

Haweswater Aqueduct Resilience Programme Proposed Marl Hill Section, Volume 6, Proposed Ribble Crossing Aquatic Ecology Baseline Technical Appendix 9B.1 RVBC-MH-RC-TA-009-02-001

ED13654 | Issue number 1 | Date 30/03/21

Customer:

United Utilities

Customer reference:

3500183975

Contact:

Anne Fairhead Ricardo Energy & Environment Bright Building, First Floor Manchester Science Park Manchester, M15 6GZ United Kingdom

T: +44 (0) 1235 753 488 E: anne.fairhead@ricardo.com

Confidentiality, copyright and reproduction:

This report is the Copyright of United Utilities and has been prepared by Ricardo Energy & Environment, a trading name of Ricardo-AEA Ltd under contract dated 29/04/2020. The contents of this report may not be reproduced, in whole or in part, nor passed to any organisation or person without the specific prior written permission of United Utilities. Ricardo Energy & Environment accepts no liability whatsoever to any third party for any loss or damage arising from any interpretation or use of the information contained in this report, or reliance on any views expressed therein, other than the liability that is agreed in the said contract.

Author(s):

Tom Priestley, Ryan Hale, Martin Ferreira

Approved by:

Anne Fairhead

Date:

30 March 2021

Ref: ED13654

Ricardo is certified to ISO9001, ISO14001, ISO27001 and ISO45001

Table of Contents

1 Introdu	ction	1
2 Method	lology	1
2.1	Desk study	.1
2.2	Watercourse walkover surveys	.2
2.3	White clawed-crayfish surveys	.2
2.3.1	Weather conditions and survey dates	.3
2.4	Study Limitations	.3
3 Baselir	e Conditions	4
3.1	Water Framework Directive (WFD) communities and status	.4
3.1.1	Macrophytes and Phytobenthos	.4
3.1.2	Macroinvertebrates	.5
3.1.3	Freshwater fish	.6
3.2	Protected and notable species	10
3.2.1	White clawed crayfish	10
3.3	Invasive species	12
4 Summa	ary1	3
4.1	Baseline Summary	13
Annexes		5

Annex 1: Walkover survey results

1 Introduction

This report is a technical appendix to Chapter 9B Aquatic Ecology of the HARP Proposed Ribble Crossing Environmental Statement. The purpose of the report is to identify within the Proposed Ribble Crossing study area the presence of designated sites, the baseline condition of the aquatic ecology communities which inform the Water Framework Directive (WFD) status of the watercourses in the study area, and the presence of protected or notable species to inform the Ecological Impact Assessment (EcIA) and the associated mitigation strategy presented in Chapter 9B Aquatic Ecology.

This report presents baseline ecological data collated from a desk study of existing ecological data, walkover surveys, and white clawed crayfish surveys of watercourses within the Proposed Ribble Crossing Section study area.

2 Methodology

2.1 Desk study

The MAGIC website mapping tool was used to help identify any statutory or non-statutory designated sites for freshwater fish, macrophyte and aquatic macroinvertebrate species within the Proposed Ribble Crossing Section study area.

In addition, ecological datasets for the period 2010 – 2020 were obtained via the Environment Agency Ecology and Fish Data Explorer website¹, this data included:

- National Fish Populations Database (NFPD): Freshwater Fish Counts for all Species for all Areas and all years. NFPD consists of information collected from fisheries monitoring work on rivers and lakes. This monitoring work is undertaken by the Environment Agency.
- Data for freshwater and marine biological surveys for macroinvertebrates, diatoms and macrophytes in England. The Environment Agency undertakes freshwater and marine biological monitoring in England. Freshwater and Marine Biological Surveys England is a large dataset containing taxonomic level species data for biological surveys carried out in freshwater and marine environments. This archive is more commonly known as BIOSYS.

These data were analysed in order to

- Identify important migratory pathways for diadromous fish species;
- Identify important spawning and nursery habitat for protected and notable species;
- Identify the location of protected and notable macrophyte and macroinvertebrate species in relation to the proposed development; and
- Identify important habitats that support key macrophyte and macroinvertebrate communities.

Several macrophyte species are known to be good indicators of water chemistry, habitat disturbance and seasonal changes in flow and have been used as a biological method to assess the trophic status of rivers and streams in the UK, including the impact of eutrophication and flow. They were selected for this method because:

- their species composition can change with increased nutrient concentrations;
- the changes in macrophyte community can be highly visible and may be deemed 'undesirable';
- most species recorded for the surveys are readily identifiable with the naked eye; and
- the rooted nature of many species means that any absence or presence of species is significant.

The UKTAG Fisheries Classification Scheme 2 (FCS2)² is used to assess the status of fish fauna (the WFD 'Fish' element) in rivers in England and Wales. Electric fishing data is inputted into a model which compares this observed data with the predicted fish assemblage for the river type given site location and four environmental variables (altitude, distance to tidal limit, mean wetted width and survey area). The site is then classified based on how the site performs against the predicted fish assemblage.

http://www.wfduk.org/sites/default/files/Media/Characterisation%20of%20the%20water%20environment/Biological%20Method%20Statements/river%20fish.pdf

¹ Environment Agency Ecology and Fish Data Explorer website <u>https://environment.data.gov.uk/ecology-fish/</u>. Accessed 17 April 2020 ² Available from:

Records of white clawed crayfish (*Austropotamobius pallipes*) supplied by the Cumbria Biodiversity Data Centre (CBDC) and Lancashire Environmental Records Network (LERN) were reviewed for within 2 km of the proposed scheme.

2.2 Watercourse walkover surveys

Walk-over habitat surveys were undertaken in February 2021 for watercourses within 500m of the Proposed Ribble Crossing which contain an access track, bridge, and lay down area.

The walk-over habitat survey methodology was based on the Environment Agency's 'Restoration of Riverine Salmon Habitats' guidance manual³. The 'Hendry & Cragg-Hine' method was developed to be used to inform habitat restoration, fish survey site selection, and fish population studies.

The main objective walk-over survey was to obtain a detailed representation of the location, extent, and condition of habitat features along and surrounding a watercourse. This was done by walking the riverbank of the selected survey stretch and entering the river when necessary. The habitats and features were mapped using Esri ARC GIS and are presented in **Annex 1** to this appendix. The habitats and features recorded during the walk-over surveys included:

- Flow type
- Water depth
- Flow velocity (estimate of surface velocity)
- Substrate composition
- Species specific habitats
- Obstructions
- Macrophytes estimated percentage cover for:
 - submerged macrophytes
 - emergent macrophytes
 - filamentous algae
 - Macrophyte choked channel
- Other features:
 - Coarse woody material
 - Debris dam
 - Bankside roots (target note)
 - Undercut bank (line along bank)
 - Overhanging terrestrial vegetation
 - Shading.

Incidental findings were also recorded during the walk-over surveys including Invasive Non-native Species (INNS), pollution sources, field boundaries, land use, and bank modifications.

2.3 White clawed-crayfish surveys

In order to establish if white-clawed crayfish (*Austropotamobius pallipes*) could be present in waterbodies within the zone of influence surveys were undertaken in 2020.

Due to the timing of the surveys (during winter outside of the required survey period) surveys for white clawed crayfish were restricted to habitat suitability surveys. Where required instream habitat was assessed for its suitability to support white-clawed crayfish. The suitability of the habitat for white-clawed crayfish was assessed using the following criteria:

- Abundance and distribution of submerged refuges;
- Evidence of poor water quality i.e. sewage fungus;

³ Hendry & Cragg-Hine (1997) http://www.apemltd.co.uk/wp-content/uploads/2016/08/Restoration-of-Riverine-Salmon-Habitats-A-Guidance-Manual.pdf

Proposed Ribble Crossing– Appendix 9B.1 Aquatic Ecology Baseline Ref: ED13654 | Final Report | Issue number 1 | 30/03/21

- River flow velocity;
- Quantities of fine sediment;
- Abundance of potential food sources i.e. macroinvertebrates; and
- Evidence of invasive non-native crayfish species.Water courses with suitable habitat to support white clawed crayfish were subject to surveys to determine presence/likely absence in 2020 by Ricardo Energy & Environment. The results of the white clawed crayfish surveys are presented in Section 3.2.

