04       | 8           | 0.12        |     | mg/kg | A-T-019s   |
| Benzo(a)pyrene <sub>A</sub> M#                  | 0.25        | <0.04       | 0.17        | <0.04       | **          | 0.09        |     | mg/kg | A-T-018s   |
| Benzo(b)fluoranthene <sub>A</sub> M#            | 0.33        | <0.05       | 0.25        | <0.05       | ¥           | 0.12        |     | mg/kg | A-T-019s   |
| Benzo(ghi)perylene <sub>A</sub> M#              | 0.12        | <0.05       | 0.08        | <0.05       | *           | <0.05       | 2.9 | mg/kg | A-T-019s   |
| Benzo(k)fluoranthene <sub>A</sub> <sup>M#</sup> | 0.12        | <0.07       | <0.07       | <0.07       |             | <0.07       |     | mg/kg | A-T-019s   |
| Chrysene <sub>A</sub> M#                        | 0.33        | <0.06       | 0.26        | <0.06       | =           | 0.14        |     | mg/kg | A-T-019s   |
| Dibenzo(ah)anthracene <sub>A</sub> M#           | <0.04       | <0.04       | <0.04       | <0.04       | <b>E</b>    | <0.04       |     | mg/kg | A-T-019s   |
| Fluoranthene <sub>A</sub> <sup>M#</sup>         | 0.59        | <0.08       | 0.47        | <0.08       | =           | 0.32        |     | mg/kg | A-T-010s   |
| Fluorene <sub>A</sub> <sup>M#</sup>             | 0.01        | <0.01       | 0.02        | <0.01       | ž.          | 0.02        |     | mg/kg | A-T-018s   |
| Indeno(123-cd)pyrene <sub>A</sub> M#            | 0.16        | <0.03       | 0.11        | <0.03       | - E         | <0.03       |     | mg/kg | A-T-019s   |
| Naphthalene <sub>A</sub> <sup>M#</sup>          | <0.03       | <0.03       | <0.03       | <0.03       | 15          | <0.03       |     | mg/kg | A-T-018s   |
| Phenanthrene <sub>A</sub> M#                    | 0.27        | <0.03       | 0.26        | <0.03       | -42         | 0,25        |     | mg/kg | A-T-018s   |
| Pyrene <sub>A</sub> <sup>M#</sup>               | 0.54        | <0.07       | 0.42        | <0.07       | 4           | 0.28        |     | mg/kg | A-T-018s   |
| PAH (total 16) <sub>A</sub> M#                  | 3.04        | <0.08       | 2.35        | <0.08       | 1.50        | 1.43        |     | mg/kg | A-T-019s   |



Client Project Name: Whalley Rd, Barrow

|                                     |             |             |             | <del></del> | r             |             | <br> | _     |            |
|-------------------------------------|-------------|-------------|-------------|-------------|---------------|-------------|------|-------|------------|
| Lab Sample ID                       | 18/02614/17 | 18/02614/18 | 18/02614/19 | 18/02614/20 | 18/02614/21   | 18/02614/22 |      |       |            |
| Client Sample No                    |             | - 3         |             |             |               |             |      |       |            |
| Client Sample ID                    | TP209       | TP209       | TP210       | TP210       | TP211         | WS206       | 10   |       |            |
| Depth to Top                        | 0.10        | 1.00        | 0.10        | 1.50        | 1.70          | 0.10        |      |       |            |
| Depth To Bottom                     |             |             |             |             |               |             |      |       |            |
| Date Sampled                        | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18   | 06-Apr-18     | 06-Apr-18   |      |       |            |
| Sample Type                         | Soil - ES   | Soil - ES   | Soil - ES   | Soil - ES   | Soil - D      | Soil - ES   |      |       | od re      |
| Sample Matrix Code                  | 6AE         | 6A          | 6E          | 6AE         | 6E            | 6E          |      | Units | Method ref |
| TPH CWG                             |             |             |             |             |               |             |      |       |            |
| Ali >C5-C6 <sub>A</sub> #           | <0.01       | <0.01       | <0.01       | <0.05       | -             | <0.01       |      | mg/kg | A-T-022s   |
| Ali >C6-C8 <sub>A</sub> #           | <0.01       | <0.01       | <0.01       | <0.05       | - 19          | <0.01       |      | mg/kg | A-T-022s   |
| Ali >C8-C10 <sub>A</sub> #          | <0.01       | <0.01       | <0.01       | <0.05       |               | <0.01       |      | mg/kg | A-T-022s   |
| Ali >C10-C12 <sub>A</sub> #         | <0.1        | <0.1        | <0.1        | <0.1        | . <del></del> | <0.1        |      | mg/kg | A-T-023s   |
| Ali >C12-C16 <sub>A</sub> #         | <0.1        | <0.1        | <0.1        | <0.1        | 3.50          | <0.1        |      | mg/kg | A-T-023s   |
| Ali >C16-C21 <sub>A</sub> #         | <0.1        | <0.1        | <0.1        | <0.1        | 1.00          | <0.1        |      | mg/kg | A-T-023s   |
| Ali >C21-C35 <sub>A</sub> #         | <0.1        | <0.1        | <0.1        | <0.1        |               | <0.1        |      | mg/kg | A-T-023s   |
| Total Aliphatics <sub>A</sub>       | <0.1        | <0.1        | <0.1        | <0.1        | 15%           | <0.1        |      | mg/kg | A-T-023s   |
| Aro >C5-C7 <sub>A</sub> #           | <0.01       | <0.01       | <0.01       | <0.05       | ::3           | <0.01       |      | mg/kg | A-T-022s   |
| Aro >C7-C8 <sub>A</sub> #           | <0.01       | <0.01       | <0.01       | <0.05       |               | <0.01       |      | mg/kg | A-T-022s   |
| Aro >C8-C9 <sub>A</sub> #           | <0.01       | <0.01       | <0.01       | <0.05       | ::8           | <0.01       |      | mg/kg | A-T-0226   |
| Aro >C9-C10 <sub>A</sub> #          | <0.01       | <0.01       | <0.01       | <0.05       | . ,           | <0.01       |      | mg/kg | A-T-022s   |
| Aro >C10-C12 <sub>A</sub> #         | <0.1        | <0.1        | <0.1        | <0.1        |               | <0.1        |      | mg/kg | A-T-023s   |
| Aro >C12-C16 <sub>A</sub> #         | <0.1        | <0.1        | <0.1        | <0.1        |               | <0.1        |      | mg/kg | A-T-023s   |
| Aro >C16-C21 <sub>A</sub> #         | 0.7         | <0.1        | 0.9         | <0.1        |               | <0.1        |      | mg/kg | A-T-023s   |
| Aro >C21-C35 <sub>A</sub> #         | 0.4         | <0.1        | 1.4         | <0.1        | 6.5           | <0.1        |      | mg/kg | A-T-023s   |
| Total Aromatics <sub>A</sub>        | 1.1         | <0.1        | 2.3         | <0.1        | 3.50          | <0.1        |      | mg/kg | A-T-023s   |
| TPH (Ali & Aro) <sub>A</sub>        | 1.1         | <0.1        | 2.3         | <0.1        | 3#8           | <0.1        |      | mg/kg | A-T-023s   |
| BTEX - Benzene <sub>A</sub> #       | <0.01       | <0.01       | <0.01       | <0.05       | 3#8           | <0.01       |      | mg/kg | A-T-022s   |
| BTEX - Toluene <sub>A</sub> #       | <0.01       | <0.01       | <0.01       | <0.05       | :#S           | <0.01       |      | mg/kg | A-T-022s   |
| BTEX - Ethyl Benzene <sub>A</sub> # | <0.01       | <0.01       | <0.01       | <0.05       | :±:           | <0.01       |      | mg/kg | A-T-022s   |
| BTEX - m & p Xylene <sub>A</sub> "  | <0.01       | <0.01       | <0.01       | <0.05       |               | <0.01       |      | mg/kg | A-T-022s   |
| BTEX - o Xylene <sub>A</sub> #      | <0.01       | <0.01       | <0.01       | <0.05       | •             | <0.01       |      | mg/kg | A-T-022s   |
| MTBE <sub>A</sub> #                 | <0.01       | <0.01       | <0.01       | <0.05       | *             | <0.01       |      | mg/kg | A-T-022s   |



