

Structural Appraisal

Parker Place Farm Pendleton Road Wiswell BB7 9BZ

Prepared by: S J Beswick BSc (Hons) & D J Ormes C.Eng MI.Struct.E

Date: 5th March 2021

Reference: 4509-21

CONTENTS

1.0	TERMS OF REFERENCE	3
2.0	PURPOSE OF REPORT	3
3.0	INTRODUCTION	3
4.0	DESCRIPTION	3
5.0	STRUCTURAL APPRAISAL	4
6.0	DISCUSSION AND RECOMMENDATIONS	5

1.0 TERMS OF REFERENCE

This report has been prepared at the request of Mr. Bruce Mitchell, the owner of the above property.

The inspection was carried out on Friday 5th March 2021.

2.0 PURPOSE OF REPORT

The purpose of the report is to inspect and comment on the overall structural condition of the barn and its suitability for part conversion to a dwelling.

The report is limited to the structural elements of the barn only and is not intended as a detailed condition report on the barn as a whole. We have not inspected the drainage system, electrical or gas installations and are therefore unable to confirm that these are in satisfactory condition.

We advise you that this report is an appraisal only and not a full structural survey. We have not inspected the woodwork or other parts of the structure which are covered, unexposed or inaccessible and we are therefore unable to report that any such part of the property is free from defect.

3.0 INTRODUCTION

The barn is located within the grounds of Parker Place Farm, Wiswell. Parker Place Farm is located to the East of Pendleton Road.

This report focuses on a small section of the barn to the East of the main barn building, highlighted in red on the site layout plan in Appendix A. We have not carried out a full inspection of the remaining sections of the barn building, however a cursory review of the buildings overall condition and stability was undertaken.

This report is required in respect of a planning application for change of use of the existing barn into residential accommodation.

The barn has a North West to South East orientation with the front elevation facing approximately due South West.

4.0 DESCRIPTION

At the time of our inspection the conversion of the Eastern section of the barn was partially complete. The building was water tight with a new floor and roof coverings installed – see general pictures in Appendix C.

This section of the barn is rectangular in plan and appears to have been built as an extension to the original double height central barn at some time in the past. We are informed by the client that this area was previously used as a hay store.

The external walls are formed in natural stone with stone quoins to the external corners.

The windows and doors have natural stone heads and cills. Some of which have been replaced with new during the conversion work. New UPVC windows and doors have been installed to the openings.

There are clay vent pipes at verge level of the East gable elevation.

The windows and door openings have stone lintels to the outer leaf with timber lintels to the inner leaf. Some of the internal timber lintels have been replaced with concrete lintels which could be seen at the time of our inspection.

There is a single door opening to the front elevation, with various window openings in the side and rear elevations.

The barn has a duo pitch roof clad in stone roof tiles. There are 3 purlins per slope and a ridge board to the apex of the roof. The purlins span the full width of the building. We were informed by the client that he has installed a new ventilated warm roof construction.

The first floor is of timber construction. The existing 175 x 75 joists span from the front to the back of the building supported at mid span by a newly installed 203x133 steel beam.

See floor plans in Appendix B, for further details of the internal layout.

The ground floor consists of a new slab on solid construction. A visqueen barrier has been installed onto hardcore and lapped approximately 1m up the face of the existing barn walls. Above this is a 100mm concrete slab with insulation and a floating floor finish.

5.0 STRUCTURAL APPRAISAL

5.1 External Walls

The external walls to all elevations have satisfactory vertical alignment and there are no visual signs to indicate any recent movement of the foundations.

We note that the walls have been recently re-pointed as part of the conversion works.

We note that some of the stone heads and jambs have been replaced with new.

See photographs in Appendix C for general views of the external walls.

5.2 Internal Walls

The internal walls have been lined with a new non-load bearing timber stud. Although close inspection was limited due to the internal stud lining the walls appeared to have satisfactory vertical alignment.

Some of the internal timber lintels have been replaced with new concrete lintels. The newly installed concrete lintels appear to be adequately sized for the load requirements.

5.3 First Floor Construction

The existing 75 x 175 floor joists have been retained and are supported at mid span with a new 203x133 UB steel beam.