Water courses surveyed for white clawed crayfish habitat suitability in February 2021 for the Proposed Ribble Crossing included:

- River Ribble
- Greg Sike
- Waddington Brook

2.3.1 Weather conditions and survey dates

The weather conditions and survey dates for the white clawed crayfish habitat suitability surveys are shown below in **Table 2.1**.

Table 2.1: Surveys dates and weather conditions for white clawed crayfish

Survey Date	Weather conditions
01/02/2021	Surveys were undertaken during dry weather with no constraints due to weather conditions

2.4 Study Limitations

The absence of desk study records cannot be relied upon to infer absence of a species/habitat. Often, the absence of records is a result of under-recording within the given search area.

Due to the timing of the surveys in winter 2021 it was not possible to undertake presence/absence surveys for white clawed crayfish to inform the ecological impact assessment.

3 Baseline Conditions

3.1 Water Framework Directive (WFD) communities and status

3.1.1 Macrophytes and Phytobenthos

3.1.1.1 Macrophytes

Available Environment Agency macrophyte monitoring data (2010-2020) have been reviewed for the relevant reaches of the Ribble Downstream Stock Beck (GB112071065612) WFD waterbody was classified as 'Good' for combined macrophytes and diatoms in 2019, Cycle 2.

Table 3.1: Details of Macrophyte monitoring sites: Ribble Downstream Stock Beck

Monitoring site	NGR	Number of surveys	Survey period	WFD Waterbody
Ribble Downstream Stock Beck				
River Ribble - 92333	SD7220040300	2	2010 – 2013	
River Ribble - 92334	SD7260040000	2	2010 – 2013	
River Ribble - 92335	SD7150038400	3	2010 – 2014	GB112071065612
River Ribble at West Bradford Road - 159587	SD7448443950	2	2013 – 2014	

The biological indices for the macrophyte communities identified at the four monitoring sites in the waterbody Ribble Downstream Stock Beck are summarised in **Table 3.2**.

The average RMHI of 6.58 indicates that the communities present in the waterbody have a preference for faster flowing conditions, and the RMNI of 6.85 is indicative of macrophyte communities which are subject to a slight degree of nutrient enrichment

NTAXA was low, but above the minimum of three required for LEAFPACS2 methodology⁴. The number of functional groups, ranging from 6 to 11 taxa indicate the presence of low to moderately diverse macrophyte communities. The percentage cover of filamentous algae was highly variable with a range from 3.85% to 87.55% cover, showing that nutrient enrichment is variable between years and seasons with the highest percentage cover recorded in June 2013.

	-				
	RMHI	RMNI	Number of TAXA (RMNI)	Number of river macrophyte functional groups	percentage cover of Filamentous algae
Mean	6.58	6.85	8.33	5.67	46.29
Min	6.29	6.1	6	5	3.85
Max	6.95	7.29	11	7	87.55

Table 3.2: Biological indices for macrophyte sites in Ribble Downstream Stock Beck

3.1.1.2 Diatoms

Available Environment Agency diatom monitoring data (2010-2020) have been reviewed for the relevant reaches of the Ribble Downstream Stock Beck (GB112071065612) WFD waterbody was classified as 'Good' for combined macrophytes and diatoms in 2019, Cycle 2. The location of the diatom monitoring sites in the relevant WFD waterbodies are shown in **Table 3.3**.

⁴ WFD-UKTAG (2014) River Assessment Method Macrophytes and Phytobenthos. Macrophytes (River LEAFPACS2).

Table 3.3: Details of Diatom monitoring sites: Ribble Downstream Stock Beck

Monitoring site	NGR	Number of surveys	Survey period	WFD Waterbody
Ribble Downstream Stock Beck				
River Ribble - 92333	SD7220040300	2	2014 – 2014	
River Ribble - 92334	SD7260040000	2	2011 – 2013	00440074005040
River Ribble - 92335	SD7150038400	2	2011 – 2013	GB112071065612
River Ribble - 66106	SD7261741439	2	2011 – 2013	

The assessment of diatoms (phytobenthos) in rivers according to the requirements of the WFD is completed using a tool called DARLEQ2 (Diatoms for Assessing River and Lake Ecological Quality), based on a metric called the Trophic Diatom Index (TDI). The TDI describes the nutrient preferences of a diatom community. It ranges from 1 (preference for extremely low nutrient levels) to 100 (preference for extremely high nutrient levels). The TDI4 scores were used by the Environment Agency in the assessment of WFD status of the Cycle 2 assessments.

Percentage Motile Taxa data are also provided which gives the relative proportions of phytobenthos taxa within the community that are motile. A high proportion of motile taxa (>50%) can indicate that light availability is influencing the community, which can be brought about by pressures such as siltation and high covers of filamentous algae. The available baseline TDI scores for the sites associated with the Ribble Downstream Stock Beck waterbody (**Table 3.4**) are indicative of moderate to high nutrient conditions, while the moderate percentage motile taxa are indicative of siltation and disturbed waters.

Table 3.4: Biological indices for diatom sites in Ribble Downstream Stock Beck

	TDI Score	Motile %
Mean	63.16	32.56
Min	57.15	24.01
Мах	67.11	57.23

3.1.2 Macroinvertebrates

Available Environment Agency diatom monitoring data (2010-2020) have been reviewed for the relevant reaches of the Ribble Downstream Stock Beck (GB112071065612) WFD waterbody was classified as 'High' for macroinvertebrates in 2019, Cycle 2.

 Table 3.5 Details of macroinvertebrate monitoring in Ribble Downstream Stock Beck

Monitoring site	NGR	Number of surveys	Survey period	WFD Waterbody
Ribble - 66106	SD7261741439	4	2013 - 2014	GB112071065612

Over 180 invertebrate taxa have been recorded from the monitoring site on the Hodder - conf Easington Bk to conf Ribble.

The Whalley Hawkes Paisley Trigg (WHPT) metric is primarily used to monitor the impact of organic enrichment, but also responds to toxic pollution, siltation, habitat reduction and reduced flows. High WHPT scores are associated with good water quality and high habitat quality. The WHPT scores for sites in the Ribble Downstream Stock Beck waterbody were very high on all sampling occasions ranging from 181.2 to 217.7 with an average of 203.83 (see **Table 3.6**). The WHPT_{ASPT} provides an indication of the tolerance of macroinvertebrates to pollution or adverse water quality. The WHPT_{ASPT} scores for the Ribble Downstream Stock Beck waterbody ranged from 6.25 to 7.02 with an average of 6.53. The WHPT and WHPT_{ASPT} data indicate that, in general, the

macroinvertebrate community supported by the River Ribble (Downstream Stock Beck) are associate with representative of good to very good water quality with a high proportion of pollution sensitive taxa present. The macroinvertebrate community is considered to be highly sensitive to reductions in water quality from pollution and reductions in dissolved oxygen.

WHPT_{NTAXA} is a species richness index. It is simply the number of scoring taxa (families) that contributed to the WHPT score. Habitat-rich rivers, such as lowland chalk streams will often have WHPT_{NTAXA} scores exceeding 30. Upland systems with restricted habitats tend to have lower values. River reaches with impoverished habitat quality; siltation issues or reduced water quality will typically have reduced WHPT_{NTAXA} scores compared with less impacted reaches in similar river types. The WHPT_{NTAXA} from the Ribble Downstream Stock Beck ranged from 28 to 33 with an average of 31.25. showing the waterbody supports a highly adverse macroinvertebrate community.

The Lotic-invertebrate Index for Flow Evaluation (LIFE) was developed as a means of assessing flow as a stressor of the macroinvertebrate community of flowing watercourses. Individual species and family groups are assigned to a flow group depending on their documented flow preferences (current velocity) ranging from I (Rapid) to VI (Drought Resistant). Species LIFE (S) provides a more precise measure than Family LIFE (F) as a number of aquatic invertebrate families contain species with wide-ranging flow requirements however this is not always calculated or available from EA monitoring sites. The community LIFE score can be broadly interpreted according to published thresholds, ranging from 6.5 and below (Low sensitivity to reduced flows) to 7.26 and above (high sensitivity to reduced flows). The LIFE scores indicate that the macroinvertebrate community of the River Ribble Downstream Stock Beck water body, ranging from 7.43 to 7.67 are indicative of communities that are associated with high flow velocities and a high sensitivity to reductions in flow velocity.