### **REPORT NOTES**

### General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

### Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

### TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

### Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

### Ashestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

### **Predominant Matrix Codes:**

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited. **Secondary Matrix Codes:** 

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

### Key:

IS indicates Insufficient Sample for analysis.
US indicates Unsuitable Sample for analysis.
NDP indicates No Determination Possible.
NAD indicates No Asbestos Detected.
N/A indicates Not Applicable.
Superscript # indicates method accredited to ISO 17025.
Superscript "M" indicates method accredited to MCERTS.
Subscript "A" indicates analysis performed on the sample as received.
Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.



## STRUCTURAL SOILS LTD TEST REPORT



Report No.

783088 R1

1774

Date

23-April-2018

Contract

18/02614

Client

**Envirolab Ltd** 

Address

Units 7 & 8 Sandpits Business Park

**Mottram Road** 

Hyde SK14 3AR

For the Attention of

Iain Haslock

Samples submitted by client

11/04/2018

Client Reference

18/02614

**Testing Started** 

13/04/2018

Client Order No.

P0737850

Testing Completed

23/04/2018

Instruction Type

Written

**UKAS Accredited Tests Undertaken** 

Moisture Content (oven drying method) BS1377:Part 2:1990,clause 3.2 (superseded)\*\*

Liquid Limit (definitive method) BS1377:Part 2:1990,clause 4.3 Plastic Limit BS1377:Part 2:1990,clause 5.3

Plasticity Index Derivation BS1377:Part 2:1990,clause 5.4

\* This clause of BS1377 is no longer the most up to date method due to the publication of ISO17892

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of.
Test were undertaken on samples 'as received' unless otherwise stated.

Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

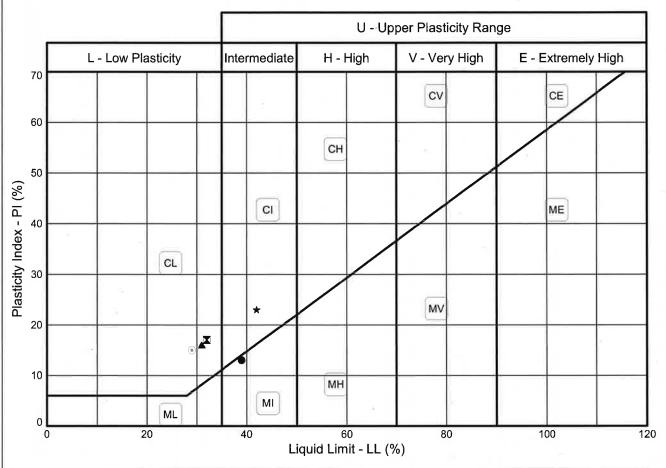
Structural Soils Ltd, The Potteries, Pottery Street, Castleford, WF10 1NJ Tel.01977 552255. E-mail mark.athorne@soils.co.uk

# SUMMARY OF SOIL CLASSIFICATION TESTS In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

| Description of Sample      | Dark grey brown slightly sandy slightly gravelly CLAY | Dork own alightic cont. clinktic and linktic of the | Dank grey slighling slighling gravelly CLAT |    | Dark grey slightly sandy slightly gravelly CLAY |     | Brown slightly sandy slightly gravelly CLAY | Dark grey slightly sandy slightly gravelly CLAY |  |  |   |   |
|----------------------------|-------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|----|-------------------------------------------------|-----|---------------------------------------------|-------------------------------------------------|--|--|---|---|
| %<br><425um                | 12                                                    | ā                                                   | \$                                          |    | 09                                              |     | 20                                          | 69                                              |  |  | - | ļ |
| Plasticity<br>Index        | 13                                                    | Ļ                                                   | /-                                          |    | 16                                              | 26. | 23                                          | 15                                              |  |  |   |   |
| Plastic<br>Limit<br>%      | 26                                                    | 14                                                  | 2                                           |    | 15                                              |     | 19                                          | 14                                              |  |  |   |   |
| Liquid<br>Limit<br>%       | 39                                                    | 5                                                   | 35                                          |    | 31                                              |     | 42                                          | 29                                              |  |  |   |   |
| Moisture<br>Content<br>%   | 18                                                    | 7                                                   | =                                           | 34 | 11                                              |     | 14                                          | 10                                              |  |  |   |   |
| Depth<br>(m)               | 1.50                                                  | 7 20                                                | 02.1                                        |    | 1.30                                            |     | 1.00                                        | 1.70                                            |  |  |   |   |
| Sample<br>Type             | ۵                                                     | ٥                                                   |                                             |    | 0 7                                             |     | 3 D                                         | 1 D                                             |  |  |   |   |
| Sample<br>Ref              | 8/02614/2                                             | 8/02614/8                                           | 0/07014/                                    |    | 18/02614/12                                     |     | 18/02614/18                                 | 18/02614/21                                     |  |  |   |   |
| Exploratory<br>Position ID | TP1                                                   | TD3                                                 | 2                                           |    | TP6 1                                           | -   | TP9 1                                       | TP11 1                                          |  |  |   |   |

STRUCTURAL SOILS LTD

18/02614


Contract:

Contract Ref:

