DRAINAGE STRATEGY

INCORPORATING AN ASSESSMENT OF FLOOD RISK

for

Mr BEN LEE

PROPOSED RESIDENTIAL DEVELOPMENT

on

LAND TO THE REAR OF THE DOG INN MARKET PLACE, LONGRIDGE, PR3 3RR

OCTOBER 2022 – Revision B

Consulting Engineers Limited

7 Hall Road, Fulwood, Preston, PR2 9QD

CONTENTS

SECTION	TITLE	PAGE
1	INTRODUCTION	3
2	BASE INFORMATION	4
3	PROPOSED DRAINAGE STRATEGY	6
4	SUMMARY AND CONCLUSIONS	9

APPENDICES

Α	Location plan	
---	---------------	--

- B United Utilities sewer records
- C Proposed drainage layout
- D Surface water drainage design

1. INTRODUCTION

- 1.1 This surface water and foul water drainage strategy, incorporating an assessment of flood risk, has been produced on behalf of Mr Ben Lee in support of a planning application for a proposed development comprising eight residential dwellings on land to the rear of the Dog Inn, Market Place, Longridge, PR3 3RR. A location plan is included within Appendix A.
- 1.2 This report describes the existing site conditions and proposed development. It assesses the potential impact of proposals on existing sewers and includes a proposed strategy for the provision of new drainage to serve the proposed development.

2. BASE INFORMATION

Existing site

- 2.1 The site is located in the centre of the town of Longridge off Market Place. The site lies to the rear of The Dog Inn public house and is accessed via a lane to the north east side of the pub which also serves the customer carpark.
- 2.2 The site size has been measured as 0.37ha.
- 2.3 The site is currently vacant, being made up of an area of shrub and brownfield land.
- 2.4 The site falls in a south easterly direction, with the access point off Market Place being at a higher level than the south eastern elements of the site, and the area of the site where the proposed dwellings are to be located is a level area approx. 8m below the level of Market Street.

Proposed development

2.5 The proposed development will comprise eight residential dwellings. The masterplan is shown on the drawing accompanying the planning application.

Site geology

- 2.6 The online Soilscapes Viewer has identified the site lying in a region characterised by the following two types of soils:
 - Freely draining slightly acid loamy soils
 - Slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils with impeded drainage.
- 2.7 Initial infiltration testing has been carried out at two locations within the area of the site where the development is proposed. One test was carried out in each of the locations and permeability rates of 2.438 x 10^{-5} m/s and 3.881 x 10^{-5} m/s have been calculated.

Understanding of existing drainage within and local to the site

- 2.8 United Utilities sewer records identify a 225mm diameter public sewer crossing the site in a northeast to southwest direction before turning southeast along the public footpath to the west of the site. The line of the public sewer where it crosses the site is clearly identified as existing manholes lie within the development site boundary. The public sewer is unaffected by the development proposals. The sewer records are included within Appendix B.
- 2.9 The sewer records also identify a possible watercourse in culvert that lies approx. 70m to the northwest of the development site and flows in a south westerly direction along the rear of the properties that lie along King Street, the southern end of Dixon Road to cross Berry Lane and along Brewery Street.
- 2.10 The existing Dog Inn public house has an existing private drainage system which connects to the public sewer network.

Flood risk

- 2.11 The flood map for planning identifies the site within Flood Zone 1, the lowest risk.
- 2.12 The Long Term Flood Risk map on the GOV.uk website shows the site is at a very low risk of surface water flooding. A very low risk means that each year, this area has a chance of flooding of less than 1 in 1000 (0.1%).
- 2.13 There are no canals or other artificial sources local to the development site.
- 2.14 A 225mm diameter public foul sewer crosses the site in a northeast to southwest direction before turning southeast along the public footpath to the west of the site.
- 2.15 The Environment Agency risk of flooding from reservoirs map identifies the site is not at risk.
- 2.16 The Environment Agency does not consider groundwater flooding to be a significant flood risk factor in the Ribble Valley area.
- 2.17 Surface water runoff from the development will be controlled and as such, there will be no change to the flood risk upstream or downstream of this location.

3. PROPOSED DRAINAGE STRATEGY

3.1 The proposed drainage layout is included within Appendix C.

Surface Water Drainage

- 3.2 In accordance with the National Standards for Sustainable Drainage, the drainage strategy should incorporate the use of Sustainable Drainage (SUDS) where possible. The approach promotes the use infiltration features in the first instance. If drainage cannot be achieved solely through infiltration due to site conditions or contamination risks, the preferred options are (in order of preference):
 - (i) a controlled discharge to a local waterbody or watercourse, or
 - (ii) a controlled discharge into the public sewer network (depending on availability and capacity).
- 3.3 The rate and volume of discharge should be restricted to the pre-development values as far as practicable.

