SURFACE WATER AND FOUL WATER

DRAINAGE STRATEGY

for

Mr J & Mrs K BAILEY

WHARF FARM

GREEN LANE, CHIPPING, PR3 2QE

OCTOBER 2021 – Revision A

Consulting Engineers Limited

7 Hall Road, Fulwood, Preston, PR2 9QD

Mobile: 07970 265334 Email: r.e.ford@virginmedia.com

Company number: 09620365 VAT Reg. 215 5638 12

CONTENTS

SECTION	TITLE	PAGE
1	INTRODUCTION	3
2	BASE INFORMATION	4
3	PROPOSED DRAINAGE STRATEGY	6
4	MANAGEMENT AND MAINTENANCE RESPONSIBILITIES AND SPECIFICATION	8
5	SUMMARY AND CONCLUSIONS	9

APPENDICES

A	Location	plan

- B United Utilities sewer records
- C Surface water drainage design, layout and section

1. INTRODUCTION

- 1.1 This surface water and foul water drainage strategy has been produced on behalf of Mr J & Mrs K Bailey in support of a planning application for the modernization of agricultural buildings, replacing existing housing with a complete dairy unit at Wharf Farm, Green Lane, Chipping, PR3 2QE. A location plan is included within Appendix A.
- 1.2 This drainage strategy describes the existing site conditions and proposed development. It assesses the potential impact of proposals on existing drainage and includes a proposed strategy for the provision of new drainage to serve the proposed development.

2. BASE INFORMATION

Existing site

- 2.1 The site is located within the farm yard of the existing Wharf Farm, that comprises a total 61.5 hectares, and lies on the eastern boundary of the village of Chipping, Lancashire.
- 2.2 Access to the farm yard is from Green Lane.
- 2.3 Part of the site contains an existing cow accommodation builling that is to be removed as the proposed building is to be sited over the existing footprint.
- 2.4 The site is generally level.

Understanding of existing drainage local to the site

- 2.5 The Chipping Brook flows through the centre of Chipping village and lies approx. 100m to the southwest of the site.
- 2.6 A culverted watercourse lies immediately alongside the western boundary of the farm yard. The watercourse is in open ditch to the north of the farmyard and is maintained within culvert to the south of the farmyard to discharge into Chipping Brook.
- 2.7 A surface water drain runs along Green Lane to the east and discharges into the existing dyke system and the Townley Brook. Surface water runoff from the farmyard discharges into the drain. The Townley Brook discharges into the Chipping Brook approx. 1500m from the site.
- 2.8 United Utilities sewer mapping identifies the head of a 150mm diameter combined sewer lying within the junction of Green Lane, Talbot Road and a country lane. The sewer flows to the west along Talbot Road. The sewer records are included within Appendix B.
- 2.9 Dirty water from the existing buildings is drained into an existing covered slurry store building that is emptied on a regular basis.

Proposed development

- 2.10 The proposed building is a conventional layout for a complete dairy unit housing a nominal 70no. dairy cows. The building layout is shown on the drawings accompanying the planning application.
- 2.11 Dirty water from the proposed building will be collected and stored within the existing site facilities.
- 2.12 Access will be maintained through the existing farmyard from Green Lane.

Site geology

- 2.13 The online Soilscapes Viewer has identified that the geology that may be encountered as slowly permeable seasonally wet acid loamy and clayey soils with impeded drainage.
- 2.14 As such, based upon the ground conditions identified, infiltration is unlikely to provide a viable drainage solution for surface water runoff generated by the site.