783088

AGS

GINT\_LIBRARY\_V8\_06.GLB:L-SUMMARY OF CLASSIFICATION - A4L: 783088 - 18-02614.GPJ: 23/04/18 16:23: MF1:



|      | Sample Identification                    | BS Test         | Preparation | MC | LL | PL | PI | <425um | Lab location |
|------|------------------------------------------|-----------------|-------------|----|----|----|----|--------|--------------|
|      | Exploratory Position ID Sample Depth (m) | Method #        | Method +    | %  | %  | %  | %  | %      | Lab lo       |
| •    | TP1 18/02614/20 1.50                     | 3.2/4.3/5.3/5.4 | 4.2.4       | 18 | 39 | 26 | 13 | 77     | C            |
| ☒    | TP3 18/02614/6D 1.20                     | 3.2/4.3/5.3/5.4 | 4.2.4       | 11 | 32 | 15 | 17 | 64     | С            |
| lack | TP6 18/02614/12D 1.30                    | 3.2/4.3/5.3/5.4 | 4.2.4       | 11 | 31 | 15 | 16 | 60     | C            |
| *    | TP9 18/02614/18D 1.00                    | 3.2/4.3/5.3/5.4 | 4.2.4       | 14 | 42 | 19 | 23 | 70     | C            |
| •    | TP11 18/02614/21D1.70                    | 3.2/4.3/5.3/5.4 | 4.2.4       | 10 | 29 | 14 | 15 | 69     | С            |
|      |                                          |                 |             |    |    |    |    |        |              |
| -    |                                          |                 |             |    |    |    |    |        |              |
| 4    |                                          |                 |             |    |    |    |    |        |              |
| T    |                                          |                 |             |    |    |    |    | T      | 11           |

# Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method 4.6 - One Point Casagrande Method
- 5.3 Plastic Limit Method 5.4 Plasticity Index

- + Tested in accordance with the following clauses of B\$1377-2:1990.
- 4.2.3 Natural State
- 4.2.4 Wet Sieved

Key: \* = Non-standard test, NP = Non plastic.

Compiled By

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)



STRUCTURAL SOILS The Potteries **Pottery Street** Castleford W. Yorkshire WF10 1NJ

M. Fisha

Contract

**MAUREEN FISHER** 

Date 23/04/18

Contract Ref:

18/02614

783088



### **APPENDIX E**

(i) Gas Monitoring Data



Site: Barrow Road, Whalley Job Number: 18DWH018

Date of Monitoring: 20/04/18

## **Ground Gas Monitoring Round 1**

| Borehole | Gas Flow | Atmospheric<br>Pressure | Methane | Methane CH <sub>4</sub> (%v/v) | Carbon<br>CO <sub>2</sub> (% | Carbon Dioxide<br>CO <sub>2</sub> (% v/v) | Oxyger | Oxygen (%v/v) |        | Other Gases      |      | Depth to Water | o Water  |
|----------|----------|-------------------------|---------|--------------------------------|------------------------------|-------------------------------------------|--------|---------------|--------|------------------|------|----------------|----------|
|          | (mm)     | (mB)                    | Peak    | Steady                         | Peak                         | Steady                                    | Min    | Steady        | PID    | H <sub>2</sub> S | 8    | (mbgl)         | BH depth |
| WS1      | 0.3      | 1020                    | 0       | 0                              | 9.0                          | 0.2                                       | 20.8   | 21.0          | ×      | •                |      | 1.02           | 3.01     |
| WS2      | 0.0      | 1020                    | 0       | 0                              | 3.3                          | 3.3                                       | 16.9   | 16.9          | (i)    | *                | 16-5 | 1.17           | 2.04     |
| WS3      |          |                         |         |                                |                              | Flooded                                   |        |               |        |                  |      | 0.25           | 2.53     |
| WS4      | 0        | 1020                    | 0 -     | 0                              | 0.2                          | 0.0                                       | 20.0   | 20.7          | ii.    | 24               | Ä.   | 0.79           | 1.94     |
| WS5      | 0.1      | 1020                    | 0       | 0                              | 0.5                          | 0.4                                       | 20.7   | 20.9          | 0.00   | •                | 1    | 0.75           | 3.07     |
| WS6      | 0        | 1020                    | 0.1     | 0.1                            | 6.0                          | 8.0                                       | 20     | 20            | •      | ¥.               | 1    | 2.47           | 3.05     |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          | 4                       |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          |                         |         |                                |                              |                                           |        |               |        |                  |      |                |          |
|          |          | -4                      |         |                                |                              |                                           |        |               | 3 00 0 |                  |      |                |          |

|                                               | Relevant Information at the Time of Monitoring |
|-----------------------------------------------|------------------------------------------------|
| Monitored by: PH                              | Hc                                             |
| Weather:                                      | Weather: Warm, Sunny with Cloud, Light Wind.   |
|                                               | GA2000+                                        |
| Equipment Used:                               |                                                |
|                                               |                                                |
| Visible signs of damage/stress: None          | None                                           |
| Other Comments/Observations: Pressure Stable. | Pressure Stable.                               |

Monitoring should be for not less than 3 minutes. However, if high concentrations of gases are initially recorded, monitoring should be for up to 10 minutes