Design checks carried out on the joists and steel beams confirm that they are adequate for the proposed use. Refer to calculations in Appendix D.

5.4 Roof Construction

The existing oak purlins have been retained and treated. Design checks carried out on the purlins confirm that they are adequate for their current use. Refer to calculations in Appendix D.

We were informed by the owner of the building that the existing roof was taken off and new battens, felt and insulation has been installed as part of the conversion work. The roof when viewed externally from ground level had satisfactory horizontal alignment and appeared to be in satisfactory structural condition.

5.5 **Overall Stability**

The stability of the Eastern section of the barn is obtained by the diaphragm action of the floors and roof in conjunction with the perimeter load bearing masonry walls. Should the remaining unconverted area of barn be left to deteriorate we are satisfied that the East converted section will remain stable and structurally sound.

Similarly, as the Eastern section of the barn appears to be an extension to the original building, we are satisfied that the proposed works to this section of the barn do not have any structural implications on the barn as a whole.

6.0 DISCUSSION AND RECOMMENDATIONS

The existing structural elements of the barn: walls, roof and floor, appear to be in sound structural condition with no visual signs to indicate any recent movement of the foundations or other structural defects.

We have carried out design check calculations on the roof purlins, floor joists and floor support beam. The calculations confirm that these elements of the building are adequate for the proposed use.

We see no reason why the existing barn should not continue to be converted and used for residential accommodation.

S. J. Beswick BSc (Hons) & **D. J. Ormes** C.Eng MI.Struct.E Partington & Associates Limited 13 Gillibrand Street Chorley PR7 2EJ

Telephone: 01257 249882

Appendix A

Sk01 –Site Layout Plan

Site Layout Plan (Not to scale)

Area surveyed outlined in red

Appendix B

Sk02 – Floor Plans

First Floor Plan (Not to Scale)

Appendix C

Photographs

Front Elevation

Side Elevation (East)

Rear Elevation

Rear Elevation

Party Wall Viewed from within main barn building

New 203x133 beam supporting existing floor joists

Existing Purlins & Ridge Member

Appendix D

Calculations

	Project				Job Ref.		
	Parker Place Farm, Wiswell				4509-21		
	Section	Sheet no./rev.					
	Existing Floor Joist Design Check				1		
d Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	SB	16/03/21	DT	16/03/21	DO	16/03/21	

EXISTING FLOOR JOIST – DESIGN CHECK

TIMBER JOIST DESIGN (BS5268-2:2002)