Surface water drainage discharges from the developed site

- 3.4 The online Soilscapes Viewer has identified the site lying in a region characterised by the following two types of soils:
 - Freely draining slightly acid loamy soils
 - Slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils with impeded drainage.
- 3.5 Initial infiltration testing has been carried out at two locations within the area of the site where a soakaway is proposed. One test was carried out in each of the locations and permeability rates of 2.438×10^{-5} m/s and 3.881×10^{-5} m/s have been calculated.
- 3.6 It is therefore intended that surface water runoff from the proposed residential roofs and accessway will discharge to a soakaway located within the site. As three tests were not carried out, based upon previous experience the infiltration rate to be used within the design of the soakaway should be halved. Using the most conservative rate of

2.438 x 10^{-5} m/s, a permeability rate of 1.219 x 10^{-5} m/s (0.0439 m/hr) has been used within the calculation.

- 3.7 Surface water will be managed within the non-drained areas of the site, i.e. the gardens, footpaths, etc. by allowing water to infiltrate into the upper strata and be stored where it will be either taken up by plants or evaporated. There may, potentially, be periods where the upper strata may become saturated and surface ponding may occur but this will be shallow in depth and will disappear over a short period of time.
- 3.8 The soakaway has been designed to take surface water runoff generated by all rainfall events up to the 100 year critical rain storm plus 50%. The additional 50% is to allow for climate change.
- 3.9 A surface water drainage design has been carried out for the proposed development using a total area of roofs and hardstandings of 1,850m².
- 3.10 The design demonstrates that a soakaway of size 6m x 24m x 1.2m deep will be adequate to drain the surface water runoff from the building roof for storm events up to a 1 in 100 year return period with an additional 50% added to rainfall intensities to allow for climate change. The surface water drainage design is included within Appendix D.
- 3.11 A catchpit is to be placed on each pipe discharging into the soakaway to allow silt and other debris to settle out.
- 3.12 The soakaway is to comprise storage crates and is to be located a distance of at least 5m from the building and 2.5m from boundaries. Crates are to be installed in accordance with manufacturer's instructions.
- 3.13 Further infiltration testing is to be carried out prior to the detailed design of the surface water drainage to confirm that a soakaway solution is viable. If infiltration rates are proved not to be suitable then alternative methods of discharge of surface water from the developed site are to be investigated.

- 3.14 The sewer records identify a possible watercourse in culvert that lies approx. 70m to the northwest of the development site and flows in a south westerly direction along the rear of the properties that lie along King Street, the southern end of Dixon Road to cross Berry Lane and along Brewery Street. The development site lies approx. 8m below Berry Lane where the culverted watercourse crosses and therefore it is not possible for a connection to be made.
- 3.15 The existing Dog Inn public house has an existing drainage system which connects to the public sewer network. As such it would be intended that an attenuated surface water discharge would be made into the public sewer crossing the site if a soakaway is not possible.

Foul Water Drainage

- 3.16 United Utilities sewer records identify a 225mm diameter public sewer crossing the site in a northeast to southwest direction before turning southeast along the public footpath to the west of the site. The line of the sewer where it crosses the site is clearly identified as existing manholes lie within the development site boundary.
- 3.17 The public sewer crossing the site is unaffected by the development proposals.
- 3.18 It is intended that foul water from the proposed development will be collected by a piped system and be discharged into the public sewer where it lies along the public footpath at the south western corner of the site. Because the connections to the public foul sewer will be downstream of the development site there will not be any risk to the residential properties should the sewer surcharge.

4. SUMMARY AND CONCLUSIONS

- 4.1 This surface water and foul water drainage strategy, incorporating an assessment of flood risk, has been produced on behalf of Mr Ben Lee in support of a planning application for a proposed development comprising eight residential dwellings on land to the rear of the Dog Inn, Market Place, Longridge, PR3 3RR.
- 4.2 The nature of the local geology means that infiltration of surface water runoff back into the ground is likely to be feasible on this site.
- 4.3 United Utilities sewer records identify a 225mm diameter public sewer crossing the site in a northeast to southwest direction before turning southeast along the public footpath to the west of the site. The public sewer crossing the site is unaffected by the development proposals.
- 4.4 It is intended that surface water runoff from the developed site will be discharged back into the ground via a soakaway.
- 4.5 Foul water from the proposed development will be collected by a piped system and be discharged into the public sewer where it lies along the public footpath at the south western corner of the site.

APPENDIX A

Land to the Rear of The Dog Inn Market Place Longridge NGJ Holdings Ltd

Location Plan

JOB NO. 3156 DRAWING NO. 001 REVISION SCALE 1:1250 @ A4

DATE 06.04.2020

APPENDIX B

Wastewater Symbology

Abandoned	Foul	Surface Water	Combined	
				Public Sewer
				Private Sewer
				Section 104
+++++ b ++++++			+++++++++++++++++++++++++++++++++++++++	Rising Main
`	>			Sludge Main
_		+		Overflow
				Water Course
				Highway Drain