The Proportion of Sediment-sensitive Invertebrates (PSI) index measures the abundance-weighted proportional frequency of taxa which are sensitive to fine sediment deposition (Extence *et al* 2011). The PSI scores for the sites in the Ribble D Stock Beck, ranging from 67.27 to 76.47, are indicative of 'Slightly sedimented' conditions.

	WHPT ASPT	WHPT	ΝΤΑΧΑ	PSI (Family)	LIFE (Family)
MEAN	6.53	203.83	31.25	70.90	7.55
MIN	6.25	181.2	28	67.27	7.43
MAX	7.02	217.7	33	76.47	7.67

Table 3.6 Macroinvertebrate Indices for monitoring sites in the Ribble Downstream Stock Beck waterbody

3.1.3 Freshwater fish

Available fish data from Environment Agency monitoring sites for the period 2010-2020 were collated for the Ribble Downstream Stock Brook Waterbody. The Ribble Downstream Stock Beck (GB112071065612) was not assessed for th fish component in Cycle 2however the overall biological quality element was classified as 'Good' in 2019.

These waterbodies comprise a mix of salmonid and coarse fish species, including several internationally and/or nationally designated species including Atlantic salmon (*Salmo salar*), brown trout (*Salmo trutta*), bullhead (*Cottus gobio*), and European eel (*Anguilla anguilla*). The D/S Edisford Bridge and West Bradford Bridge Sites also support high numbers of minor species such as minnow (*Phoxinus phoxinus*) and stone loach (Barbatula *barbatula*)

Table 3.7 Details of freshwater fish monitoring sites in the Ribble Downstream Stock Beck

Monitoring site	NGR	Number of surveys	Survey period	WFD Waterbody
D/S Edisford Bridge (35393)	SD7255941339	5	2010 – 2018	
West Bradford Bridge (42583)	SD6987250313	3	2014 – 2018	GB112071065612
Waddow Weir (45721)	SD6902349885	10	2012 – 2012	

Species presence and distribution data from the fish monitoring sites can be used to provide an indicative reachbased classification of community environmental preferences and therefore sensitivity to potential environmental

pressures associated with the proposed development. This is determined using the WFD Fisheries Classification Scheme Version 2 (FCS2). FCS2 uses a range of complex statistical models and geographical data to predict the fish community at any given location under natural conditions. The system then compares this with the actual survey catch at individual sites and provides a score (Ecological Quality Ratio, EQR) that reflects whether or not the two are similar. Scores determine the formal WFD status classification.

The Environment Agency collects data on the fish species and numbers present in the water bodies through a number of mechanisms including electric fishing survey data, fish counter data, fishery catch records and various other observations. Reach sensitivity can broadly be defined by the most sensitive of the fish taxa present (i.e. those with the lowest tolerance of environmental disturbance).

Table 3.6: Environment Agency fish monitoring sites: summary of species distribution from sites in the Ribble Downstream Stock Beck (GB112071065612) Waterbody (species tolerance of environmental disturbance as defined by the Fisheries Classification Scheme (FCS2)⁵

		Low	Tolera	ance	I		1	Medium To	lerance					High	tolera	nce			
Site	Date	Brown / sea trout	Grayling	Bullhead	Atlantic salmon	Lamprey sp. ammocoetes	Brook Lamprey	Minnow	Stone loach	Pike	Gudgeon	Chub	Dace	Tench	European eel	European eels > elvers	Roach	3-spined stickleback	Perch
PDC electric fishing - catch depletion s	-		1				1												
	06/07/2010			100-999	3			10-99	10-99						42				
	22/05/2012	1		10-99				10-99	1-9						8				
D/S Edisford Bridge	18/07/2014	2		10-99	94			10-99	1-9						19				
	06/06/2016	1		10-99	3		1	100-999	10-99						16				
	09/08/2018	3	5	100-999	43			100-999	10-99			18			25				
	24/07/2014	51	1		72			10-99	1-9			2			28				
West Bradford Bridge	06/06/2016	17	1		2			1000-9999	100-999						15				
	09/08/2018	64			16			1000-9999	100-999		1	20			9		1-9		
Fixed trap fishing monitoring data – Si	ngle catch sam	ples	1				1												
	12/04/2012				5														
	13/04/2012				1														
	14/04/2012				5														
Wadow Weir	27/04/2012				1														
	28/04/2012				1														
	11/05/2012				5										0				
	12/05/2012				2										2				

⁵ UKTAG (2008) Rivers Assessment Methods Fish Fauna (Fisheries Classification Scheme 2 (FCS2)) ISBN: 978-1-906934-09-5

	Low Tolerance			Medium Tolerance					High tolerance									
Site Date	Brown / sea trout	Grayling	Bullhead	Atlantic salmon	Lamprey sp. ammocoetes	Brook Lamprey	Minnow	Stone loach	Pike	Gudgeon	Chub	Dace	Tench	European eel	European eels > elvers	Roach	3-spined stickleback	Perch
13/05/2012				3									-					
14/05/2012				1														

3.2 Protected and notable species

3.2.1 White clawed crayfish

3.2.1.1 Desk study

No records of white clawed crayfish were received from LERN for within 2 km of the proposed scheme in the period 2010 to 2020. White clawed crayfish were not present in macroinvertebrate monitoring data recorded at sites in the Ribble Downstream Stock Beck waterbody during the period 2010 to 2020.

3.2.1.2 White clawed crayfish surveys

The results of the surveys of watercourses for white clawed crayfish habitat suitability undertaken in 2021 are summarised in **Table 3.8**.

Three watercourses were surveyed in the Ribble Downstream Stock beck catchment adjacent to the Proposed Ribble Crossing. All three watercourses were identified as having suitable habitats to support white clawed crayfish.

The River Ribble at the proposed crossing point contains suitable habitats to support white clawed crayfish with plenty of suitable refuges present in the form of coarse substrate, boulders, and tree roots. No incidental evidence of crayfish was recorded during the habitat suitability survey and no remains were observed within the otter (*Lutra lutra*) spraint. The River Ribble at the survey location was approximately 35 m and, at the time of survey, the water depth was 30 - 40 cm. The substrate was predominantly coarse comprising boulders, large cobbles, and gravel.

Greg Sike is a small watercourse with a channel width of approximately 1 m, and, at the time of survey, the water depth was *c*. 10 cm, although both of these were variable throughout the surveyed reach. The substrate comprised mostly of cobble, gravel, and sand with boulders in some sections. The downstream end of the surveyed reach comprised finer sediment with a substrate dominated by sand and silt. Greg sike contains suitable habitats for supporting white clawed crayfish in areas with coarse sediments where there are sufficient available refuges. No incidental evidence of white clawed crayfish was identified at Greg sike during the habitat suitability survey.

Waddington Brook (upstream of the Ribble confluence) is a small watercourse with a channel width of approximately 1.25 m, and, at the time of survey, a water depth was of approximately 10 cm, although both of these were variable throughout the survey reach. The watercourse had a coarse substrate predominantly comprising boulder, cobble, gravel, and sand, with some silt at the downstream end of the survey reach. Waddington brook contains suitable habitat for white-clawed crayfish, due to the presence of boulders and large cobbles that can serve as potential refuges. However, sewage fungus was recorded over a large stretch of the reach indicating a water quality issues may be a problem within the watercourse. The potential water quality issues as indicated by the presence of sewage fungus would reduce the likelihood of white-clawed crayfish being present here. No incidental evidence of white clawed crayfish was recorded during the survey and no remains were observed within the otter spraint identified at the watercourse.

Two watercourses present in the updated red line boundary for the Proposed Ribble Crossing were not surveyed for suitability to support white clawed crayfish: Coplow Brook (W2349 and Unnamed Watercourse 2097 (W2348). Both watercourses are small with some modifications including culverts and bridges. However due to the suitability of the other nearby tributaries of the River Ribble using a precautionary approach both watercourses are assumed to contain suitable habitats for white clawed crayfish.