b = 75 mm
h = 175 mm
s = 600 mm
C24
1

Span details

		Project				Job Ref.		
			Parker Place	Farm, Wiswell	4509-21			
	<u>ing</u>				Sheet no./rev.			
			Existing Floor J	loist Design Che	eck		2	
	d Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date	
		SB	16/03/21	DT	16/03/21	DO	16/03/21	
	Imposed UDL(Long term);		Fi_udl = 1.50 kN	l/m²				
	Imposed point load (Medium term);		Fi_pt = 1.40 kN					
	Modification factors							
	Service class for bending parallel to	grain	K _{2m} = 1.00					
	Service class for compression		K _{2c} = 1.00					
	Service class for shear parallel to gr	ain	K _{2s} = 1.00					
	Service class for modulus of elasticity	ty	K _{2e} = 1.00					
	Section depth factor;		K7 = 1.06					
	Load sharing factor;		K ₈ = 1.10					
	Consider long term loads							
	Load duration factor:		K3 = 1.00					
	Maximum bending moment:		M = 2.430 kNn	n				
	Maximum shear force:		V = 2.430 kN	-				
	Maximum support reaction:		R = 2.430 kN					
	Maximum deflection:		δ = 11.525 mm	ı				
	Check bonding stross							
	Check bending stress		7 500 11/2	2				
	Bending stress;		$\sigma_{\rm m} = 7.300 \rm N/m$	nm-	0.754.01/20.25)		
	Permissible bending stress;	$\sigma_{m_{adm}} = \sigma_{m} \times h$	$\chi_{2m} \times \kappa_3 \times \kappa_7 \times$	K ₈ = 8.754 N/mm ²				
	Applied bending stress;		$\sigma_{m_{max}} = M / Z = 6.348 \text{ N/mm}^2$					
				PASS - Applie	ed bending stres	s within perm	issible limits	
	Check shear stress							
	Shear stress;		τ = 0.710 N/mr	m²				
	Permissible shear stress;		$\tau_{adm} = \tau \times K_{2s} \times$	$K_3 \times K_8 = 0.78$	1 N/mm²			
	Applied shear stress;		$\tau_{max} = 3 \times V / (2 \times b \times h) = 0.278 \text{ N/mm}^2$					
			PASS - Applied shear stress within permissible limits					
	Check bearing stress							
	Compression perpendicular to grain	(no wane);	σ _{cp1} = 2.400 N/	/mm²				
	Permissible bearing stress:		σ_{c} adm = $\sigma_{cp1} \times$	$K_{2c} \times K_3 \times K_8 =$	2.640 N/mm ²			
	Applied bearing stress:		$\sigma_{c,max} = R / (b)$	× L _b) = 0.324 N	/mm ²			
	,			PASS - Appli	ed bearing stres	s within perm	issible limits	
	Charle deflection					·		
			S : 4	0.000.44				
			$\delta_{adm} = min(L_{s1})$	× 0.003, 14 mm) = 12.000 mm			
	Bending deflection (based on Emean)		δbending = 11.19	6 mm				
	Shear deflection;		δ _{shear} = 0.329 n	nm				
	Total deflection;		$\delta = \delta_{\text{bending}} + \delta_{\text{s}}$	hear = 11.525 mi	m			
				PASS -	Actual deflection	า within perm	issible limits	
	Consider medium term loads							
	Load duration factor;		K ₃ = 1.25					
	Maximum bending moment;		M = 2.030 kNn	n				
	Maximum shear force;		V = 2.030 kN					
	Maximum support reaction;		R = 2.030 kN					

Parker Place Farm, Wiswell 4509-21 Section Sheet no./rev. Existing Floor Joist Design Check 3 Calc. by Date		Project				Job Ref.	
Section Sheet no./rev. Existing Floor Joist Design Check 3 Calc. by Date App'd by Date	g	Parker Place Farm, Wiswell				4509-21	
Existing Floor Joist Design Check 3 Calc by Date Chk'd by Date Appid by Date		Section	Sheet no./rev.				
Calc by Date Chk'd by Date App'd by Date			Existing Floor Joist Design Check			3	
	L Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date
SB 16/03/21 DT 16/03/21 DO 16/03/21		SB	16/03/21	DT	16/03/21	DO	16/03/21

Maximum deflection;	δ = 8.338 mm
Check bending stress	
Bending stress;	σ _m = 7.500 N/mm ²
Permissible bending stress;	$\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = \textbf{10.942} \text{ N/mm}^2$
Applied bending stress;	$\sigma_{m_max} = M / Z = 5.303 N/mm^2$
	PASS - Applied bending stress within permissible limits
Check shear stress	
Shear stress;	τ = 0.710 N/mm ²
Permissible shear stress;	$\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 0.976 \text{ N/mm}^2$
Applied shear stress;	$\tau_{max} = 3 \times V / (2 \times b \times h) = 0.232 \text{ N/mm}^2$
	PASS - Applied shear stress within permissible limits
Check bearing stress	
Compression perpendicular to grain (no wane);	σ _{cp1} = 2.400 N/mm ²
Permissible bearing stress;	$\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = \textbf{3.300} \text{ N/mm}^2$
Applied bearing stress;	$\sigma_{c_max} = R / (b \times L_b) = 0.271 \text{ N/mm}^2$
	PASS - Applied bearing stress within permissible limits
Check deflection	
Permissible deflection;	$\delta_{adm} = min(L_{s1} \times 0.003, 14 \text{ mm}) = 12.000 \text{ mm}$
Bending deflection (based on E _{mean});	δ _{bending} = 8.063 mm
Shear deflection;	δ _{shear} = 0.275 mm
Total deflection;	$\delta = \delta_{\text{bending}} + \delta_{\text{shear}} = 8.338 \text{ mm}$
	PASS - Actual deflection within permissible limits