All point assets follow the standard colour conver	ntion:	red – combined blue – surface water	brown - foul purple - overflow
• Manhole	•	Side Entry Manhole	
Head of System	Ç	Outfall	
Extent of Survey		Screen Chamber	
Rodding Eye	-	Inspection Chamber	
Inlet	• •	Bifurcation Chamber	
Discharge Point		Lamp Hole	
💞 Vortex	-	T Junction / Saddle	
Penstock	$_{\odot}$	Catchpit	
ど Washout Chamber	\odot	Valve Chamber	
🎽 Valve	-	Vent Column	
🗳 Air Valve	O	Vortex Chamber	
🎳 Non Return Valve	0	Penstock Chamber	
🍣 Soakaway		Network Storage Tan	k
Sully	Ľ	Sewer Overflow	
Second Cascade	Ē	Ww Treatment Works	
Flow Meter		Ww Pumping Station	
Hatch Box		Septic Tank	
Oil Interceptor		Control Kiosk	
Summit			
^{os} Drop Shaft	∇	Change of Characteri	istic
Orifice Plate		-	

Crown copyright and database rights 2017 Ordnance Survey 100022432. Unauthorised reproduction will infringe these copyrights.

APPENDIX C

PROPOSED DRAINAGE LAYOUT

APPENDIX D

	ford Consulting Engine	ers Ltd					Page 1	
			Desi	gn Settings				
Return Add	II Methodology FSR n Period (years) 2 tional Flow (%) 0 FSR Region Engla M5-60 (mm) 18.80 Ratio-R 0.290 CV 0.750 of Entry (mins) 5.00	0		M	Maximum Minimu linimum Bac Preferred Include Inter	centration (mins) Rainfall (mm/hr) Im Velocity (m/s) Connection Type kdrop Height (m) Cover Depth (m) rmediate Ground ctice design rules	Level Sof 2.000 0.500 √	fits
				<u>Nodes</u>				
	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Depth (m)		
	1	0.006	5.00	131.451	1200	0.600		
	2	0.004	5.00	131.301	1200	0.619		
	3	0.004	5.00	131.301	1200	0.872		
	4 5	0.006	5.00	130.600 131.500	1200 1200	0.975 1.350		
	5	0.031 0.017	5.00 5.00	131.500	1200	1.350		
	5	0.017	5.00	129.790	1200	0.600		
	8	0.005	5.00	129.590	1200	0.600		
	9	0.005	5.00	129.590	1200	0.853		
	10	0.007	5.00	128.750	1200	1.125		
	11	0.044	5.00	127.800	1200	1.775		
	12	0.010	5.00	127.004	1200	0.650		
	13	0.018	5.00	127.004	1200	1.350		
	14	0.010	5.00	126.254	1200	0.749		
	15	0.003	5.00	127.154	1200	0.600		
	16	0.006	5.00	126.404	1200	0.600		
	17	0.003	5.00	126.334	1200	0.948		
	18			126.300	1200	1.350		
	19			126.300	1200	1.400		
	Flow v10.5	.1 Copyri	ght © 19	88-2022 Ca	useway Tech	nologies Ltd		

CAUSEWAY	F	Reford	Consult	ing Engi	neers L	td		Netv Bob	_	in new Storm N 2			Page 2		
							Li	inks							
Ν	Name US DS Length ks (mm) / US IL Node Node (m) n (m)											e Dia (mm)	T of C (mins)	Rain (mm/hr)	
1	1.000	1	2	10.000	ו	0.600	130.85:		m) 0.682	(m) 0.169	(1:X) 59.2		5.17	55.3	
	1.001	2	3	15.000		0.600	130.682		0.429	0.253	59.3		5.42	54.3	
	1.002	3	4	11.000		0.600	130.429		9.625	0.804	13.7		5.50	53.9	
	1.003	4	6	4.000		0.600	129.62		9.000	0.625	6.4		5.52	53.9	
	2.000	5	6	16.000		0.600	130.150		3.950	1.200	13.5		5.10	55.6	
	1.004	6	11	26.000		0.600	128.950		5.100	2.850	9.1		5.65	53.4	
	3.000	7	8	10.000		0.600	129.190		3.990	0.200	50.0		5.15	55.3	
	3.001	8	9	15.000		0.600	128.990		3.737	0.253	59.3		5.40	54.3	
	3.002	9	10	11.000		0.600	128.737		7.625	1.112	9.9		5.48	54.0	
	3.003	10	11	11.000		0.600	127.62		5.150	1.475	7.5		5.54	53.8	
1	1.005	11	18	40.000		0.600	126.02			1.000	40.0	225	5.98	52.2	
4	4.000	12	13	14.000	נ	0.600	126.354	4 125	5.654	0.700	20.0	150	5.10	55.5	
4	4.001	13	14	15.000)	0.600	125.654	4 125	5.505	0.149	100.7	150	5.35	54.5	
4	4.002	14	17	12.000)	0.600	125.50	5 125	5.386	0.119	100.8	150	5.55	53.7	
			I	Name	Vel	Сар	Flow	US	DS			Σ Add			
					(m/s)	(I/s)	(I/s)	Depth			ha) I	nflow			
								(m)	(m			(I/s)			
					1.003	7.9	0.9	0.500			.006	0.0			
					1.002	7.9	1.5	0.519			.010	0.0			
					2.100	16.5	2.0	0.772			.014	0.0			
					3.076 2.773	24.2 49.0	2.9	0.875			.020	0.0			
							4.7	1.200			.031	0.0			
				1.004	3.356	59.3	9.8	1.200			.068	0.0			
					1.092 1.002	8.6 7.9	0.9	0.500			.006	0.0			
					2.471	7.9 19.4	1.6 2.3	0.500			.011 .016	0.0 0.0			
					2.848	22.4	2.3 3.4	1.025			.016	0.0			
					2.848		3.4 19.1	1.550			.023	0.0			
						82.5 40.0		0.500			.010	0.0			
											.010	0.0			
		1.001	1.200 0.599			.028	0.0								
				4.002	1.000	1/./	5.5	0.599	0.7	JG U	.030	0.0			
				Flow v1	0.5.1 C	opyrigh	t © 1988	-2022	Causev	vay Tec	hnologi	es Ltd			