Monitoring order is left to right across the table

Site: Barrow Road, Whalley Job Number: 18DWH018

Job Number: 18DWH018
Date of Monitoring: 06/06/18

# Ground Gas Monitoring Round 2



| Borehole | Gas Flow | Atmospheric<br>Pressure | Methane ( | Methane CH <sub>4</sub> (%v/v) | Carbon Dioxide CO <sub>2</sub> (% v/v) | arbon Dioxide<br>CO <sub>2</sub> (% v/v) | Охудеп                              | Oxygen (%v/v) |      | Other Gases      |       | Depth 1 | Depth to Water |
|----------|----------|-------------------------|-----------|--------------------------------|----------------------------------------|------------------------------------------|-------------------------------------|---------------|------|------------------|-------|---------|----------------|
|          | (1111)   | (mB)                    | Peak      | Steady                         | Peak                                   | Steady                                   | Min                                 | Steady        | PID  | H <sub>2</sub> S | တ     | (lgdm)  | BH depth       |
| WS1      | 0.20     | 1010                    | 00.0      | 00:00                          | 09:0                                   | 0:30                                     | 20.70                               | 20.80         | 0.00 | 0.00             | 00'0  | 0.88    | 2.98           |
| WS2      | 0.10     | 1010                    | 00:0      | 00:00                          | 1.60                                   | 1.60                                     | 20.40                               | 20.40         | 0.00 | 00.0             | 00.00 | 1.10    | 1.95           |
| WS3      | 0.10     | 1010                    | 00.0      | 00.00                          | 0.20                                   | 0.20                                     | 21.10                               | 21.10         | 0.00 | 0.00             | 0.00  | 0.53    | 2.52           |
| WS4      |          |                         |           |                                |                                        | Unable to Lo                             | Unable to Locate due to Vegetation. | 'egetation.   |      |                  |       |         |                |
| WS5      |          |                         |           |                                |                                        | Unable to Lo                             | Unable to Locate due to Vegetation. | 'egetation.   |      |                  |       |         |                |
| 9SM      |          |                         |           |                                |                                        | 1                                        | Well Destroyed.                     |               |      |                  |       |         |                |
|          |          |                         |           |                                |                                        |                                          |                                     |               |      |                  |       |         |                |
|          |          |                         |           | ,                              |                                        |                                          |                                     |               |      |                  |       |         |                |
|          |          |                         |           |                                |                                        |                                          |                                     |               | ×    |                  |       |         |                |
|          |          |                         |           |                                |                                        |                                          |                                     |               |      |                  |       |         |                |
|          |          | - (5)                   |           |                                |                                        |                                          |                                     |               |      |                  |       |         |                |
|          |          |                         |           |                                |                                        |                                          |                                     |               |      |                  |       |         |                |
|          |          |                         |           |                                |                                        |                                          | 3.4                                 |               |      |                  |       |         |                |
|          |          |                         |           |                                |                                        |                                          |                                     |               |      |                  |       |         |                |
|          |          |                         |           |                                |                                        |                                          |                                     |               |      |                  |       |         |                |
|          |          |                         |           |                                |                                        | #1                                       |                                     |               |      |                  |       |         |                |
| Notes:   |          |                         |           |                                |                                        |                                          |                                     |               |      |                  |       |         |                |

| ı |            |
|---|------------|
| ı |            |
|   | oring      |
| ı |            |
| ı |            |
| 1 |            |
| ı | r          |
| ı | 1          |
| 1 |            |
| ı |            |
| 1 |            |
| ı |            |
|   | oring      |
| ı | ori.       |
|   | Ę          |
|   | e of Monit |
|   | ot o       |
|   | ne         |
|   | įΞ         |
|   | he         |
| ı | at         |
|   | 5          |
| ١ | äţi        |
| ı | Ē          |
|   | 읱          |
| ì | ¥          |
|   | ۷a         |
|   | ee         |
|   | 2          |
|   |            |
|   |            |
|   |            |
|   |            |
| Į |            |
| 1 |            |
|   |            |
|   |            |
|   |            |
|   | 1          |
|   |            |
|   |            |
|   |            |
|   |            |
|   | 1          |
|   |            |
|   |            |
|   |            |
| П |            |
|   |            |
|   |            |
|   |            |
|   |            |
|   |            |
|   |            |

Monitoring should be for not less than 3 minutes. However, if high concentrations of gases are initially recorded, monitoring should be for up to 10 minutes

Monitoring order is left to right across the table

|                                               | Relevant Information at the Time of Monitoring |
|-----------------------------------------------|------------------------------------------------|
| Monitored by: JS & RD                         | JS & RD                                        |
| Weather:                                      | Weather: Cloudy, Dry, Slight Wind              |
|                                               | GA2000+                                        |
| Equipment Used:                               |                                                |
|                                               |                                                |
| Visible signs of damage/stress:               |                                                |
| Other Comments/Observations: Pressure Stable. | Pressure Stable.                               |

### **APPENDIX F**

## (i) Conceptual Model

The report aims to identify land which could potentially be affected by contamination, such that it could affect the value or re-use of the land, or such that mitigation would be required for certain proposed end uses of the land.

The assessment also aims to identify land which would be regarded as 'contaminated land' under the terms of the Environmental Protection Act 1990, Part IIa. This act includes a stricter test for contaminated land than that outlined above. Land is considered to be contaminated if either:

- the land is causing significant harm to people, ecosystems or infrastructure; or
- there is a significant possibility that such harm could be caused; or
- Pollution of controlled waters is being, or is likely to be, caused.

The following situations are defined as being where harm is to be regarded as significant:

- chronic or quite toxic effect, serious injury or death to humans;
- irreversible or other adverse harm to the ecological system;
- substantial damage to or failure of buildings;
- death of, or disease or other physical damage affecting, livestock or crops;
- Pollution of controlled waters.

The risk assessment uses a 'Source-Pathway-Receptor' methodology for assessing whether a source of contamination could potentially lead to harmful consequences. This means that there needs to be a pollutant linkage from source to receptor for harm to be caused, this linkage consisting of:

- a source of pollution;
- a pathway for the pollutant to move along;
- A receptor that is affected by the pollutant.

As an example, the pollutant source could be an identified leak of oil or an area of dumped waste.





The pathways could include transport of the contaminant by groundwater, surface water, windblown dust, or vapours, and for human receptors will include the means, by which contaminants enter the body, for example skin contact, ingestion and inhalation.

Receptors include people, other living organisms, the built environment and groundwater and surface waters (these latter two also being contaminant pathways).

The source-pathway-receptor methodology relationship allows an assessment of the environmental risk to be determined, based on the nature of the source, the degree of exposure of the receptor to the source and the sensitivity of the receptor.

This section of the report is based on the information set out in the previous sections of the report and should not be read independently of such sections.

## **Initial Conceptual Model**

From the available information the preliminary conceptual model is visualised as follows:

| Target (Receptor)    | POTENTIAL SOURCE-PATHWAY LINKAGE                                                 |  |  |  |
|----------------------|----------------------------------------------------------------------------------|--|--|--|
|                      | Inhalation of soil gas, odours or dust.                                          |  |  |  |
| Site users /         | Ingestion of, and skin contact with, contaminated soil.                          |  |  |  |
| residents            | Ingestion of contaminants in vegetables etc. or in soils adhering to vegetables, |  |  |  |
|                      | etc.                                                                             |  |  |  |
| Construction/        | Inhalation of soil gas, odours or dust                                           |  |  |  |
| maintenance workers. | Ingestion of, and skin contact with, contaminated soil                           |  |  |  |
| Plants               | Adverse effects on growth caused by presence of contaminants in soil             |  |  |  |
|                      | Flow of ground gas into buildings. Asphyxiation, toxicity, explosion and fire    |  |  |  |
| Buildings and        | hazards                                                                          |  |  |  |
| Structures           | Sulphate attack of foundations                                                   |  |  |  |
|                      | Hydrocarbons penetrating plastic water supply pipes                              |  |  |  |
| Caramaharatas        | Migration of soluble contaminants into groundwater on or off site. Migration of  |  |  |  |
| Groundwater          | oils into groundwater on or off site.                                            |  |  |  |
| Surface water        | Migration of soluble contaminants and/or direct run-off of contaminants.         |  |  |  |
| Surface water        | Migration of oils into groundwater on or off site.                               |  |  |  |



#### **Initial Environmental Risk Assessment**

#### General

It is accepted that an environmental risk assessment can be based on a source-pathway-target model. An examination is carried out as to whether a target will be at risk from a contamination source, that a source exists, and whether there are any pathways (routes of exposure) which might actually link the source to the target.