Table 3.8 White clawed crayfish survey results summary

Watercourse name	WFD catchment	Upstream NGR	Downstream NGR	Suitability	Survey results
River Ribble	Ribble Downstream Stock Beck	SD 7448 43947	SD 74020 443440	Suitable habitats present	Large main river with Coase substrate and suitable refuges including boulders and tree roots. No incidental evidence of crayfish was recorded during the habitat suitability survey and no remains were observed within the otter (<i>Lutra lutra</i>) spraint.
Greg Sike	Ribble Downstream Stock Beck	SD 73964 43939	SD 74095 43580	Suitable habitats present	Greg sike contains suitable habitats for supporting white clawed crayfish in areas with coarse sediments where there are sufficient available refuges. The downstream end of the surveyed reach comprised finer sediment with a substrate dominated by sand and silt. No incidental evidence of white clawed crayfish was identified at Greg sike during the habitat suitability survey.
Waddington Brook (Upstream Ribble confluence).	Ribble Downstream Stock Beck	SD 73521 43840	SD 73924 43617	Suitable habitats present	The watercourse had a coarse substrate predominantly comprising boulder, cobble, gravel, and sand, with some silt at the downstream end of the survey reach. Waddington brook contains suitable habitat for white-clawed crayfish, due to the presence of boulders and large cobbles that can serve as potential refuges. However, sewage fungus was recorded over a large stretch of the reach indicating a water quality issues may be a problem within the watercourse. The potential water quality issues as indicated by the presence of sewage fungus would reduce the likelihood of white- clawed crayfish being present here. No incidental evidence of white clawed crayfish was recorded during the survey and no remains were observed within the otter spraint identified at the watercourse

3.3 Invasive species

3.3.1.1 Desk study

Environment Agency records from monitoring sites in the Ribble Downstream Stock Beck waterbody in the period 2010 to 2020 are presented in **Table 3.9**.

The Environment Agency data also included two records of a non-native aquatic macroinvertebrate species; Jenkin's spire snail (*Potamopyrgus antipodarum*) in the River Ribble Downstream Stock Beck Waterbody. These records were on on the River Ribble downstream of the Proposed Ribble Crossing works. Jenkins' spire snail is naturalised and widely distributed throughout the country it is not listed although it is non-native it is not listed as an invasive species under the Wildlife and Countryside act 1981 (as amended) and is therefore scoped out of any assessments for invasive non-native species.

One record of an invasive non-native species was present in EA monitoring data from sites on the River Ribble Downstream Stock Beck waterbody. Low (<0.1%) cover from Himalayan balsam (*Impatians glandulifera*) was recorded from Site 92333 in 2010. Himalayan balsam is listed on Schedule 9 of the Wildlife and Countryside act 1981 which makes it an offence to cause it to grow in the wild. Due to the age of the record and presence of the species in the wider catchment during walkover surveys (see Section 3.3.1.2) as a precautionary approach Himalayan balsam is assumed to be present in low abundances throughout the catchment and potentially affected watercourses.

Table 3.9: : Environment Agency invasive and non-native species records from Macrophyte monitoring sites in the Ribble Downstream Stock Beck Waterbody

Common name	Scientific Name	Sample date	Site ID	NGR	Abundance
Himalayan balsam	Impatiens glandulifera	01/09/2010	92333	SD7220040300	<0.1% cover
Jenkins' Spire Snail	Potamopyrgus antipodarum	25/04/2014	66106	SD7261741439	7
		16/09/2014	66106	SD7261741439	9

3.3.1.2 Survey results

Incidental observations of Himalayan balsam (*Impatians glandulifera*) were recorded during the walkover survey of Waddington Brook in December 2020, no invasive non-native species were identified at either the River Ribble or Greg Sike during the walkover surveys. However, the surveys were undertaken outside of the optimal period for identifying plants so absence of records during these surveys does not provide confirmation of absence of invasive non-native species.

Table 3.10: Watercourses subject to walkover surveys in 2020

Name	WC_ID	U/S Grid Ref	D/S Grid Ref	Biological
River Ribble	W2325	SD 74488 43937	SD 74020 43440	No evidence of INNS
Greg Sike	W2321	SD 73964 43939	SD 74095 43580	No evidence of INNS
Waddington Brook	W506	SD 73521 43840	SD 73924 43617	Himalayan Balsam present (< 5% of channel length).