3. PROPOSED DRAINAGE STRATEGY

Surface water drainage

- 3.1 In accordance with the National Standards for Sustainable Drainage, the drainage strategy should incorporate the use of Sustainable Drainage (SUDS) where possible. The approach promotes the use infiltration features in the first instance. If drainage cannot be achieved solely through infiltration due to site conditions or contamination risks, the preferred options are (in order of preference):
 - (i) a controlled discharge to a local waterbody or watercourse, or
 - (ii) a controlled discharge into the public sewer network (depending on availability and capacity).
- 3.2 The rates and volume of discharge should be restricted to the pre-development values as far as practicable.
- 3.3 The nature of the geology of the site means that infiltration is unlikely to provide a viable drainage solution for surface water runoff generated by the site.
- 3.4 The Chipping Brook flows through the centre of Chipping village and lies approx. 100m to the southwest of the site.
- 3.5 The area of the proposed building roofs from which surface water runoff is to be collected has been measured as 1600m².
- 3.6 To determine the restricted surface water discharge rates from the developed site, the pre-development Greenfield runoff rates have been calculated as follows using the 'Causeway Flow' programme. The calculations are based upon the developed area of the site of 0.16ha and are included within Appendix C.
 - Qbar 2.3 l/s
 - Q1 2.0 l/s
 - Q30 3.9 l/s
 - Q100 4.7 l/s

- 3.7 Due to the size of the site, it is intended that surface water runoff will be attenuated to 5 l/s allowing surface water runoff generated by all rainfall events up to the 100 year critical rain storm plus 40% on stored volumes, and discharged into the Chipping Brook that lies approx. 100m to the southwest of the site. The additional 40% is to allow for climate change and has been included in the surface water volume.
- 3.8 Access to the Chipping Brook is through the adjacent fields that lie to the south of the development site that lie within the applicant's ownership.
- 3.9 Attenuation will be provided by creating a pond within the adjacent field. The pond is to be able to accommodate a volume of 80m³ to cater for the 100 year plus 40% added for climate change event.
- 3.10 A surface water drainage design has been carried out for the proposed development for all rainfall events up to the 100 year critical rain storm plus 40% included for climate change on stored volumes. The surface water drainage design, layout and section are included within Appendix C.
- 3.11 Any exceedance flows will run off the site to the southwest and the Chipping Brook.

Foul Water Drainage

3.12 There is no foul water associated with the application.

Dirty water

3.13 Dirty water from the proposed building will be collected and stored within the existing site facilities.

4. MANAGEMENT AND MAINTENANCE RESPONSIBILITIES AND SPECIFICATION

- 4.1 The maintenance responsibilities for the various drainage features of the scheme will lie with the building owner.
- 4.2 The table below lists the various drainage features utilised within the proposed drainage design, along with the maintenance regime that should be followed.

SURFACE WATER DRAINAGE	
Regular maintenance	Frequency
Visually inspect gutters to ensure they are kept clear of leaves, debris etc. Lift covers of drainage to inspect chambers for debris and build-up of silts. Check drainage pipes are operating as expected.	Annually. No triggers other than maintenance to be taken on regular schedule.
Occasional tasks	Frequency
Remove leaves and debris from gutters. Remove debris from chambers to ensure outlets are kept clear of debris to ensure adequate drainage.	As required. Indicator of problem / trigger for maintenance when surcharging or flooding of drains occurs or gutters and chambers full of debris and leaves etc.
Remedial work	Frequency
Should drains be heavily blocked or damaged contact drainage maintenance company for unblocking / repair works.	As required. Indicator of problem / trigger for maintenance when drainage not functioning and unblocking pipes and chambers etc. not effective.
POND	
Regular maintenance	Frequency
Visually inspect pond to ensure it is kept reasonably clear of leaves and debris etc. at surface. Inspection of inlet and outlet structures.	Annually. No triggers other than maintenance to be taken on regular schedule.
Cutting of vegetation around the perimeter of the pond so that the pond doesn't become overgrown.	Frequency varies, vegetation will require cutting more often in summer / spring months than autumn / winter months. To be cut as required. No triggers other than maintenance to be taken on regular schedule.
Remedial work	Frequency
Maintenance of pond profile should scour or erosion or build-up of silt occur. Repair of inlets and outlets.	As required. Indicator of problem / trigger for maintenance when significant pond scour and erosion or build-up of silt has occurred.