CAUSEWAY 🚱	Reford Consulting Engineers Ltd	File: dog inn new layout.pfd Network: Storm Network Bob Ford 10/10/2022	Page 3									
	Lir	<u>ks</u>										
Name	US DS Length ks (mm) / US IL Node Node (m) n (m)	DS IL Fall Slope Dia T of C (m) (m) (1:X) (mm) (mins) (r	Rain nm/hr)									
5.000	15 16 15.000 0.600 126.554	125.804 0.750 20.0 100 5.14	55.4									
5.000	16 17 14.000 0.600 125.804	125,436 0,368 38.0 100 5,33	54.6									
4.003	17 18 9.000 0.600 125.386		53.5									
1.006		124.900 0.050 40.0 150 6.00	52.1									
	Name Vel Cap Flow	US DS ΣArea ΣAdd										
	(m/s) (l/s) (l/s) [epth Depth (ha) Inflow										
		(m) (m) (l/s)										
		0.500 0.500 0.003 0.0 0.500 0.798 0.009 0.0										
		0.798 1.125 0.050 0.0										
		1.200 1.250 0.185 0.0										
Simulation Settings												
	FSR Region England and Wales W M5-60 (mm) 18.800 Analys	nmer CV 0.750 Drain Down Time (min inter CV 0.840 Additional Storage (m³/h is Speed Normal Check Discharge Rate(dy State x Check Discharge Volum	a) 20.0 s) x									
19	Storm D 5 30 60 120 180 240	urations 360 480 600 720 960 144	10									
	Change Additional Area Additional Flow (A %) (Q %)	Return Period Climate Change Additional (years) (CC %) (A %)										
(years) (c.		100 0	0 0									
30	0 0 0	100 50	0 0									
	Node 18 Online	Orifice Control										
	•	(m) 124.950 Discharge Coefficient 0.600 (m) 0.001										
	Elow v10 5 1 Convrigts @ 1000	2022 Causeway Technologies Ltd										

CAUSEWAY 🚱	Reford Consulting Engineers Ltd	File: dog inn new layout.pfd Network: Storm Network Bob Ford 10/10/2022	Page 4											
	Node 18 Soakaway Storage Structure													
Base Inf Coefficient Side Inf Coefficient Safety			Inf Depth (m) mber Required 1											
	Flow v10.5.1 Copyright © 1988-	2022 Causeway Technologies Ltd												

	Reford Consulting	Engine	ers Ltd				rk: Storm ord	v layout.pfd Network	I	Page 5	
	Results	for 1 ve	ar Critic	al Sto	rm Dura			s balance:	100.00%		
	Node Event	US	Pea		Level	Depth		Node	Flood	Status	
		Node			(m)	(m)	(l/s)	Vol (m³)	(m³)		
	15 minute winter				30.871	0.020		0.0269	0.0000	ОК	
	15 minute winter				30.709	0.027	1.2	0.0341	0.0000	ОК	
	15 minute winter				30.450	0.021		0.0259	0.0000	OK	
	15 minute winter				29.647	0.022		0.0275	0.0000	OK	
	15 minute winter				30.178	0.028		0.0443	0.0000	OK	
	15 minute winter				28.987	0.037		0.0517	0.0000	OK	
	15 minute winter				29.209	0.019		0.0258	0.0000	OK	
	15 minute winter	-			29.019	0.029		0.0379	0.0000	OK	
	15 minute winter				28.758	0.021		0.0264	0.0000	OK	
	15 minute winter				27.649	0.024	2.7	0.0302	0.0000	OK	
	15 minute winter				26.092 26.372	0.067 0.018	15.6 1.2	0.1092	0.0000	OK	
	15 minute winter							0.0255	0.0000	OK	
	15 minute winter							0.0606	0.0000	OK	
	15 minute winter				25.558	0.053	4.4	0.0747	0.0000	OK	
	15 minute winter	• 15		10 1	26.565	0.011	0.4	0.0139	0.0000	ОК	
	Link Event	US	Link	DS	Outf			Flow/Cap	Link	Dischar	
		Node		Node	e (1/:	s)	(m/s)		Vol (m³)	Vol (m ³	3)
1		1	1.000	2		0.7	0.503	0.089	0.0141		
1!		2	1.001	3		1.1	0.786	0.144	0.0218		
		3	1.002	4		1.6	1.281	0.096	0.0136		
		4	1.003	6		2.3	1.875	0.095	0.0049		
		5	2.000	6		3.7	1.304	0.075	0.0453		
		6	1.004	11		7.8	2.306	0.132	0.0880		
		7	3.000	8		0.7	0.482	0.082	0.0148		
		8	3.001	9		1.3	0.840	0.165	0.0233		
		9	3.002	10		1.9	1.431	0.098	0.0146		
		10	3.003	11		2.7	1.893	0.120	0.0156		
		11 12	1.005 4.000	18 13		1.2	1.587 0.458	0.188	0.3916		
								0.029	0.0376		
	15 minute winter							0.181	0.0735		
		14	4.002	17		4.4	0.898	0.246	0.0584		
1	5 minute winter	15	5.000	16		0.4	0.422	0.026	0.0132		
	Flo	w v10.5	.1 Copy	right (0 1988-2	2022 Ca	useway Te	chnologies	Ltd		