Environmental risk assessments rely heavily on numerical trigger concentrations or guidelines because exposure of targets to contamination is difficult to quantify directly. Quantification of risk is therefore mainly undertaken for general scenarios in order to derive trigger levels. These are derived for various contaminants for particular targets and routes of exposure. An example of a sensitive target would be users of a domestic back garden, where routes of exposure might be skin contact, dust inhalation, direct ingestion and indirect ingestion via cultivation and consumption of fruit and vegetables.

In March 2002, the first parts of the new CLEA risk assessment guidance were released by DEFRA/Environment Agency.

The risk assessment approach is an extension of the 'fit for use' concept whereby land is cleaned up to a standard fit for the proposed use, that is, so all remaining risks are acceptable. However, as well as being 'fit for use', the environmental risk assessment approach also addresses the soil and water environment so that these are also safeguarded where necessary. For example if a site was contaminated with heavy metals and the development comprised the proposed construction of hard standings and buildings only, the fit-for-use approach might require no remediation for the site. However, consideration of the wider environment needs to address whether groundwater is being contaminated, and if so whether remediation is required for this reason.

The following classification presented by CIRIA has been used in the assessment of risk:

| Estimation of risk from consideration of magnitude, consequences and probabilities |                |                |                |                |  |  |  |  |
|------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|--|--|--|--|
| Probability                                                                        |                | Consequences   |                |                |  |  |  |  |
| Tiobability                                                                        | Severe         | Moderate       | Mild           | Minor          |  |  |  |  |
| High                                                                               | Very high      | High           | Moderate       | Moderate / Low |  |  |  |  |
| Medium                                                                             | High           | Moderate       | Moderate / Low | Low            |  |  |  |  |
| Low                                                                                | Moderate       | Moderate / Low | Low            | Very Low       |  |  |  |  |
| Unlikely                                                                           | Moderate / Low | Low            | Very Low       | Very Low       |  |  |  |  |

Reference: Contaminated Land Risk Management; A Guide to Good Practice, CIRIA C552:2001

# CIRIA C665 Situation A Ground Gas Conceptual Model

The risk table contained in C665 is basically a modified risk assessment from CIRIA 152 1995, by which a conceptual model and semi-quantitative risk assessment can be made.



#### **APPENDIX G**

## (i) Notes on Ground Gas

#### **Ground Gas**

The Building Regulations and BRE Report 212 state that precautions are not mandatory against carbon dioxide unless 5.0% volume is exceeded. These documents do not give a threshold level for methane, but Baker suggests that this level is 0.1% volume. For methane up to 1.0% volume, and carbon dioxide above 5.0% volume, the Building Regulations and BRE Report state that passive measures may be adopted. Above 1.0% methane further specific guidance must be sought.

CIRIA Report 149 gives further guidance on the appropriate precautions for various gas regimes, called characteristic situations in this report. In the DETR Guide for Design by Ove Arup, various types of passive measures are assessed for performance with different gas regimes. The assessments used computational fluid dynamic (CFD) modelling.

A gas regime is essentially defined by two parameters:

- i) The concentration of the gas (e.g. % methane)
- ii) The emission rate of the gas from the ground.

The fact that two parameters are used is problematic if the site is to be classified on the basis of Table 28 in CIRIA Report 149. This is because high gas concentrations are often encountered which fall into an onerous gas regime; whereas the low flow rates which are also frequently encountered fall into less onerous gas regimes.

In order to use the Guide for Design to decide if passive measures are suitable, it is necessary to combine the gas concentration and the emission rate.

Three recent publications are used for ground gas risk assessment:

- CIRIA C665 for high rise residential / flats
- 'Guidance on Evaluation of Development Proposals on Sites Where Methane and Carbon Dioxide are Present' Report Edition No.04 March 2007 NHBC – designed for use with low rise residential properties
- BS8485:2007 'Code of practice for the characterization and remediation from ground gas in affected developments'

These documents improve upon the approach used in previous CIRIA and Wilson /Card Papers, by placing emphasis on gas flow rates, but still retain some reliance on the gas concentrations themselves.



# CIRIA C665 Situation A Ground Gas Conceptual Model

The risk table contained in C665 is basically a modified risk assessment from CIRIA 152 1995, by which a conceptual model and semi-quantitative risk assessment can be made.

# High Rise / Flats (CIRIA 665 Table 8.5)

| Characteristic<br>Situation<br>(CIRIA Report<br>149) | Risk<br>Classification   | Gas<br>Screening<br>Value<br>(CH4 or<br>CO2) (I/hr) <sup>1</sup> | Additional factors                                                                                | Typical source of generation                                                           |
|------------------------------------------------------|--------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1                                                    | Very low<br>risk         | <0.07                                                            | Typically methane ≤1%v/v and/or carbon dioxide ≤5%v/v. Otherwise consider increase to Situation 2 | Natural soils with low<br>Organic content.<br>"Typical" Made Ground                    |
| 2                                                    | Low risk                 | <0.7                                                             | Borehole flow rate not to exceed 70l/hr. Otherwise consider increase to Situation 3               | Natural soil, high peat/organic content. "Typical" Made Ground                         |
| 3                                                    | Moderate<br>risk         | <3.5                                                             |                                                                                                   | Old landfill, inert waste mineworking flooded                                          |
| 4                                                    | Moderate to<br>high risk | <15                                                              | Quantitative risk assessment required to evaluate scope of protective measures                    | Mineworking<br>susceptible<br>to flooding, completed<br>landfill (WMP 26B<br>criteria) |
| 5                                                    | High risk                | <70                                                              |                                                                                                   | Mineworking unflooded inactive with shallow workings near surface                      |
| 6                                                    | Very high<br>risk        | >70                                                              |                                                                                                   | Recent landfill site                                                                   |

#### Notes:

- 1. Gas screening value: litres of gas/hour is calculated by multiplying the gas concentration (%) by the measured borehole flow rate (I/hr);
- 2. Site characterisation should be based on gas monitoring of concentrations and borehole flow rates for the minimum periods as defined within within CIRIA Report 665;
- 3. Source of gas and generation potential/performance must be identified;
- 4. Soil gas investigation to be in accordance with guidance contained within CIRIA Report 665;
- 5. If there is no detectable flow, use the limit of detection of the instrument;
- 6. The boundaries between the Partners in Technology classifications do not fit exactly with the boundaries for the above classification.