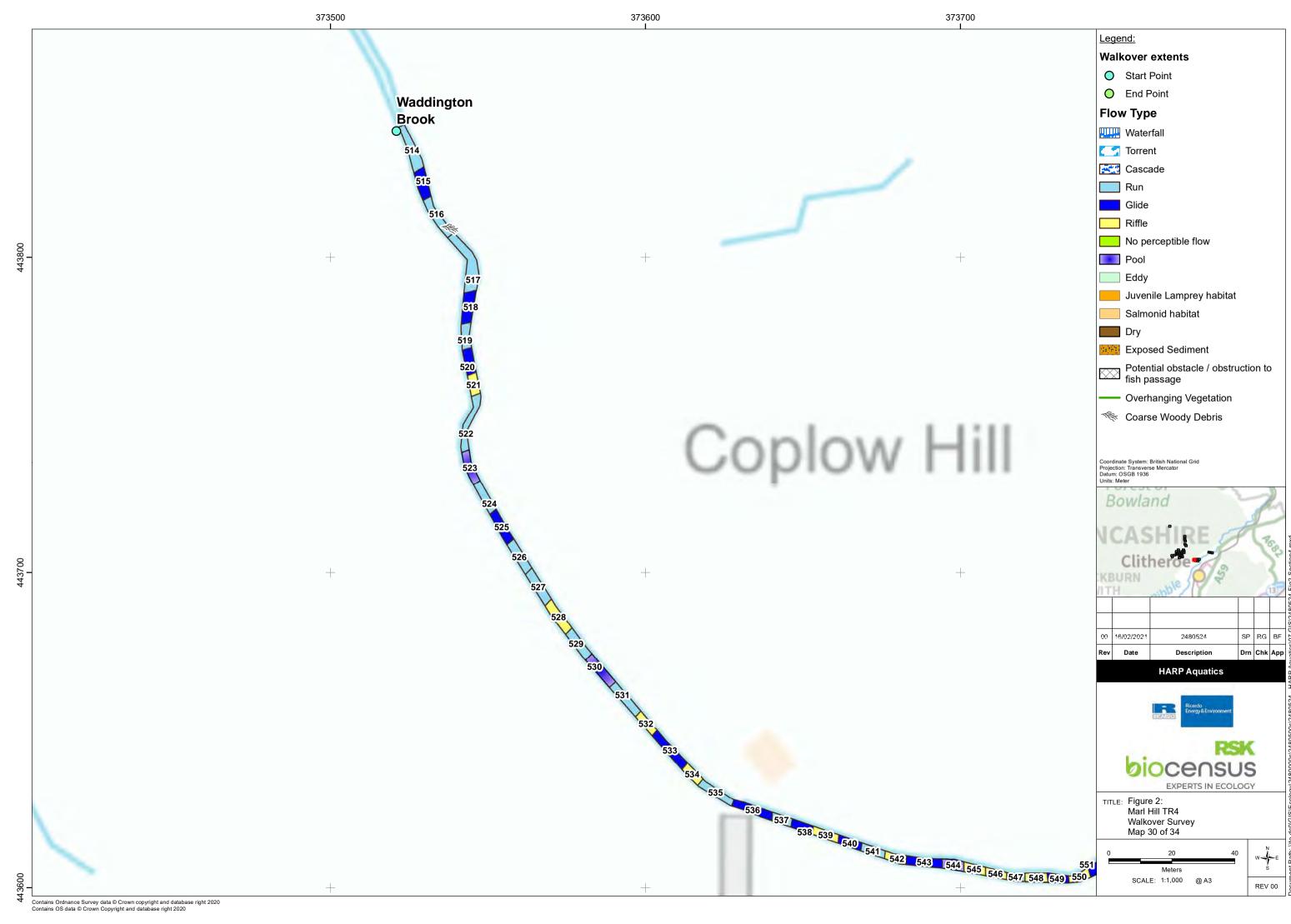
4 Summary

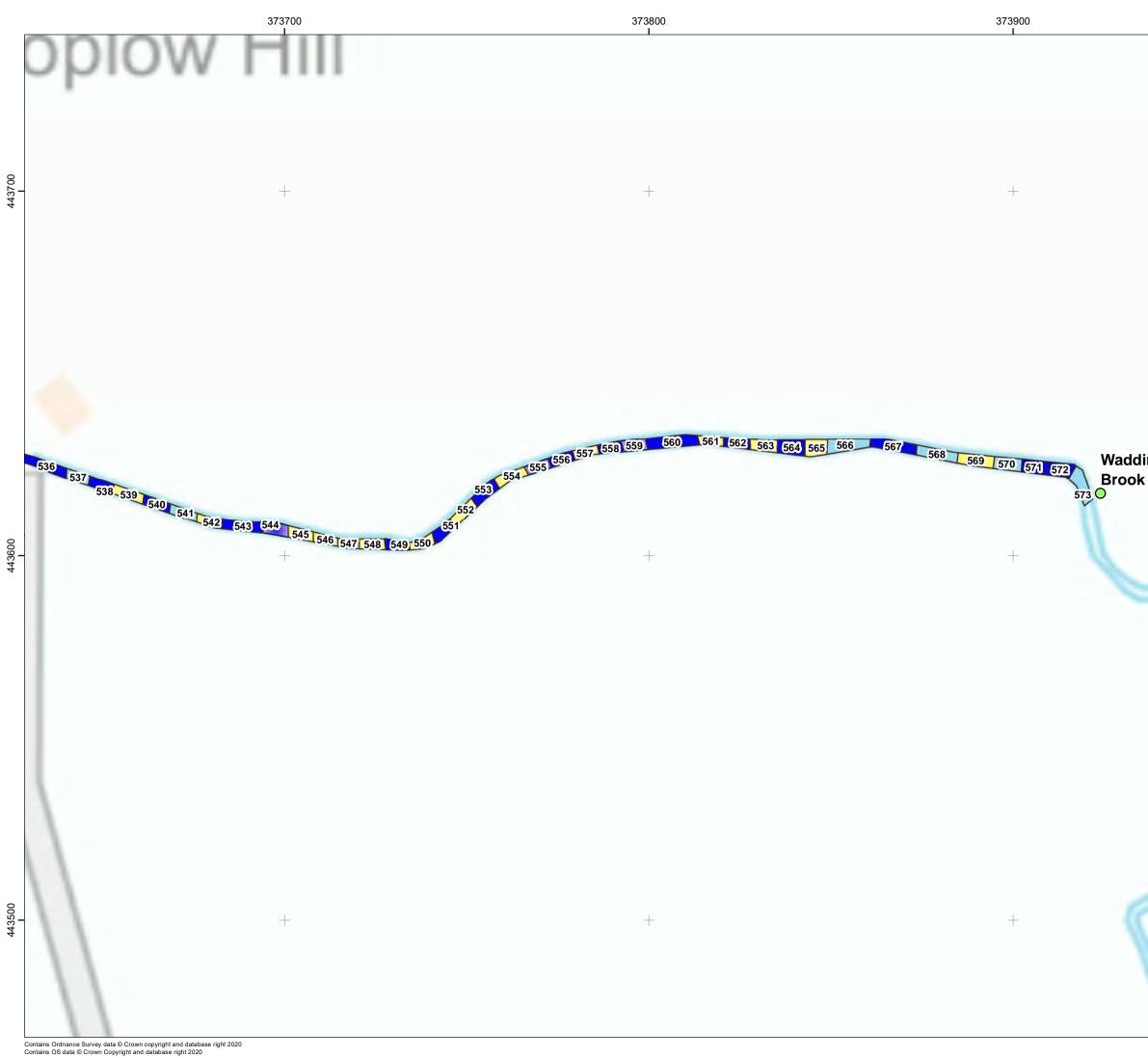
4.1 Baseline Summary

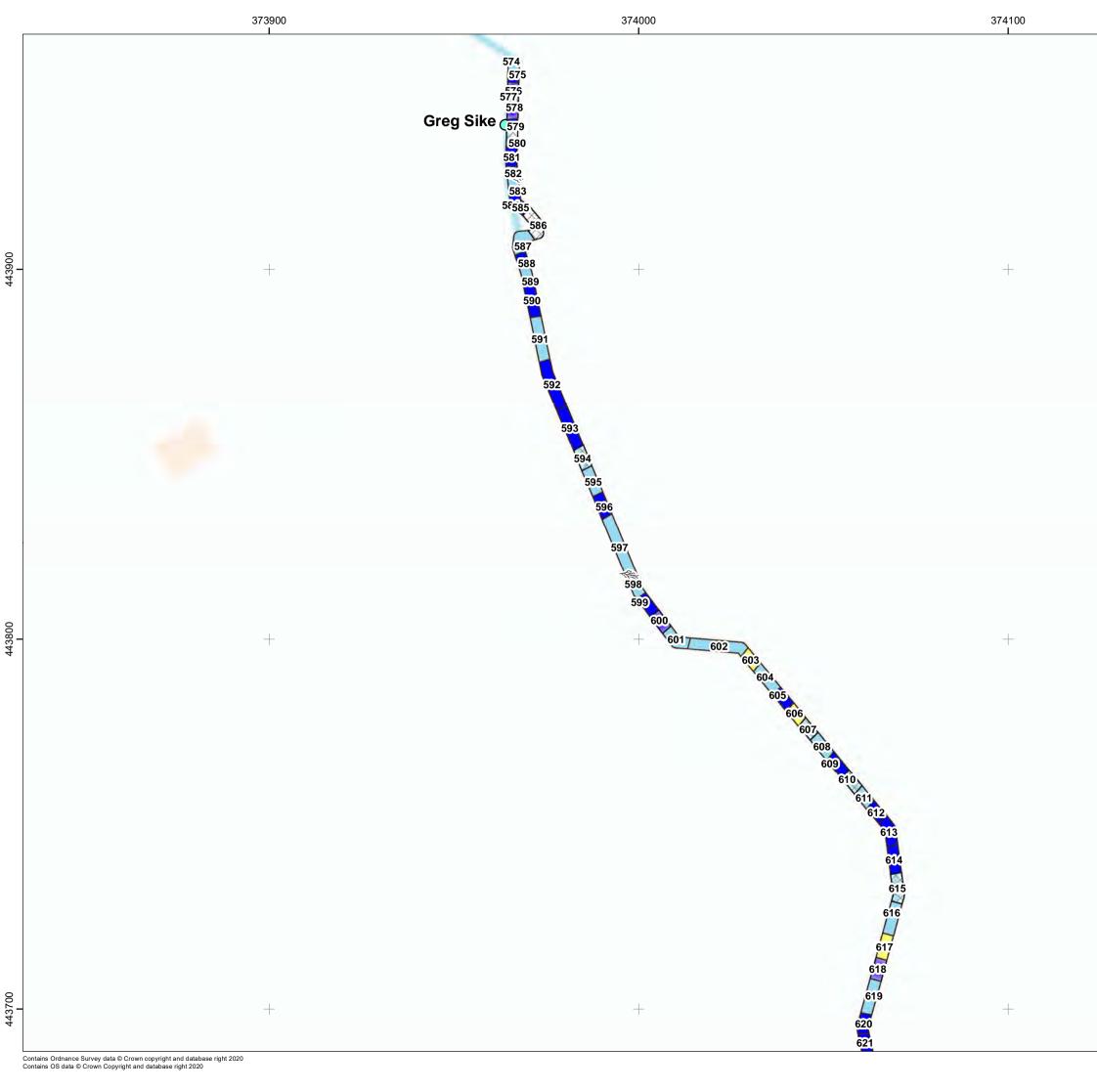
A summary of the baseline conditions as identified through the desk study and surveys undertaken for the watercourses in the River Ribble (Downstream Stock Beck) WFD waterbody are in **Table 4.1**.