;

	Project				Job Ref.	
g	Parker Place Farm, Wiswell				4509-21	
ů,	Section				Sheet no./rev.	
	Existing Purlin – Design Check			1		
L Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date
	SB	16/03/2021	DT	16/03/2021	DO	16/03/2021

EXISTING PURLIN – DESIGN CHECK

Beam loads

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.7.02 Load Envelope - Combination 1 3.334-0.0 mm L 4600 1 Ā 1 Bending Moment Envelope kNm 0.0-8.818-8.8 4600 mm 1 Ā Shear Force Envelope kΝ 7.7 7.668-0.0--7.668--7.7 4600 mm [Ā 1 **Applied loading** Dead full UDL 2.150 kN/m Imposed full UDL 0.980 kN/m Dead self weight of beam \times 1

Load combinations		
Load combination 1	Support A	$Dead \times 1.00$
		Imposed \times 1.00
	Span 1	$\text{Dead} \times 1.00$
		Imposed \times 1.00
	Support B	$\text{Dead} \times 1.00$
		Imposed \times 1.00

5	Project				Job Ref.	
a de la companya de		Parker Place	Farm, Wiswell		4509-21	
Associates	Section	Sheet no./rev.				
	Existing Purlin – Design Check			2		
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	SB	16/03/2021	DT	16/03/2021	DO	16/03/2021

Analysis results		
Maximum moment;	M _{max} = 8.818 kNm;	M _{min} = 0.000 kNm
Design moment;	$M = max(abs(M_{max}), abs(M_{min})) =$	8.818 kNm
Maximum shear;	F _{max} = 7.668 kN;	F _{min} = -7.668 kN
Design shear;	$F = max(abs(F_{max}), abs(F_{min})) = 7$.668 kN
Total load on beam;	W _{tot} = 15.336 kN	
Reactions at support A;	R _{A_max} = 7.668 kN;	R _{A_min} = 7.668 kN
Unfactored dead load reaction at support A;	R _{A_Dead} = 5.414 kN	
Unfactored imposed load reaction at support A;	RA_Imposed = 2.254 kN	
Reactions at support B;	R _{B_max} = 7.668 kN;	R _{B_min} = 7.668 kN
Unfactored dead load reaction at support B;	R _{B_Dead} = 5.414 kN	
Unfactored imposed load reaction at support B;	R _{B_Imposed} = 2.254 kN	
	• 100 ←	
Timber section details		
Breadth of sections;	b = 100 mm	
Depth of sections;	h = 325 mm	
Number of sections in member;	N = 1	
Overall breadth of member;	$b_b = N \times b = 100 \text{ mm}$	
Timber strength class;	D30	
Member details		
Service class of timber;	1	
Load duration;	Long term	
Length of span;	L _{s1} = 4600 mm	
Length of bearing;	L _b = 100 mm	
Section properties		
Cross sectional area of member;	$A = N \times b \times h = 32500 \text{ mm}^2$	
Section modulus;	$Z_x = N \times b \times h^2 / 6 = 1760417 \text{ mm}$	n ³
	$Z_y = h \times (N \times b)^2 / 6 = 541667 \text{ mm}$	n ³
Second moment of area;	$I_x = N \times b \times h^3 / 12 = 286067708$	mm ⁴
	$I_y = h \times (N \times b)^3 / 12 = 27083333$	mm ⁴
Radius of gyration;	i _x = √(I _x / A) = 93.8 mm	
	i _y = √(I _y / A) = 28.9 mm	
Modification factors	••••••	
Duration of loading - Table 17 [°]	K ₂ = 1.00	
Bearing stress - Table 18:	$K_4 = 1.00$	
Total depth of member - cl.2.10.6	$K_7 = 0.81 \times (h^2 + 92300 \text{ mm}^2) / (h^2 + 92300 \text{ mm}^2)$	$n^2 + 56800 \text{ mm}^2) = 0.99$
		· · · · · · · · · · · · · · · · · · ·