# Typical scope of protective measures (extract from CIRIA Report 665 Table 8.6)

| Characteristic Situation (from Table 8.5) | Number of levels of protection | Typical scope of protective measures for residential building (not low-rise traditional housing) <sup>1</sup>                                                                                                                                                                                                 |
|-------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                         | None                           | No special precautions                                                                                                                                                                                                                                                                                        |
| 2                                         | 2                              | <ul> <li>a) Reinforced concrete cast in situ floor slab (suspended, non-suspended or raft) with at least 1200g DPM and under-floor venting</li> <li>b) Beam and block or pre-cast concrete and 2000 g DPM/reinforced gas membrane and under-floor venting. All joints and penetrations sealed.</li> </ul>     |
| 3                                         | 2                              | All types of floor slab as above. All joints and penetrations sealed. Proprietary gas resistant membrane and passively ventilated or positively pressurised under-floor sub-space.                                                                                                                            |
| 4                                         | 3                              | All types of floor slab as above. All joints and penetrations sealed.  Proprietary gas resistant membrane and passively ventilated under-floor subspace or positively pressurised under-floor sub-space, over-site capping or blinding and in ground venting layer                                            |
| 5                                         | 4                              | Reinforced concrete cast in situ floor slab (suspended, non-suspended or raft). All joints and penetrations sealed. Proprietary gas resistant membrane and ventilated or positively pressurised under-floor sub-space, over-site capping and in ground venting layer and in ground venting wells or barriers. |
| 6                                         | 5                              | Not suitable unless gas regime is reduced first and quantitative risk assessment carried out to assess design of protection measures in conjunction with foundation design.                                                                                                                                   |

#### Notes:

- 1. Not suitable for use with low rise traditional housing. (Use the NHBC document instead);
- 2. Typical scope of protective measures may be rationalised for specific developments on the basis of quantitative risk assessments;
- 3. Note the type of protection is given for illustration purposes only. Information on the detailing and construction of passive protection measures is given in BR414 (Johnson, 2001). Individual site specific designs should provide the same number of separate protective methods for any given characteristic situation. See CIRIA Report 49;
- 4. In all cases there should be minimum penetration of ground slabs by services and minimum number of confined spaces such as cupboards above the ground slab. Any confined spaces should be ventilated;
- 5. Foundation design must minimise differential settlement particularly between structural elements and ground-bearing
- 6. Commercial buildings with basement car parks, provided with ventilation in accordance with the Building Regulations, may not require gas protection for Characteristic Situations 3 and 4;
- 7. Floor slabs should provide an acceptable formation on which to lay the gas membrane. If a block beam floor is used it should be well detailed so it has no voids in it that membranes have to span, and all holes for service penetrations should be filled. The minimum density of the blocks should be 600kg/m3 and the top surface should have a 4:1 ratio sand to cement grout brushed into all joints before placing any membrane (this is also good practice to stabilise the floor and should be carried out regardless of the need for ground gas membranes);
- 8. The ground gas-resistant membrane can also act as the damp-proof membrane;
- 9. Based on Building Regulations Approved Document C (Office of the Deputy Prime Minister, 2004a), which states that "a membrane below the concrete could be formed with a sheet of polyethylene, which should be at least 300mu thick (1200 gauge)". Please note the alteration from 300mm (as stated in the Approved Document C) to 300mu, as 300mm is a typographical error that has been recognised and corrected for within this report and CIRIA Report 665.



# Low Rise Residential (NHBC)

Table 14.1: Gas Risk Assessment - Traffic Lights with Typical Maximum Concentrations and Gas Screening Values

| Methane 1                              |                                                 | Carbon Dioxide 1                                        |                                                                                     |
|----------------------------------------|-------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|
| Typical Maximum Concentration 3 (%v/v) | Gas Screening<br>Value <sup>2,4</sup><br>(I/hr) | Typical Maximum<br>Concentration <sup>3</sup><br>(%v/v) | Gas Screening<br>Value <sup>2,4</sup><br>(I/hr)                                     |
|                                        |                                                 |                                                         |                                                                                     |
| 1                                      |                                                 | 5                                                       | 0.78                                                                                |
| 5                                      | 0.63                                            | 10                                                      | 1.60                                                                                |
| 20                                     | 1.60                                            | 30                                                      | 3.10                                                                                |
|                                        |                                                 |                                                         |                                                                                     |
|                                        | Typical Maximum Concentration 3 (%v/v)          | Typical Maximum Concentration 3 (%v/v)  1 0.13 5 0.63   | Typical Gas Screening Value 2.4 (I/hr)  Concentration 3 (%v/v)  1 0.13 5  5 0.63 10 |

#### Notes:

- 1. The worst-case ground gas regime identified on the site, either methane or carbon dioxide, at the worst case temporal conditions that the site may be expected to encounter will be the decider as to what Traffic Light is allocated;
- 2. Borehole Gas Volume Flow Rate, in litres per hour as defined in Wilson and Card (1999), is the borehole flow rate multiplied by the concentration in the air stream of the particular gas being considered;
- 3. The Typical Maximum Concentrations can be exceeded in certain circumstances should the Conceptual Site Model indicate it is safe to do so;
- 4. The Gas Screening Value thresholds should not generally be exceeded without the completion of a detailed ground gas risk assessment taking into account site-specific conditions.

Table 14.2: Ground Gas Protection Measures Required for the Traffic Lights

| Traffic Light | Ground Gas Protection Measures Required                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Green         | Ground gas protection measures are not required. (note based on standard NHBC house detail with 150mm void space under suspended floor)                                                                                                                                                                                                                                                                                                                         |
| Amber 1       | Low-level ground gas protection measures are required, using a membrane and ventilated sub-floor void that creates a permeability contrast to limit the ingress of gas into buildings. Gas protection measures are to be installed as prescribed in BRE 414. Ventilation of the sub-floor void should be designed to provide a minimum of one complete volume change per 24 hours.                                                                              |
| Amber 2       | High-level ground gas protection measures are required, creating a permeability contrast to preven ingress of gas into buildings. Gas protection measures are to be installed as prescribed in BRE 414 Membranes used should always be fitted by a specialist contractor and should be fully certified (see Appendix G). As with Amber 1, ventilation of the sub-floor void should be designed to provide a minimum of one complete volume change per 24 hours. |
| Red           | Standard residential housing is not normally acceptable without further Ground Gas Risk Assessment and/or possible remedial mitigation measures to reduce/remove the source of the ground gases. In certain circumstances, active protection methods could be applied, but only when there is a legal agreement assuring the management and maintenance of the system for the life of the property.                                                             |