CAUSEWAY 🚱	Reford Consul	ting En	gineers	Ltd			ork: Storm ord	w layout.pfi Network	1		Page 6			
	Node Event US Peak Level Depth Inflow Node Flood Status Node (mins) (m) (m) (l/s) Vol (m³) (m³)													
	15 minute win		16		125.8					ок				
	15 minute win		17	11						OK				
	480 minute wi		18	344										
	400 minute wi	inter	10	544	125.5	20 -1.03	0 3.	/ 23.2020	0.0000	UK				
	15 minute sum	nmer	19	1	124.9	00 0.00	0 0.	0.000	0.0000	ОК				
	Link Event	US	Li	ink	DS	Outflow	Velocity	Flow/Ca	p Link	Disch	narge			
	stream Depth)	Node			Node	(I/s)	(m/s)		Vol (m ³		(m³)			
15 r	ninute winter	16	5.00		17	1.1	0.811		7 0.018	1				
15 r	ninute winter	17	4.003		18	5.7	1.443	0.16	1 0.035	3				
	minute winter	18	Orifi		19	0.0					0.0			
480	minute winter	18	Infilt	ration		0.9								
		Flow	1051	Copyrigh	t (C) 109	8-2022 Ca		echnologies	Itd					

CAUSEWAY 🚱	Reford Consultin	g Engine	ers Ltd				rk: Storm rd	v layout.pfd Network			Page 7
	<u>Results</u>	for 30 ye	ear Crit	ical St	orm Dura	ation. Lo	owest ma	ss balance:	100.00%		
	Node Event	US Nod			Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
	15 minute winte		e (iiii		130.882	0.031	1.7	0.0417	0.0000	ок	
	15 minute winte				130.726	0.044	2.9	0.0550	0.0000	OK	
	15 minute winte				130.463	0.034	4.0	0.0415	0.0000	ок	
	15 minute winte				129.661	0.035	5.6	0.0445	0.0000	OK	
	15 minute winte	r 5			130.194	0.043	9.0	0.0691	0.0000	ОК	
	15 minute winte				129.010	0.060	19.4	0.0836	0.0000	ОК	
	15 minute winte	r 7		10	129.220	0.030	1.7	0.0399	0.0000	ОК	
	15 minute winte	r 8		10	129.037	0.047	3.2	0.0608	0.0000	ОК	
	15 minute winte	r 9		10	128.770	0.033	4.6	0.0412	0.0000	ОК	
	15 minute winte	r 10		10	127.663	0.038	6.5	0.0480	0.0000	ОК	
	15 minute winte	r 11		11	126.135	0.110	38.4	0.1794	0.0000	ОК	
	15 minute winte	r 12		10	126.381	0.027	2.9	0.0392	0.0000	ОК	
	15 minute winter						8.1	0.1022	0.0000	ОК	
	15 minute winte	r 14		11	125.595	0.090	10.8	0.1252	0.0000	ОК	
	15 minute winte	r 15		10	126.571	0.017	0.9	0.0212	0.0000	OK	
	Link Event	US	Link	DS				low/Cap	Link	Dischar	
•	Upstream Depth)	Node		Nod			m/s)		Vol (m ³)	Vol (m ⁱ	3)
	5 minute winter	1	1.000			1.7	0.624	0.212	0.0269		
	5 minute winter	2	1.001	3		2.8	0.997	0.354	0.0422		
-	5 minute winter	3	1.002			3.9	1.632	0.238	0.0265		
	5 minute winter	4	1.003	6		5.6	2.366	0.230	0.0094		
-	5 minute winter	5 6	2.000	6 11		8.9 9.2	1.653	0.183	0.0869 0.1693		
-	5 minute winter 5 minute winter	ь 7	1.004 3.000			1.7	2.946 0.604	0.323 0.195	0.1693		
	5 minute winter 5 minute winter	8	3.000	8		1.7 3.1	0.604 1.063	0.195	0.0279		
	5 minute winter	° 9	3.001			4.5	1.812	0.392	0.0439		
	5 minute winter	5 10	3.002	11		4.5 6.5	2.407	0.233	0.0275		
	5 minute winter	11	1.005	18	-	8.0	2.008	0.269	0.7566		
	5 minute winter	12	4.000	13		2.9	0.555	0.400	0.0749		
	5 minute winter	13	4.001	14		7.9	0.810	0.446	0.1460		
	5 minute winter	14	4.001	17	1		1.115	0.604	0.1148		
	5 minute winter	15	5.000		-	0.9	0.534	0.064	0.0251		
	Fl	ow v10.5	5.1 Cop	vright	© 1988-2	2022 Cai	useway Te	chnologies	Ltd		