5. SUMMARY AND CONCLUSIONS

- 5.1 This surface water and foul water drainage strategy has been produced on behalf of Mr J & Mrs K Bailey in support of a planning application for the modernization of agricultural buildings, replacing existing housing with a complete dairy unit at Wharf Farm, Green Lane, Chipping, PR3 2QE.
- 5.2 The nature of the geology of the site means that infiltration is unlikely to provide a viable drainage solution for surface water runoff generated by the site.
- 5.3 It is intended that surface water runoff will be attenuated to 5 l/s allowing surface water runoff generated by all rainfall events up to the 100 year critical rain storm plus 40% on stored volumes to discharge into the Chipping Brook.
- 5.4 There is no foul water associated with the application.
- 5.5 Dirty water from the proposed building will be collected and stored within the existing site facilities.

APPENDIX A

LOCATION PLAN

APPENDIX B

Wastewater Symbology

Abandoned	Foul	Surface Water	Combined	
				Public Sewer
				Private Sewer
				Section 104
+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++	+++++ > +++++++++++++++++++++++++++++++	Rising Main
<u> </u>	、			Sludge Main
`				Overflow
				Water Course
				Highway Drain

All point assets follow the standard colour convent	tion:	red – combinedbrown - foulblue – surface waterpurple - overflow
Manholo		Side Entry Manhala
• Mannole	7	Side Entry Manhole
 Head of System 	<u>ر</u>	Outrail
Extent of Survey	10	Screen Chamber
Rodding Eye		Inspection Chamber
Inlet	Φ	Bifurcation Chamber
Discharge Point		Lamp Hole
💞 Vortex	-	T Junction / Saddle
Penstock	0	Catchpit
ど Washout Chamber	\odot	Valve Chamber
ど Valve	-	Vent Column
💞 Air Valve	O	Vortex Chamber
📲 Non Return Valve	0	Penstock Chamber
🌮 Soakaway		Network Storage Tank
🚭 Gully	Ď	Sewer Overflow
Cascade	т. Ш	Ww Treatment Works
Flow Meter		Ww Pumping Station
Hatch Box		Septic Tank
Oil Interceptor		Control Kiosk
Summit		
Drop Shaft	∇	Change of Characteristic
Orifice Plate		

The position of the underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. United Utilities Water will not accept liability for any loss or damage caused by the actual position being different from those shown. Crown copyright and database rights 2017 Ordnance Survey 100022432. Unauthorised reproduction will infringe these copyrights.

APPENDIX C

~		<u>(115000</u>
	112530	Road 113630 113630 113630 112530
Bank level 107450 Proposed attenus	ation pond	109380
104980 Outfall	106830	106830 104980
	Section 'X-X'	
		Site Address;
		Green Lane. Chipping.
		Preston. Lancs. PR3 2QE.
	TITLE	File Name BaileyWharfFarmChippingPlanning2021 ISSUE
FAKMPLUS Shay lane		1:200 & as shown
LONGRIDGE PRESTON LANCS. PR3 3BT	DO NOT SCALE IF IN DOLLAT ASK	Date
IEL. 01772 785252	DO NOT SCALE IT IN DOODT ASK	Sept. 2021 LE

PRE-DEVELOPMENT RUNOFF RATES

Pre-development discharge

30

100

Site Makeup	Greenfie	eld		~		
Greenfield Method	IH124			~		
Positively Drained	0.160					
SAAR (mm)	1414					
Soil Index		5			~	
SPR	0.53					
Region		10 ~				
Betterment (%)		0				
	Cal	C				
QBar (I/s)	2.3					
Return Period (years)	Growth	Factor		Q (I/s)		
1		0.87			2	2.0