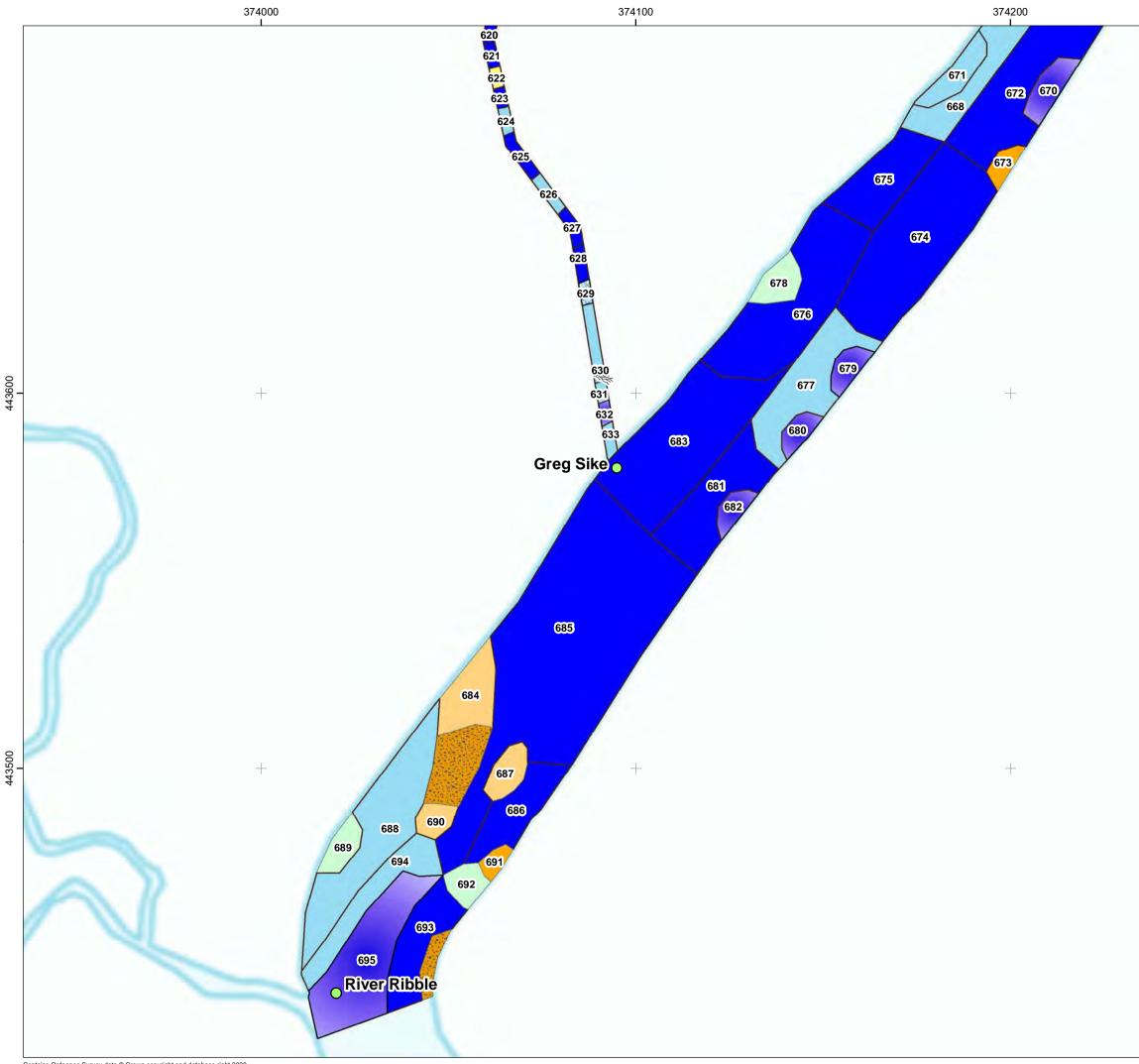
Table 4.1: Summary of Baseline conditions of watercourses within the Ribble – Downstream Stock Beck WFD waterbody

Watercourse	River Ribble (W2325)	Greg Sike (W2321)	Coplow Brook (W2349)	Unnamed Watercourse 2097 (W2348)
WFD waterbody	Ribble – Downstream Stock Beck (GB112071065612)	Ribble – Downstream Stock Beck (GB112071065612)	Ribble – Downstream Stock Beck (GB112071065612)	Ribble – Downstream Stock Beck (GB112071065612)
Macrophytes and phytobenthos			bble (Downstream Stock Beck) catchment i chment. The macrophyte and diatom comm and increased fine sediment.	
Fish	high proportion of the fish community cor be highly sensitive to reductions in wa	nprising Atlantic salmon, bullhead, and bro ater quality, barriers to movement, and incr	lantic salmon, brown trout, bullhead, brook wn trout the fish community of watercourse eases in fine sediments. The watercourse a inor species such as minnows and stone lo	es within the catchment are considered to at the proposed crossing location also
Macroinvertebrates			chment are associated with good to high wa ied'. The macroinvertebrates present are co ind increases in fine sediment.	
White clawed crayfish	Watercourse contains suitable to support white clawed crayfish	Watercourse contains suitable to support white clawed crayfish	Precautionary approach – assumed to contain suitable habitats to support white clawed crayfish	Precautionary approach – assumed to contain suitable habitats to support white clawed crayfish
Invasive Non- native Species	Historic records of Himalayan balsam downstream of the proposed works and low proportion of cover on tributary (Waddington Brook) adjacent tot the proposed crossing works	No INNS identified in baseline data	No INNS identified in baseline data	No INNS identified in baseline data