	Project				Job Ref.	
<u>ē</u>	Parker Place	e Farm, Wiswe		4509-21		
	Section				Sheet no./rev.	
		Existing Purlir	n – Design Che	eck		3
Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date
	SB	16/03/2021	DT	16/03/2021	DO	16/03/2021
						·
_oad sharing - cl.2.9;		$K_8 = 1.00$				
Lateral support - cl.2.10.8						
Ends held in position and mem	bers held in line, a	s by purlins or tie	rods at centres	s not more than 30	times the bre	eadth of the
	·	(00				
Permissible depth-to-breadth ra	atio - Table 19;	4.00	05			
Actual depth-to-breadth ratio;		$h / (N \times b) = 3.$	25	B400		
				PASS - L	ateral suppo	ort is adequate
Compression perpendicular	to grain					
Permissible bearing stress (no	wane);	$\sigma_{c_adm} = \sigma_{cp1} \times$	$K_3 \times K_4 \times K_8 =$	2.800 N/mm ²		
Applied bearing stress;		$\sigma_{c_a} = R_{B_{max}} /$	$(N \times b \times L_b) = 0$	0.767 N/mm ²		
		$\sigma_{c_a} / \sigma_{c_{adm}} =$	0.274			
I	PASS - Applied co	ompressive stres	s is less than	permissible com	pressive str	ress at bearing
Bending parallel to grain						
Permissible bending stress;		$\sigma_{m_{adm}} = \sigma_{m} \times I$	$K_3 \times K_7 \times K_8 = 1$	8.883 N/mm ²		
Applied bending stress;	σ _{m_a} = M / Z _x = 5.009 N/mm ²					
		σm_a / σm_adm =	0.564			
		PASS - Applie	d bending str	ess is less than p	ermissible l	bending stress
Shear parallel to grain						
Permissible shear stress;		$ au_{adm} = au imes K_3 imes$	K ₈ = 1.400 N/r	nm²		
Applied shear stress;		$\tau_a = 3 \times F / (2 \times T)$	< A) = 0.354 N	/mm²		
		$\tau_{a} / \tau_{adm} = 0.253$				
		PASS - A	pplied shear	stress is less tha	n permissibi	le shear stress
Deflection					•	
Modulus of elasticity for deflect	ion:	E = Emin = 600	0 N/mm ²			
Permissible deflection:	ion,	$\delta_{\text{adm}} = \min(0.5)$	51 in 0.003 × I	c1) = 13 800 mm		
Rending deflection:		$\delta_{\rm b} = 11.324$	mm			
Shear deflection:		$\delta_{V,s1} = 0.868 \text{ m}$	nm			
Total deflection:		$\delta_{2} = \delta_{2} + \delta_{2}$	 ⊴ = 12 193 mn	n		
		$\delta_2 / \delta_{2dm} = 0.88$	4			
		0a / 0aum – 0.00	ASS - Total d	eflection is less t	han nermiss	ible deflection
					nan permiss	

	Project				Job Ref.		
a la	Parker Place Farm, Wiswell				4509-21		
	Section				Sheet no./rev.		
	Steel Beam Design Check			1			
L Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	SB	16/03/2021	DT	16/03/2021	DO	16/03/2021	