1.70

2.08

3.9

4.7

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	2	Maximum Rainfall (mm/hr)	75.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	19.100	Minimum Backdrop Height (m)	1.000
Ratio-R	0.250	Preferred Cover Depth (m)	0.600
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Depth (m)
1	0.013	5.00	115.040	1050	0.825
2	0.032	5.00	115.020	1050	0.858
3	0.057	5.00	114.980	1050	0.901
4	0.040	5.00	114.960	1050	0.934
5	0.018	5.00	114.950	1050	1.006
6			107.450	1200	0.600
7			104.500	600	0.750

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	9.000	0.600	114.215	114.162	0.053	169.8	225	5.15	52.1
1.001	2	3	14.000	0.600	114.162	114.079	0.083	168.7	225	5.38	51.3
1.002	3	4	9.000	0.600	114.079	114.026	0.053	169.8	225	5.53	50.8
1.003	4	5	7.000	0.600	114.026	113.944	0.082	85.4	225	5.61	50.5
1.004	5	6	75.000	0.600	113.944	106.850	7.094	10.6	225	5.92	49.5
1.005	6	7	40.000	0.600	106.850	103.750	3.100	12.9	150	6.16	48.8

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.000	39.8	1.8	0.600	0.633	0.013	0.0	33	0.513
1.001	1.004	39.9	6.3	0.633	0.676	0.045	0.0	60	0.736
1.002	1.000	39.8	14.0	0.676	0.709	0.102	0.0	92	0.914
1.003	1.416	56.3	19.4	0.709	0.781	0.142	0.0	91	1.288
1.004	4.047	160.9	21.5	0.781	0.375	0.160	0.0	55	2.829
1.005	2.819	49.8	21.1	0.450	0.600	0.160	0.0	68	2.707

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	х
M5-60 (mm)	19.100	Drain Down Time (mins)	240
Ratio-R	0.250	Additional Storage (m³/ha)	20.0
Summer CV	0.750	Check Discharge Rate(s)	x
Winter CV	0.840	Check Discharge Volume	x
	Storm Dura	tions	
15 30 60 120	180 240 360) 480 600 720	960 1440

AUSEWAY 🛟	Reford Cons	ulting Engineer	rs Lt File: Net Bob 21/1	wharf farn work: Storr Ford 10/2021	n pond.pfd n Network	Page 2
Re	eturn Period	Climate Chan	ige Addi	tional Area	Additional Flo	w
	(years) 1	(00 /0)	0	(~ //)	(Q //)	0
	20		0	0		0
	100		0	0		0
	100		40	0		0
	100	Nada C Oalia	- Ukudua Du		1	°
		Node 6 Unline	<u>e Hyaro-Bi</u>	rake [®] Conti	<u>r01</u>	
Fla	ap Valve x			Objective	e (HE) Minimise	e upstream storage
Replaces Downstre	am Link x		Sun	np Available	e √	
Invert L	evel (m) 10	6.850	Produ	uct Numbe	r CTL-SHE-0111	1-5000-0600-5000
Design De	epth (m) 0.6	500 Mi	n Outlet D	iameter (m) 0.150	
Design F	low (l/s) 5.0) Min	Node Dia	meter (mm) 1200	
		Node 6 Depth	/Area Stor	age Structu	<u>ure</u>	
Base Inf Coefficient Side Inf Coefficient	(m/hr) 0.0 (m/hr) 0.0	0000 Safet 0000	ty Factor Porosity	2.0 1.00	Invert L Time to half empt	evel (m) 106.850 ty (mins) 228
	Depth (m) 0.000	Area Inf Ar (m ²) (m ²) 120.0 (ea De) (r).0 0.1	pth Area m) (m²) 600 180.0	a Inf Area) (m²) D 0.0	