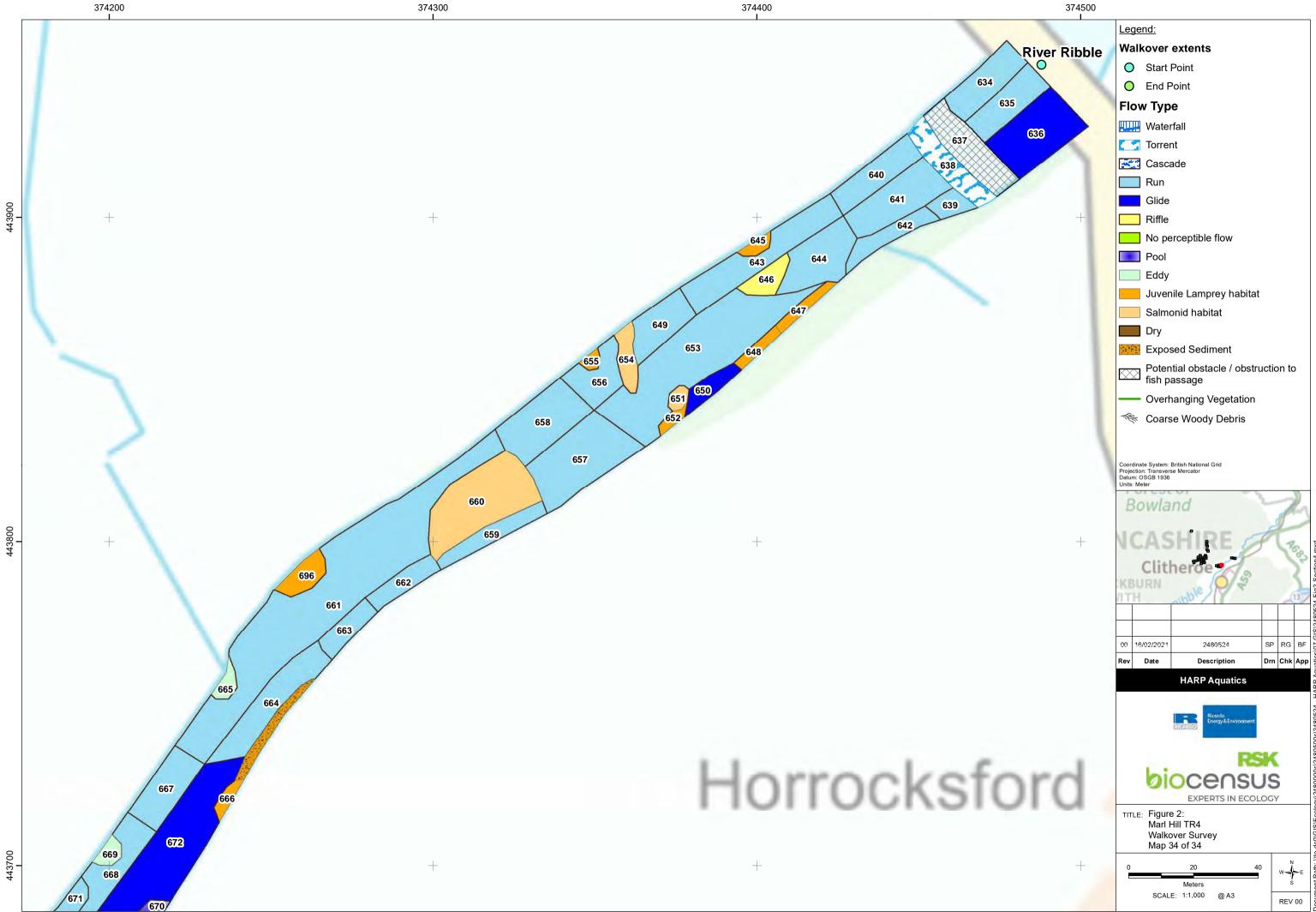



Annexes


Annex 1: 2021 Watercourse walkover survey results



							1
	Leg	gend:					
	Wa	alkover	extents				
) Start	Point				
		End F	Point				
	Flo	оw Тур	е				
		💾 Watei	rfall				
		📶 Torrei	nt				
		📑 Casca	ade				
		Run					
		Glide					
		Riffle					
		🗌 No pe	erceptible flow				
		Pool					
		Eddy					
		Juver	nile Lamprey habitat				
		Salmo	onid habitat				
		Dry					
		📔 Expo	sed Sediment				
			itial obstacle / obstru assage	uctic	on to	2	
dington		- Overh	nanging Vegetation				
ok	-re	Coars	e Woody Debris				
	Proje Datur	dinate System: ction: Transvers n: OSGB 1936 : Meter	British National Grid se Mercator				
	F	owla	nd	2	-)	
	_	oma	1164	3	ſ	3	
	M	CAS	HIRE	P		5	
		Clit		-	1.	Se .	
	KR	URN	neroe S			ζ.	
	ЛТ	H	sibble 1		4	13/	i
	\square						1000
		10/07/7		-		-	0.0.0
	00 Rev	16/02/2021 Date	2480524 Description	SP Drn	RG Chk	BF App	101
	1164	Date	HARP Aquatics		Silk	442	
			Ricardo Energy&Environment				
			RIEARDO				0100-00-0
		1	RS	K			00101-
		Ø	OCENSU EXPERTS IN ECOL				00000101
	тіт	LE: Figure	e 2:				.
		Walko	Hill TR4 over Survey				
		Map	31 of 34				
	0		20 40		w	E	
		604	Meters		s	;	
-		SCAL	E: 1:1,000 @A3		REV	00	



Lege	nd:			
Walk	over extents			
0	Start Point			
0	End Point			
Flov	v Туре			
	Waterfall			
	Torrent			
E	Cascade			
	Run			
	Glide			
	Riffle			
	No perceptible flow			
	Pool			
	Eddy			
	Juvenile Lamprey habitat			
	Salmonid habitat			
	Dry			
	Exposed Sediment			
\sim	Potential obstacle / obstrue fish passage	ctic	on to	
	Overhanging Vegetation			
A.	Coarse Woody Debris			
Datum: C Units: Me	n: Transverse Mercator SGB 1936 ter Wand ASHIRE	The second secon	The st	on4.mxd
KBU	RN abble		3	80524-Fig2-Sectio
				GIS/24
		SP	RG BF	cs/07
Rev		Drn	Chk App	Aquati
TITLE	HARP Aquatics	K IS DGY		Document Path: \\tto-dc0\GIS\Ecology\2480000s\2480500s\2480500s\2480524 - HARP Aquatics\07 GIS\2480524-Fig2-Section4.mxd
	Map 32 of 34			to-dc0
0	20 40		W + E	nt Path: 🛛
	SCALE: 1:1,000 @ A3	+	REV 00	cumer

Contains Ordnance Survey data © Crown copyright and database right 2020 Contains OS data © Crown Copyright and database right 2020

Legend:								
Walkover	extents							
O Start	Point							
End Point								
Flow Typ	be							
Wate	rfall							
Torre	nt							
Caso	ade							
Run								
Glide	•							
Riffle								
No p	erceptible flow							
Pool								
Eddy								
Juve	nile Lamprey habita	at						
Salm	onid habitat							
Dry								
Expo	sed Sediment							
$\wedge \wedge \wedge$	ntial obstacle / obst bassage	ructi	on to	D				
- Over	hanging Vegetatior	ı						
Coar	se Woody Debris							
Bowla		1	1	3				
VCA.		7	1	58				
Clit	heroe							
ATH	while A			13 i				
			Г					
1	1							
00 16/02/2021	2480524	SP	RG	BF				
00 16/02/2021 Rev Date	2480524 Description HARP Aquatics	SP Drm		BF				
	Description HARP Aquatics	SIA	Chk	BF App				
Rev Date	Description HARP Aquatics	SIA	Chk	BF App				
Rev Date	Description HARP Aquatics	SIA	Chk	App				

Contains Ordnance Survey data © Crown copyright and database right 2020 Contains OS data © Crown Copyright and database right 2020

Table 1: Habitat classifications and abbreviations

	Flow Type		Depth		Velocity		Substrate		Notable/species specific habitat		Macrophyte (% cover)		
GL	Glide	Α	0.05 - 0.1 m	0	0.01 - 0.05 m/s	BE	Bedrock	Pr	Salmonid parr habitat	SFL	Submerged fine-leaved	Obstruction	
R	Run	В	0.1 - 0.2 m	1	0.05 - 0.15 m/s	BO	Boulder (> 256 mm)	Fr	Salmonid fry habitat	SLL	Submerged linear-leaved		
RI	Riffle	С	0.2 - 0.4 m	2	0.15 - 0.3 m/s	CO	Cobble (64 - 256 mm)	Pr/Fr	Mixed juvenile salmonid habitat	SBL	Submerged broad-leaved		
Р	Pool	D	0.4 - 1.0 m	3	0.3 - 0.5 m/s	GR	Gravel (2 - 64 mm)	SPO	Optimal salmonid spawning habitat	ELL	Emergent linear-leaved		
CAS	Cascade	Е	> 1.0 m	4	0.5 - 0.7 m/s	SA	Sand (< 2 mm)	SPSO	Sub optimal salmonid spawning habitat	EBL	Emergent broad-leaved		
ED	Eddy			5	> 0.7 m/s	SI	Silt	LO	Optimal juvenile lamprey habitat	FL	Filamentous algae		
TOR	Torrent					CL	Clay	LSO	Sub optimal juvenile lamprey habitat	FLO	Floating		
NP	No perceptible flow					AR	Artificial			FLR	Floating-leaved rooted		
DRY	Dry					NV	Not visible			CHOKED	Channel choked (veg)		

Other features

Potential obstacle/obstruction to fish passage

Target Note	Flow Type	Water depth	Water velocity	Dominant substrate	Vegetation type and % coverage	Habitat type
500	Run	В	3	BO/SA/CO		
501	Riffle	В	3	BO/CO/GR		
502	Run	В	3	BO/SA/CO		
503	Potential obstacle/obstruction to fish passage					
504	Pool	В	1	BO/SA/CO		
505	Run	A	2	BO/CO/GR		
506	Potential obstacle/obstruction to fish passage					
507	Run	A	2	BO/CO/GR		
508	Potential obstacle/obstruction to fish passage					
509	Run	В	3	BO/CO/GR		
510	Potential obstacle/obstruction to fish passage					
511	Pool	С	1	BO/CO/SA		
512	Run	B	2	BO/CO/GR		
513	Potential obstacle/obstruction to fish passage					
514	Run	В	2	BO/CO/GR		
515	Glide	B	1	BO/CO/GR		
516	Run	B	2	BO/CO/GR		
517	Run	B	3	BO/CO/GR		
518	Glide	B	2	BO/CO/GR		
519	Run	B	2	BO/CO/GR		
520	Glide	B	1	CO/GR/SA		
521	Riffle	B	2	BO/CO/GR		
522	Run	B	2	BO/CO/GR		
523	Pool	C	1	BO/CO/GR		
524	Run	В	2	BO/CO/GR		
525	Glide	B	2	CO/GR/SA		
526	Run	B	2	CO/GR/SA		
527	Run	B	3	BO/CO/GR		
528	Riffle	B	3	BO/CO/GR		
529	Run	B	3	BO/CO/GR		
530	Pool	C	1	CO/GR/SA		
531	Run	В	2	CO/GR/SA		
532	Riffle	B	2	BO/CO/GR		
533	Glide	C	1	BO/CO/GR		
534	Riffle	В	2	BO/CO/GR		
535	Run	B	2	BO/CO/GR		
536	Glide	C	2	CO/GR/SA		
537	Run	B	2	BO/CO/GR		
538	Glide	B	3	BO/CO/GR		
539	Riffle	B	3	BO/CO/GR		
540	Glide	B	2	BO/CO/GR		
540	Run	B	2	BO/CO/GR BO/CO/GR		
541	Riffle	B	3	BO/CO/GR BO/CO/GR		
543	Glide	B	2	BO/CO/GR BO/CO/GR		
543	Pool	D	1	BO/CO/GR		
545	Riffle	B	1	BO/CO/GR BO/CO/GR		
545	Riffle	B	3	BO/CO/GR BO/CO/GR		
540	Run	С	3	BO/CO/GR BO/CO/GR		
547	Riffle	B	3	BO/CO/GR BO/CO/GR		
548	Glide	С	2	BO/CO/GR BO/CO/GR		
549	Gilde		Δ	DU/CU/GR		