203 X 133 UB BEAM - DESIGN CHECK

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

	Project		Job Ref.				
e de la companya de l		Parker Place F	4509-21				
i i i i i i i i i i i i i i i i i i i	Section		Sheet no./rev.				
		Steel Beam	Design Check		2		
A Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	SB	16/03/2021	DT	16/03/2021	DO	16/03/2021	
				Imposed \times 1	.60		
				Dead × 1.40			
				Imposed × 1.60			
	Support B			$Dead \times 1.40$			
				Imposed \times 1	.60		
Analysis results							
Maximum moment:		M 33 kNm		Masa – 0 kNin	0		
Maximum shear:		$V_{max} = 28.7 \text{ kN}$					
		$v_{max} = 20.7 \text{ km},$		$v_{\text{min}} = -20.7 \text{ Kin}$			
Maximum reaction at support A:		$D_{\text{max}} = 3.0$ min,	NI-	$O_{min} = 0$ min			
Maximum reaction at support A,	pport A:	$R_{A_{max}} = 20.7 K$.IN, N	KA_min = 20.	KIN		
	ppon A,	$R_{A}_{Dead} = 4.7 RI$	N O LNI				
Maximum reaction at support B:	support A,	$RA_{Imposed} = 13.$		D			
Maximum reaction at support B;		$R_{B_{max}} = 28.7 \text{ kN};$		RB_min = 20.1	KIN		
	pport B.	$R_{B}_{Dead} = 4.7 R_{I}$	N O LNI				
offiactored imposed load reaction at	Support B,	RB_Imposed = 13.	OKIN				
Section details							
Section type;		UB 203x133x25 (BS4-1)					
Steel grade;		S275					
From table 9: Design strength py		— , —					
I hickness of element;		max(1, t) = 7.8	mm				
Design strength;		$p_y = 275 \text{ N/mm}^2$					
Modulus of elasticity;		E = 205000 N/r	mm²				
	[↑						
	<u> 13.2</u> —	-	− 5.7				
	50						
	2.8						
	\downarrow $\stackrel{\downarrow}{=}$						
	т		• •				
		4 135	2				
Lateral restraint							
		Span 1 has full	lateral restraint				
Effective length factors							
Effective length factor in major axis:		K _v – 1 00					
Effective length factor in minor axis:		$K_{\rm H} = 1.00$					
Effective length factor for lateral terr	ional huckling.	$x_y = 1.00$	2 v D				
	nonai buckiing,	$N_{LT,R} = 1.20, +2$	2 × D 2 × D				
		$r_{LT,B} = 1.20; + 2$	2 × U				

	Project		Job Ref.						
- A - A - A - A - A - A - A - A - A - A		Parker Place F	4509-21						
	Section		Sheet no./rev.						
		Steel Beam	K	3					
L Associates	Calc. by	Date	Chk'd by	Date	App'd by	Date			
	SB	16/03/2021	DT	16/03/2021	DO	16/03/2021			
Classification of cross section	is - Section 3.5	a – 1/275 N/mm	$n^2/n^2 = 1 - 1 - 00$						
		$\varepsilon = \sqrt{275} \sqrt{10}$	i= / p _y] = 1.00						
Internal compression parts - T	able 11	470.4							
Depth of section;		d = 1/2.4 mm	d = 172.4 mm						
		$d/t = 30.2 \times \varepsilon$	<= 80 × ε;	Class 1 plas	Stic				
Outstand flanges - Table 11									
Width of section;	Width of section;		b = B / 2 = 66.6 mm						
		b / T = 8.5 $ imes$ ε <	:= 9 × ε;	Class 1 plas	stic				
					Section is	class 1 plastic			
Shear capacity - Section 4.2.3									
Design shear force;	Design shear force;		$F_v = max(abs(V_{max}), abs(V_{min})) = 28.7 \text{ kN}$						
		$d/t < 70 \times \varepsilon$							
			Web does	s not need to be c	hecked for	shear buckling			
Shear area;		$A_v = t \times D = 11$	58 mm²						
Design shear resistance;		$P_v = 0.6 \times p_y \times A_v = 191.1 \text{ kN}$							
		PAS	SS - Design s	hear resistance e	xceeds desi	gn shear force			
Moment capacity - Section 4.2	.5								
Design bending moment;		$M = max(abs(M_{s1_max}), abs(M_{s1_min})) = 33 \text{ kNm}$							
Moment capacity low shear - cl.4	Moment capacity low shear - cl.4.2.5.2;		$M_{c} = min(p_{y} \times S_{xx}, 1.2 \times p_{y} \times Z_{xx}) = 70.9 \text{ kNm}$						
		PA	SS - Momen	t capacity exceed	ls design be	nding momen			
Check vertical deflection - Sec	tion 2.5.2								
Consider deflection due to dead	and imposed loa	lds							
Limiting deflection;		$\delta_{lim} = L_{s1} / 360 =$	= 12.778 mm						
Maximum deflection span 1;		$\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 9.778 \text{ mm}$							
		PASS - Maximum deflection does not exceed deflection limit							
:									
,									