# BS8485: 2007

Table 2: Required Gas Protection By Characteristic Gas Situation & Type Of Building

| Characteristic<br>gas situation, CS | NHBC traffic light | ht Required gas protection                 |                    |                         |                                       |  |  |
|-------------------------------------|--------------------|--------------------------------------------|--------------------|-------------------------|---------------------------------------|--|--|
|                                     |                    | Non-managed property, e.g. private housing | Public building A) | Commercial<br>buildings | Industrial<br>buildings <sup>B)</sup> |  |  |
| 1                                   | Green              | 0                                          | 0                  | 0                       | 0                                     |  |  |
| 2                                   | Amber 1            | 3                                          | 3                  | 2                       | 1 <sup>C)</sup>                       |  |  |
| 3                                   | Amber 2            | 4                                          | 3                  | 2                       | 2                                     |  |  |
| 4                                   | Red                | 6 <sup>D)</sup>                            | 5 D)               | 4                       | 3                                     |  |  |
| 5                                   |                    |                                            | 6 <sup>E)</sup>    | 5                       | 4                                     |  |  |
| 6                                   |                    |                                            |                    | 7                       | 6                                     |  |  |

NOTE Traffic light indications are taken from NHBC Report no.: 10627-R01 (04) [3] and are mainly applicable to low-rise residential housing. These are for comparative purposes but the boundaries between the traffic light indications and CS values do not coincide.

- A) Public buildings include, for example, managed apartments, schools and hospitals.
- B) Industrial buildings are generally open and well ventilated. However, areas such as office pods might require a separate assessment and may be classified as commercial buildings and require a different scope of gas protection to the main building.
- C) Maximum methane concentration 20% otherwise consider an increase to CS3.
- D) Residential building on higher traffic light/CS sites is not recommended unless the type of construction or site circumstances allow additional levels of protection to be incorporated, e.g. high-performance ventilation or pathway intervention measures, and an associated sustainable system of management of maintenance of the gas control system, e.g. in institutional and/or fully serviced contractual situations.
- E) Consideration of issues such as ease of evacuation and how false alarms will be handled are needed when completing the design specification of any protection scheme.

**Table 3: Solutions Scores** 

| PROTECTION ELEMEN                                                                                       | T/SYSTEM                                   | SCORE | COMMENTS                                                                                                               |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------|
| a) Venting/dilution (See Annex A)                                                                       |                                            |       | 14 A A                                                                                                                 |
| Passive sub floor ventilation (venting layer can be a clear void or formed using gravel, geocomposites, | Very good performance                      | 2.5   | Ventilation performance in accordance with Annex A.  If passive ventilation is poor this is generally unacceptable and |
| polystyrene void formers, etc.) A)                                                                      | Good performance                           | 1     | some form of active system will be required.                                                                           |
| Subfloor ventilation with active abstractive (venting layer can be a clear void or for                  | ction/pressurization<br>rmed using gravel, | 2.5   | There have to be robust management systems in place to ensure the continued maintenance of any ventilation system.     |



| geocomposites, polystyrene void for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mers, etc.) A)            |     | Active ventilation can always be designed to meet good performance.                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |     | Mechanically assisted systems come in two main forms: extraction and positive pressurization.                                         |
| Ventilated car park (basement or und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dercroft)                 | 4   | Assumes car park is vented to deal with car exhaust fumes, designed to Building Regulations Document F [5] and IStructE guidance [6]. |
| b) Barriers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |     | 34.44.100 [0].                                                                                                                        |
| Floor slabs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 1   | It is good practice to install ventilation in                                                                                         |
| Block and beam floor slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | 0   | all foundation systems to effect pressure                                                                                             |
| Reinforced concrete ground bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | floor slab                | 0.5 | relief as a minimum.                                                                                                                  |
| Reinforced concrete ground bearing foundation raft with limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |     |                                                                                                                                       |
| service penetrations that are cast into slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 1.5 | Breaches in floor slabs such as joints have                                                                                           |
| Reinforced concrete cast in situ suspended slab with minimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |     | to be effectively sealed against gas                                                                                                  |
| service penetrations and water bars around all slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 1.5 | ingress in order to maintain these                                                                                                    |
| penetrations and at joints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |     | performances.                                                                                                                         |
| Fully tanked basement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 2   |                                                                                                                                       |
| c) Membranes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |     |                                                                                                                                       |
| Taped and sealed membrane to reasonable levels of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |     |                                                                                                                                       |
| workmanship/in line with current good practice with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 0.5 |                                                                                                                                       |
| validation B), C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |     | The performance of membranes is                                                                                                       |
| Proprietary gas resistant membrane to reasonable levels of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |     | heavily dependent on the quality and                                                                                                  |
| workmanship/in line with current good practice under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 1   | design of the installation, resistance to                                                                                             |
| independent inspection (CQA) B), C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |     | damage after installation, and the                                                                                                    |
| Proprietary gas resistant membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e installed to reasonable |     | integrity of joints                                                                                                                   |
| levels of workmanship/in line with current good practice under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 2   |                                                                                                                                       |
| CQA with integrity testing and indepe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |     |                                                                                                                                       |
| d) Monitoring and detection (not applicable to non-managed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |     | r in isolation)                                                                                                                       |
| Intermittent monitoring using hand held equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 0.5 |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Installed in the          |     | Where fitted, permanent monitoring                                                                                                    |
| Permanent monitoring and alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | underfloor venting/       | 2   | systems ought to be installed in the                                                                                                  |
| system A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dilution system           |     | underfloor venting/dilution system in the                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Installed in the          | 1   | first instance but can also be provided                                                                                               |
| a) Dathway Intercenting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | building                  |     | within the occupied space as a fail safe                                                                                              |
| e) Pathway Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |     |                                                                                                                                       |
| Pathway intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |     | This can consist of site protection                                                                                                   |
| anway mervenion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | -   | measures for off-site or on-site sources                                                                                              |
| NOTE to an all a flat to the state of the st |                           |     | (see Annex A).                                                                                                                        |

NOTE In practice the choice of materials might well rely on factors such as construction method and the risk of damage after installation. It is important to ensure that the chosen combination gives an appropriate level of protection



A) It is possible to test ventilation systems by installing monitoring probes for post installation validation.

B) If a 1 200 g DPM material is to function as a gas barrier it should be installed according to BRE 212 [8]/BRE 414 [9], being taped and sealed to all penetrations.

C) Polymeric Materials >1 200 g can be used to improve confidence in the barrier. Remember that their gas resistance is robust and resistant to site damage.

#### APPENDIX H

# (i) Off-site Disposal of Surplus Soil Guidance Notes

The disposal of waste (including surplus soils and contaminated soils) to landfill sites is governed by the Landfill (England & Wales) Regulations 2002, the Hazardous Waste Technical Guidance document WM2 (2003) and associated legislation.