Target Note	Flow Type	Water depth	Water velocity	Dominant substrate	Vegetation type and % coverage	Habitat type
550	Riffle	В	3	BO/CO/GR		
551	Glide	С	2	CO/GR/SI		
552	Riffle	B	3	CO/GR/SA		
553	Glide	С	2	CO/GR/SA		
554	Riffle	B	2	BO/CO/GR		
555	Pool	D	1	CO/GR/SA		
556	Glide	C	2	CO/GR/SA		
557	Riffle	B	2	CO/GR/SA		
558	Glide	C	2	CO/GR/SA		
559	Pool	C	1	CO/GR/SA		
560	Glide	C	2	CO/GR/SA		
561	Riffle	B	3	CO/GR/SA		
562	Glide	B	2	CO/GR/SA		
563	Riffle	B	3	CO/GR/SA		
564	Glide	B	2	CO/GR/SA		
565	Riffle	B	3	CO/GR/SA CO/GR/SA		
566	Run	B	2	CO/GR/SA CO/GR/SA		
567	Glide	B	2	CO/GR/SA CO/GR/SA		
568	Run	B		CO/GR/SA CO/GR/SI		
			2			
569	Riffle	B	2	CO/GR/SI		
570	Run	В	2	CO/GR/CL		
571	Glide	В	1	CO/GR/SI		
572	Glide	C	1	CO/GR/SI		
573	Run	A	2	CO/GR/SI		
574	Run	В	2	CO/GR/SA		
575	Glide	В	2	CO/GR/SA		
576	Pool	С	1	GR/SA/SI		
577	Potential obstacle/obstruction to fish passage					
578	Pool	С	1	GR/SA/SI		
579	Glide	В		CO/GR/SA		
580	Potential obstacle/obstruction to fish passage					
581	Glide	В	1	CO/GR/SA		
582	Run	В	2	CO/GR/SA		
583	Run	В	3	CO/GR/SA		
584	Glide	С	1	BO/CO/GR		
585	Glide	В	1	CO/GR/SA		
586	Potential obstacle/obstruction to fish passage					
587	Run	В	2	BO/CO/GR		
588	Glide	В	2	BO/CO/GR		
589	Run	В	3	BO/CO/GR		
590	Glide	С	2	BO/CO/GR		
591	Run	В	2	CO/GR/SA		
592	Glide	В	2	CO/GR/SA		
593	Glide	В	2	GR/SA/SI		
594	Potential obstacle/obstruction to fish passage					
595	Run	В	2	GR/SA/SI		
596	Glide	C	2	GR/SA/SI		
597	Run	B	2	CO/GR/SA		
598	Run	B	3	CO/GR/SA		
0.90						

Target Note	Flow Type	Water depth	Water velocity	Dominant substrate	Vegetation type and % coverage	Habitat type
600	Pool	С	1	GR/SA/SI		
601	Run	В	3	BO/CO/GR		
602	Run	В	2	BO/CO/GR		
603	Riffle	В	3	BO/CO/GR		
604	Run	В	2	BO/CO/GR		
605	Glide	B	1	BO/CO/GR		
606	Riffle	B	2	BO/CO/GR		
607	Potential obstacle/obstruction to fish passage		_			
608	Run	В	2	BO/CO/GR		
609	Glide	C	2	CO/GR/SA		
610	Potential obstacle/obstruction to fish passage	0	<u> </u>			
611	Run	В	2	BO/CO/GR		
612	Glide	B	1	GR/SA/SI		
613	Glide	C	1	GR/SA/SI		
614	Glide	B	1	GR/SA/SI		
615	Potential obstacle/obstruction to fish passage	U				
616	Run	В	2	CO/GR/CL		
617	Riffle	B	3	CO/GR/SA		
618	Pool	C	1	CO/GR/SA CO/GR/SA		
619						
	Run	B	2	CO/GR/SA		
620	Glide	В	3	CO/GR/SA		
621	Glide	B	2	CO/GR/SA		
622	Riffle	A	1	CO/GR/SA		
623	Glide	В	2	CO/GR/SA		
624	Run	В	2	CO/GR/SA		
625	Glide	С	2	CO/GR/SA		
626	Run	В	2	CO/GR/SA		
627	Glide	В	2	CO/GR/SA		
628	Glide	С	1	SA/SI		
629	Potential obstacle/obstruction to fish passage					
630	Run	В	2	CO/GR/SA		
631	Run	С	2	CO/GR/SA		
632	Pool	С	1	CO/GR/SA		
633	Run	В	2	CO/GR/SA		
634	Run	С	3	BO/CO/GR		
635	Run	E	3	BO/CO/GR		
636	Glide	D	2	BO/CO/BE		
637	Potential obstacle/obstruction to fish passage					
638	Torrent			BO/CO		
639	Run	D	3	BE/CO/BO		
640	Run	D	4	BO/CO/GR		
641	Run	E	3	BE/CO/BO		
642	Run	С	2	BE/CO/GR		
643	Run	D	3	BO/CO/GR		
644	Run	В	2	BO/CO/GR		
645	Lamprey	С	0	SA/SI/GR	Sub-optimal	
646	Riffle	В	3	BO/CO/GR		
647	Lamprey	В	1	SA/SI/GR	Sub-optimal	
648	Lamprey	В	1	SA/SI	Optimal	
649	Run	C	3	BO/CO/GR	-	

Target Note	Flow Type	Water depth	Water velocity	Dominant substrate	Vegetation type and % coverage	Habitat type
650	Glide	В	2	BO/CO/GR		
651	Salmonid	В	3	BO/CO/GR		Fry
652	Lamprey	С	1	SI/SA/GR		Sub-optimal
653	Run	С	3	BO/CO/GR		•
654	Salmonid	С	4	BO/CO/GR		Parr
655	Lamprey	В	0	SI/SA/GR		Sub-optimal
656	Run	С	3	BO/CO/BE		
657	Run	С	3	BO/CO/GR		
658	Run	С	3	BO/CO/BE		
659	Run	D	4	BO/CO/GR		
660	Salmonid	С	4	BO/CO/GR		Parr
661	Run	D	4	CO/GR/SA		
662	Run	В	2	CO/GR/SA		
663	Run	С	2	CO/GR/SA		
664	Run	С	3	CO/GR/SA		
665	Eddy	D	0	BO/CO/GR		
666	Lamprey	С	1	SI/SA/GR		Sub-optimal
667	Run	D	3	CO/GR/SA		
668	Run	С	3	BO/CO/GR		
669	Eddy	E	0	BO/CO/GR		
670	Pool	D	3	BO/CO/GR		
671	Run	D	3	BO/CO/GR		
672	Glide	D	3	BO/CO/GR		
673	Lamprey	С	1	SI/SA/GR		Sub-optimal
674	Glide	С	2	BO/CO/GR		
675	Glide	С	3	BO/CO/GR		
676	Glide	D	2	BO/CO/GR		
677	Run	D	1	BO/CO/GR		
678	Eddy	С	0	BO/CO/GR		
679	Pool	С	1	BO/CO/GR		
680	Pool	E	1	BO/CO/GR		
681	Glide	D	2	BO/CO/GR		
682	Pool	D	1	BO/CO/GR		
683	Glide	С	3	BO/CO/GR		
684	Salmonid	В	3	BO/CO/GR		Fry
685	Glide	С	2	BO/CO/GR		
686	Glide	С	3	BO/CO/GR		
687	Salmonid	С	3	BO/CO/GR		Sub-optimal spawning
688	Run	С	4	BO/CO/GR		
689	Eddy	D	0	BO/CO/GR		
690	Salmonid	В	4	BO/CO/GR		Fry
691	Lamprey	С	1	SI/SA		Optimal
692	Eddy	С	0	BO/CO/GR		
693	Glide	D	2	BO/GR/CO		
694	Run	С	3	BO/CO/GR		
695	Pool	Е	1	BO/GR/CO		
696	Lamprey	С	1	SI/SA/GR		Sub-optimal

T: +44 (0) 1235 753000 E: enquiry@ricardo.com W: ee.ricardo.com