Reford Consul	ting En	gineers	Ltd			rk: Storm I rd	layout.pfd Network			Page 8			
<u>Resu</u>	Its for 3	30 year	Critical S	Storm D	uration. Lo	owest mas	s balance: 1	.00.00%					
Node Event US Peak Level Depth Inflow Node Flood Status Node (mins) (m) (m) (l/s) Vol (m³) (m³)													
15 minute win	iter	16		125.8			0.0468		ок				
15 minute win		17		125.4			0.0844		OK				
720 minute wi	inter	18	555	124.2	15 -0.73	5 5.9	63.5865	0.0000	ОК				
15 minute sun	nmer	19	1	124.9	00 0.00	0.0	0.0000	0.0000	ок				
Link Event	US	Li	nk		Outflow		Flow/Cap	Link	Disch				
 stream Depth)	Node			Node	(I/s)	(m/s)		Vol (m³)	Vol ((m³)			
ninute winter	16	5.00		17	2.5	1.031	0.253	0.0338					
 ninute winter	17	4.003		18	14.1	1.812	0.393	0.0699					
minute winter minute winter	18 18	Orifi	ce ration	19	0.0 1.0					0.0			
	Flow	10 F 1	C +	+ @ 100	9 2022 6-		hnologies L	دسا					

CAUSEWAY	Reford Consultin	g Engine	ers Ltd				rk: Storm rd	v layout.pfd Network		Page 9	
	<u>Results</u>	for 100 y	ear Crit	ical St	orm Dur	ation. L	owest ma	ass balance	: 100.00%	1	
	Node Event	US Node	Pea e (mi		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
	15 minute winte				.30.887	0.036	2.2		0.0000	ок	
	15 minute winte				.30.733	0.051	3.7	0.0478	0.0000	OK	
	15 minute winte				.30.468	0.039	5.1		0.0000	OK	
	15 minute winte	-			29.666	0.041	7.2		0.0000	ок	
	15 minute winte	r 5			.30.200	0.050	11.6	0.0788	0.0000	ОК	
	15 minute winte				.29.020	0.070	25.1		0.0000	OK	
	15 minute winte				.29.224	0.034	2.2		0.0000	ОК	
	15 minute winte	r 8			29.045	0.055	4.1	0.0709	0.0000	ОК	
	15 minute winte	r 9		10 1	.28.775	0.038	5.9	0.0471	0.0000	ОК	
	15 minute winte	r 10		10 1	27.669	0.044	8.4	0.0556	0.0000	ОК	
	15 minute winte	r 11		10 1	26.154	0.129	49.6	0.2105	0.0000	ОК	
	15 minute winte	r 12		10 1	.26.385	0.031	3.7	0.0443	0.0000	ОК	
	15 minute winte	r 13		10 1	.25.740	0.086	10.4	0.1200	0.0000	ОК	
	15 minute winte	r 14		11 1	.25.612	0.107	13.9	0.1490	0.0000	ОК	
	15 minute winte	er 15		11 1	.26.573	0.019	1.1	0.0238	0.0000	ОК	
	Link Event				Outf			Flow/Cap	Link	Dischar	
	Upstream Depth)	Node		Nod			m/s)		Vol (m ³)	Vol (m ⁱ	3)
	5 minute winter	1	1.000	2		2.2	0.670	0.276	0.0325		
	5 minute winter	2	1.001	3		3.6	1.064	0.456	0.0508		
	5 minute winter	3	1.002	4		5.0	1.727	0.305	0.0321		
	5 minute winter	4	1.003	6		7.2	2.517	0.297	0.0114		
	5 minute winter	5	2.000	6		1.5	1.761	0.235	0.1051		
-	5 minute winter	6	1.004	11	_	24.8	3.145	0.418	0.2050		
	5 minute winter	7	3.000	8		2.2	0.646	0.253	0.0338		
	5 minute winter	8 9	3.001	9 10		4.0 5.8	1.133 1.929	0.507	0.0531 0.0333		
	5 minute winter 5 minute winter	9 10	3.002 3.003	10		5.8 8.4	2.570	0.301 0.374	0.0333		
	15 minute winter	10	1.005	18		8.9	2.370	0.574	0.0358		
	15 minute winter	12	4.000	13		3.7	0.580	0.093	0.09189		
	5 minute winter	12	4.000	15		5.7 L0.2	0.857	0.578	0.1785		
	5 minute winter	15	4.001	14		.3.8	1.173	0.378	0.1785		
	15 minute winter	14 15	5.000	16		1.1	0.564	0.081	0.0304		
	Fl	ow v10.5	5.1 Copy	/right (© 1988-2	2022 Cai	useway Te	chnologies	Ltd		