Results for 1 year Critical Storm Duration. Lowest mass balance: 99.85%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	114.244	0.029	1.5	0.0348	0.0000	ОК
15 minute winter	2	10	114.216	0.054	5.2	0.0866	0.0000	ОК
15 minute winter	3	10	114.169	0.090	11.6	0.1915	0.0000	OK
15 minute winter	4	11	114.116	0.090	16.0	0.1550	0.0000	ОК
15 minute winter	5	10	114.002	0.058	17.8	0.0705	0.0000	OK
180 minute winter	6	124	106.960	0.110	6.1	13.9817	0.0000	ОК
180 minute winter	7	124	103.775	0.025	3.1	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	1.5	0.292	0.037	0.0463	
15 minute winter	2	1.001	3	5.1	0.464	0.127	0.1542	
15 minute winter	3	1.002	4	11.4	0.774	0.287	0.1331	
15 minute winter	4	1.003	5	15.8	1.421	0.281	0.0798	
15 minute winter	5	1.004	6	18.2	3.745	0.113	0.4311	
180 minute winter	6	1.005	7	3.1	1.565	0.062	0.0795	23.7

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.85%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	114.261	0.046	3.7	0.0540	0.0000	ОК
15 minute winter	2	10	114.251	0.089	12.6	0.1432	0.0000	ОК
15 minute winter	3	10	114.238	0.159	28.2	0.3396	0.0000	ОК
15 minute winter	4	11	114.179	0.153	38.8	0.2626	0.0000	ОК
15 minute winter	5	10	114.029	0.085	43.5	0.1044	0.0000	ОК
180 minute winter	6	132	107.087	0.237	13.7	31.5244	0.0000	SURCHARGED
120 minute winter	7	116	103.782	0.032	5.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	3.6	0.367	0.091	0.0914	
15 minute winter	2	1.001	3	12.3	0.549	0.307	0.3125	
15 minute winter	3	1.002	4	27.7	0.946	0.697	0.2642	
15 minute winter	4	1.003	5	38.5	1.849	0.685	0.1485	
15 minute winter	5	1.004	6	44.3	4.227	0.276	1.1263	
180 minute winter	6	1.005	7	5.0	1.799	0.100	0.1111	55.8

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.85%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	11	114.288	0.072	4.7	0.0856	0.0000	OK
15 minute winter	2	11	114.286	0.124	15.9	0.1998	0.0000	OK
15 minute winter	3	11	114.274	0.195	35.2	0.4153	0.0000	OK
15 minute winter	4	11	114.206	0.180	48.8	0.3105	0.0000	OK
15 minute summer	5	10	114.039	0.095	53.0	0.1160	0.0000	OK
180 minute winter	6	140	107.178	0.328	18.0	45.0606	0.0000	FLOOD RISK
720 minute summer	7	405	103.782	0.032	5.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	4.6	0.376	0.115	0.1504	
15 minute winter	2	1.001	3	15.6	0.563	0.391	0.4127	
15 minute winter	3	1.002	4	35.2	0.995	0.886	0.3180	
15 minute winter	4	1.003	5	49.0	1.962	0.870	0.1737	
15 minute summer	5	1.004	6	54.0	4.387	0.335	1.3191	
180 minute winter	6	1.005	7	5.0	1.799	0.100	0.1111	73.1

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.85%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	11	114.451	0.236	6.6	0.2789	0.0000	SURCHARGED
15 minute winter	2	11	114.448	0.286	21.1	0.4613	0.0000	SURCHARGED
15 minute winter	3	11	114.418	0.339	47.8	0.7222	0.0000	SURCHARGED
15 minute winter	4	11	114.303	0.277	66.5	0.4767	0.0000	SURCHARGED
15 minute summer	5	9	114.051	0.107	71.1	0.1310	0.0000	ОК
240 minute winter	6	192	107.342	0.492	20.7	71.7432	0.0000	FLOOD RISK
30 minute summer	7	71	103.782	0.032	5.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	7.1	0.378	0.179	0.3579	
15 minute winter	2	1.001	3	21.9	0.600	0.548	0.5568	
15 minute winter	3	1.002	4	47.4	1.191	1.191	0.3579	
15 minute winter	4	1.003	5	66.2	2.016	1.175	0.2043	
15 minute summer	5	1.004	6	70.9	4.514	0.441	1.8255	
240 minute winter	6	1.005	7	5.0	1.799	0.100	0.1111	109.2