One of the aims of the above legislation is to encourage waste producers (including developers disposing of surplus soils etc) to reduce their waste (and not just discard and disown it). This can be achieved by recycling or reusing the waste. In the case of contaminated sites where leaving contaminated material in-situ poses a risk to a potential receptor such as groundwater resources, further testing and assessment for such risk could reduce the quantities requiring disposal. If there is still unacceptable risk from contaminated soil being left in place, then it may be possible to reduce the risk to an acceptable level (such that the material can be left in place) by in-situ or ex-situ clean-up of the soils.

Before waste can be disposed of, the producer of the waste must undertake a number of steps. 'Initial Waste Testing and Characterisation' is firstly undertaken to determine whether the waste is non-hazardous or hazardous. The exceptions are that some wastes such as coal tars, 'tank bottom sludge's', etc are immediately classed as hazardous, regardless of any testing or threshold concentrations.

Any inert or hazardous waste destined for landfill must undergo 'Compliance Testing' using the Waste Acceptance Criteria (WAC). There are different inert and hazardous WAC limits relating to landfill sites that are correspondingly licensed to accept inert or hazardous waste.

If the 'Initial Waste Testing and Characterisation' shows a waste to be hazardous, then it is a requirement that the material be tested against the WAC-hazardous suite of tests. If it passes the WAC-hazardous testing, then it can be taken to a hazardous waste landfill site. If the material fails the WAC-hazardous testing, then the material must be treated before undergoing recharacterisation, further WAC-hazardous testing and then potential disposal at a hazardous waste disposal site.

If the 'Initial Waste Testing and Characterisation' shows a waste to be non-hazardous, then it can be taken to a non hazardous waste landfill site, without further testing. The producer may however decide to undertake WAC-inert testing, in an attempt to reclassify the waste as inert, in which case the waste could then go to an inert landfill site.

The volumes of soils associated with potential hotspots on a site (be they hazardous or non hazardous) which might require offsite disposal, could potentially be reduced by further on-site sampling and subsequent testing.

With regard to the Compliance Testing, it should be noted that some landfill sites are permitted to increase the standard WAC-hazardous/inert limit concentrations, such that they might accept waste that would normally fail such limits.

We would recommend that the contamination testing results (including the history of the site) be presented to the proposed landfills, to determine if they will accept waste generated at the site and what classification they would impose.



#### APPENDIX I

# (i) Validation Report Guidance Notes

# **Unforeseen Hotspots of Contamination**

Given the existence of made ground on the site it would be prudent to maintain vigilance during site clearance and construction, in case any further areas of suspected contamination are encountered.

If areas are found then a suitably qualified person should undertake appropriate sampling, testing and further risk assessment.

Any hotspots encountered during site clearance, not previously encountered in the ground investigation, are to be removed to a suitably licensed landfill site.

A validation report (see below) will be produced on completion of these works. This report will serve to confirm that the works were undertaken in accordance with the relevant legislation, the method statement, specification and planning conditions.

# Validation Report Recommendations

It is suggested that the following records will be kept on site to provide a basis for the validation report:

- Daily record sheets of the remediation works to include a summary of the day's activities
- Weather conditions
- Plant, personnel and visitors to the remediation site
- Aspects relating to Health & Safety, environmental control or non-compliance with the specification or the Method Statements.
- All in situ and laboratory testing results.

All requirements of the remediation specification should be complied with; on completion of the remediation a validation report should be provided. This report will comprise the relevant site records and act as certification that the remedial and ground preparation works have been carried out in accordance with the specification.

The validation report will include the following:

- A description of the works undertaken.
- Records of any remediation works, including daily diary sheets.
- Progress photographs.
- Any chemical and geotechnical validation test results.
- As built surveys, including base excavations and top and bottom of capping layer.
- A statement that the works have been undertaken in accordance with the agreed specification



# APPENDIX J

# (i) Notes on Limitations

This report does not consider ecological impacts (e.g. bats) or botanical risks (e.g. Japanese knotweed). It is recommended that these are considered as part of the assessment of development constraints for the site.

The ground conditions described in the above reports relate only to the points of investigation and do not necessarily guarantee a continuation of the ground conditions throughout the non-inspected area of the site. Whilst such exploratory holes would usually provide a reasonable indication as to the general ground conditions, these cannot be determined with complete certainty. Betts Geo has endeavoured to assess all information provided to them, but makes no guarantees or warranties as to the accuracy or completeness of this information.

The assessment and judgements given in this report are directed by both the finite data on which they are based and the proposed works to which they are addressed. The data essentially comprised a study of available documented information from various sources (including Client Furnished reports) together with discussions with relevant authorities and other interested parties. There may also be circumstances at the site that are not documented. The information reviewed is not exhaustive and has been accepted in good faith as providing representative and true data pertaining to site conditions. If additional information becomes available which might impact our environmental conclusions, we request the opportunity to review the information, reassess the potential concerns and modify our opinion if warranted.

It should be noted that any risks identified in this report are perceived risks based on the available information. Actual risks can only be assessed following a physical investigation of the site.

The site investigation has been carried out to provide information concerning the type and degree of contamination, and ground and groundwater conditions to allow a reasonable risk assessment to be made. Betts Geo Environmental Ltd undertake to exercise all reasonable skill, care and due diligence in the exercise of the investigation with respect to sampling techniques, sample storage and report interpretation.

The assessments and judgement given in this report are directed by both the finite data on which they are based and the proposed works to which they are addressed. Data acquisition is subject to the limitations of the methods of investigation used. Exploratory holes undertaken during fieldwork investigate small a small volume of ground in relation to the size of the site and as such can only provide an indication of site conditions. There may be conditions pertaining to the site and the proposed development i.e. localised "hotspots" of contamination, which have not been disclosed by the investigations.

The findings and opinions are relevant to the dates of our site works and should not be relied upon to represent conditions at substantially later dates. Conditions at the site will change over time due to natural variations and anthropogenic activities. Groundwater, surface water and soil gas conditions should be anticipated to change with diurnal, seasonal and meteorological variations.

The opinions expressed in this report regarding any contamination are based on simple statistical analysis and comparison with available guidance values. No liability can be accepted for the retrospective effects of any changes or amendments to these values.

This report was prepared by Betts Geo Environmental Ltd for the sole and exclusive use of David Wilson Homes. In response to particular instructions, any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

This document has been prepared for the titled project only and should any third party wish to use or rely upon the contents of



the report, written approval from Betts Geo Environmental Ltd must be sought.

Betts Geo Environmental Ltd accepts no responsibility or liability

a) for the consequences of this document being used for the purpose other than that for which it was commissioned and For this document to any other party other than the person by whom it was commissioned.