CAUSEWAY	Reford Consul	lting En	gineers	Ltd			rk: Storm I ord	layout.pfd Network		Page 10	
	Resul	ts for 1	LOO year	r Critical	Storm [Duration. L	owest ma	ss balance:	<u>100.00%</u>		
	Node Ever	nt	US Node	Peak (mins)	Leve (m)		h inflow (i/s)	Node Vol (m³)	Flood (m³)	Status	
	15 minute win		16	• •	125.8			0.0542		ок	
	15 minute win 15 minute win		10		125.8			0.0542		OK	
	600 minute wi		18		125.4						
	600 minute w	Inter	19	525	124.3	95 -0.55	5 8.5	88.2024	0.0000	UK	
	15 minute sun	nmer	19	1	124.9	00 0.00	0.0	0.0000	0.0000	ОК	
	Link Event	US	Li	ink	DS	Outflow	Velocity	Flow/Cap	Link	Disch	narge
(L	Jpstream Depth)	Node	•		Node	(I/s)	(m/s)		Vol (m ³)	Vol ((m³)
1	5 minute winter	16	5.00	1	17	3.2	1.105	0.329	0.0411		
1	5 minute winter	17	4.00	3	18	18.2	1.920	0.509	0.0853		
64	00 minute winter	18	Orifi	ce	19	0.0					0.0
6	00 minute winter	18	Infilt	ration		1.1					
					_						
		Flow	/10.5.1	Copyrigh	nt © 198	88-2022 Ca	useway Teo	chnologies L	td		

CAUSEWAY	Reford Consulti	eers Ltd		Net Bob	-	new layout. rm Networ	-	Page 11		
	Results for :	LOO year	+50% CC	Critical S	torm Dura	ation. Lov	west mass	balance:	<u>100.00%</u>	
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
	15 minute winter	1	10	130.897	0.046	3.4	0.0610	0.0000	ок	
	15 minute winter	2	10	130.748	0.066	5.5	0.0832	0.0000	OK	
	15 minute winter	3	11	130.478	0.049	7.6	0.0598	0.0000	OK	
	15 minute winter	4	10	129.678	0.053	10.9	0.0668	0.0000	OK	
	15 minute winter	5	10	130.212	0.062	17.4	0.0980	0.0000	OK	
	15 minute winter	6	10	129.038	0.088	37.8	0.1217	0.0000	OK	
	15 minute winter	7	10	129.234	0.043	3.4	0.0579	0.0000	OK	
	15 minute winter	8	10	129.062	0.072	6.2	0.0933	0.0000	OK	
	15 minute winter	9	10	128.784	0.047	8.8	0.0591	0.0000	OK	
	15 minute winter	10	10	127.682	0.057	12.6	0.0711	0.0000	OK	
	15 minute winter	11	10	126.200	0.175	74.8	0.2850	0.0000	OK	
	15 minute winter	12	10	126.392	0.038	5.6	0.0545	0.0000	OK	
	15 minute winter	13	11	125.801	0.147	15.7	0.2054	0.0000	ОК	
	15 minute winter	14	11	125.687	0.182	19.9	0.2539	0.0000	SURCHARGE	D
	15 minute winter	15	10	126.578	0.024	1.7	0.0293	0.0000	OK	
	Link Event	US	Link		Outflow	Velocity	Flow/Ca			
	(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (°)
	15 minute winter	1	1.000	2	3.3	0.744	0.42			
	15 minute winter	2	1.001	3	5.4	1.172	0.69			
	15 minute winter	3	1.002	4	7.6	1.890	0.46			
	15 minute winter	4	1.003	6	10.9	2.764	0.45			
	15 minute winter	5	2.000	6	17.3	1.973	0.35			
	15 minute winter	6	1.004	11	37.6	3.353	0.63			
	15 minute winter	7	3.000	8	3.4	0.718	0.39			
	15 minute winter	8	3.001	9	6.0	1.237	0.76			
	15 minute winter	9	3.002	10	8.7	2.113	0.44			
	15 minute winter	10	3.003	11	12.5	2.823	0.55			
	15 minute winter	11	1.005	18	73.6	2.292	0.89			
	15 minute winter	12	4.000	13	5.6	0.622	0.13			
	15 minute winter	13	4.001	14	14.4	0.908	0.81			
	15 minute winter	14	4.002	17	19.4	1.248	1.09			
	15 minute winter	15	5.000	16	1.7	0.620	0.12	3 0.04	113	
		1		right © 1						

Sector Subsect Subsection	CAUSEWAY	Reford Consult	ing Engir	eers Ltd			rk: Storm rd	v layout.pfd Network		Page 12
Node (m) (m) (m) (m) (m) (m) 15 minute winter 16 10 125.85 0.052 5.1 0.0689 0.0000 0K 15 minute winter 17 11 125.494 0.108 25.5 0.0200 0K 960 minute winter 18 88 124.837 -0.113 8.8 128.655 0.0000 0K 15 minute winter 19 1 124.900 0.00 0.0 0.0000 0K Link Event US Link DS Outflow Velocity Flow/Cap Link Discharge (Upstream Depth) Node Node 1.172 0.509 0.0605 15 15 minute winter 16 5.001 17 5.0 1.172 0.509 0.0605 15 minute winter 18 Orffice 19 0.0 30 0.0 960 minute winter 18 infiltration 1.3 0.0 0.0 0.0		Results for	100 yea	r +50% CC Cı	itical Sto	orm Duratio	n. Lowes	t mass balar	nce: 100.00	0%
15 minute winter 16 10 125.856 0.052 5.1 0.0689 0.0000 0K 15 minute winter 18 85 124.837 0.103 8.8 124.855 0.0000 0K 15 minute winter 18 125.4937 0.103 8.8 124.855 0.0000 0K 15 minute winter 19 1 124.900 0.000 0.0 0.0000 0K Link Event US Link DS Outflow Velocity Flow/Cap Link Discharge (Upstream Depth) Node Node (V/9) (m/s) Vol (m³) Vol (m³) 15 minute winter 16 5.001 17 5.0 1.172 0.509 0.0605 15 minute winter 18 Orffice 19 0.0 2056 0.727 0.1138 960 minute winter 18 Infiltration 1.3 0.0 0.0 0.0 960 minute winter 18 Infiltration 1.3 0.0 0.0 0.0		Node Event				-				Status
15 minute winter 17 11 125.494 0.108 25.9 0.1286 0.0000 0K 960 minute winter 18 885 124.837 -0.113 8.8 148.6535 0.0000 OK 15 minute summer 19 1 124.930 0.000 0.0 0.0000 OK Upstream Depth US Link DS Curflow Velocity Flow/Cap Link Discharge (Upstream Depth) Node Node (V/s) (n/s) 10(m²) 10(m²) 15 minute winter 16 5.001 17 5.0 1.172 0.509 0.0605 15 minute winter 18 0.03 18 26.0 2.056 0.727 0.1138 960 minute winter 18 Infiltration 1.3 0.0 0.0 0.0 960 minute winter 18 Infiltration 1.3 0.138 0.0 0.0		15 minute winte								OK
960 minute winter 18 885 124.837 -0.113 8.8 148.6535 0.0000 OK 15 minute summer 19 1 124.900 0.000 0.0 0.0000 OK Link Event US Link DS Outflow Velocity Flow/Cap Link Discharge (Upstream Depth) Node Node (1/5) (m/s) Vol (m*) Vol (m*) 15 minute winter 16 5.001 17 5.0 2.056 0.727 0.113 15 minute winter 17 4.003 18 26.0 2.056 0.727 0.113 960 minute winter 18 Infiltration 1.3 0.0 0.0 0.0 960 minute winter 18 Infiltration 1.3 0.0 0.0 0.0										
Link EventUSLinkDSOutflowVelocityFlow/CapLinkDischarge(Upstream Depth)NodeNode(1/s)(m/s)Vol (m³)Vol (m³)15 minute winter165.001175.001.1720.5090.060515 minute winter174.0031826.02.0560.7270.1138960 minute winter18Orifice190.00.00.0950 minute winter18Infiltration1.30.0										
(Upstream Depth) Node Node (I/s) (m/s) Vol (m ³) Vol (m ³) 15 minute winter 16 5.001 17 5.0 1.172 0.509 0.0605 15 minute winter 17 4.003 18 26.0 2.056 0.727 0.1138 960 minute winter 18 Orifice 19 0.0 0.0 960 minute winter 18 Infiltration 1.3 0.0 0.0		15 minute sumr	mer 19	1	124.90	000.000	0.0	0.0000	0.0000	ОК
15 minute winter 16 5.001 17 5.0 1.172 0.509 0.0605 15 minute winter 17 4.003 18 26.0 2.056 0.727 0.1138 960 minute winter 18 Orffice 19 0.0 0.0 960 minute winter 18 Infiltration 1.3		Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
15 minute winter 17 4.003 18 26.0 2.056 0.727 0.1138 960 minute winter 18 Orifice 19 0.0 0.0 960 minute winter 18 Infiltration 1.3	(Up	stream Depth)	Node		Node	(I/s)	(m/s)	_	Vol (m ³)	Vol (m³)
960 minute winter 18 Orifice 19 0.0 0.0 960 minute winter 18 Infiltration 1.3	15 r	ninute winter	16	5.001	17	5.0		0.509	0.0605	
960 minute winter 18 Infiltration 1.3							2.056	0.727	0.1138	
					19					0.0
	960	minute winter	18	Infiltration		1.3				
			FI	F 1 C m 1						