Daventry

Northants NN11 8RR

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154





0001

#### **Determination of Moisture Content and Atterberg Limits**

Client: Soiltechnics Limited Report No: 51021428/16/16
Client Address: Cedar Barn, Batch Number: DAM0059571

White Lodge

Walgrave Client Reference: STN3505NM

Postcode: NN6 9PY Sampled by: Client
Contact: Andy Keeler Date Sampled: 16.02.16
Date Received: 21.03.16

Chipping Lane, Longbridge Tested From: 23.03.16-24.03.16

Sample Type: Disturbed

**Test Results:** 

Site:

Description: Brown CLAY with occasional Gravel

| Laboratory<br>Reference | Location | Depth (m) | As Received<br>Moisture<br>Content (%) | Liquid<br>Limit | Plastic Limit | Plasticity<br>Index | % Passing<br>425μm |
|-------------------------|----------|-----------|----------------------------------------|-----------------|---------------|---------------------|--------------------|
| 45274330                | TP124    | 1.90      | N/A                                    | 40              | 17            | 23                  | 95                 |
|                         |          |           |                                        |                 |               |                     |                    |



Sample Preparation:

As Received, Coarse particles removed by hand prior to test

Estimated % passing 425µm BS Test Sieve

Certified that the laboratory testing was carried out in accordance with BS 1377-2: 1990: Method 3.2, 4.4 and 5

Page: 1 of 1

Date: 04.04.16

Signed

[ ] M. Carr - Section Manager

[ ✓] D. Berrill - Laboratory Manager

For any on sensor of Environmental Scientifics Group

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This Test Report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory

Environmental Scientifics Group. Registered in England No. 2880501. Registered Office: ESG House, Bretby Business Park, Ashby Road, Burton on Trent DE15 0YZ





Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

## **Final Report**

**Report No.:** 16-04814-1

Initial Date of Issue: 02-Mar-2016

Client Soiltechnics Limited

Client Address: Cedar Barn

White Lodge Walgrave Northampton Northamptonshire

NN6 9PY

Contact(s): Rachel Brown

Project STN3505NM - Chipping Lane

Quotation No.: Date Received: 29-Feb-2016

Order No.: 21026 Date Instructed: 29-Feb-2016

No. of Samples: 3 Target Date: 02-Mar-2016

Turnaround (Wkdays): 5 Results Due: 04-Mar-2016

Date Approved: 02-Mar-2016

Approved By:

**Details:** Martin Dyer, Laboratory Manager

| Client: Soiltechnics Limited           | 1       | Che          | ntest J | ob No.:    | 16-04814       | 16-04814       | 16-04814       |
|----------------------------------------|---------|--------------|---------|------------|----------------|----------------|----------------|
| Quotation No.:                         | _       |              | st Sam  |            | 261045         | 261046         | 261047         |
| Order No.: 21026                       |         |              | nt Samp |            | TP101          | TP108          | TP125          |
|                                        |         |              | ent Sam |            | 7-001          | 7-003          | 7-005          |
|                                        |         |              | Sampl   | е Туре:    | SOIL           | SOIL           | SOIL           |
|                                        |         |              | Top De  | oth (m):   | 0.90           | 0.50           | 0.50           |
|                                        | 1       |              | Date Sa | mpled:     | 16-Feb-2016    | 17-Feb-2016    | 18-Feb-2016    |
| Determinand                            | Accred. | SOP          | Units   | LOD        |                |                |                |
| Moisture                               | N       | 2030         | %       | 0.020      | 15             | 17             | 21             |
| Soil Colour                            | N       | 2040         |         | N/A        | Grey           | Brown          | Brown          |
| Other Material                         | N       | 2040         |         | N/A        | Stones         | Stones         | Stones         |
| Soil Texture                           | N       | 2040         |         | N/A        | Clay           | Clay           | Clay           |
| Organic Matter                         | M       | 2625         | %       | 0.40       | 1.4            | 1.2            | 3.3            |
| Total Organic Carbon                   | М       | 2625         | %       | 0.20       | 0.81           | 0.70           | 1.9            |
| Aliphatic TPH >C5-C6                   | N       | 2680         |         | 0.010      | < 0.010        | < 0.010        | < 0.010        |
| Aliphatic TPH >C6-C8                   | N       | 2680         | mg/kg   |            | < 0.010        | < 0.010        | < 0.010        |
| Aliphatic TPH >C8-C10                  | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Aliphatic TPH >C10-C12                 | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Aliphatic TPH >C12-C16                 | N       | 2680         |         | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Aliphatic TPH >C16-C21                 | N       |              | mg/kg   | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Allphatic TPH >C21-C35                 | N       |              | mg/kg   | 0.10       | < 0.10         | < 0.10         | 30             |
| Aliphatic TPH >C35-C44                 | N       | 2680         |         | 0.10       | < 0.10         | < 0.10         | 2.3            |
| Total Aliphatic Hydrocarbons           | N       | 2680         | mg/kg   | 1.0        | < 1.0          | < 1.0          | 32             |
| Aromatic TPH >C5-C7                    | N       | 2680         | mg/kg   | 0.010      | < 0.010        | < 0.010        | < 0.010        |
| Aromatic TPH >C7-C8                    | N       | 2680         | mg/kg   | 0.010      | < 0.010        | < 0.010        | < 0.010        |
| Aromatic TPH >C8-C10                   | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Aromatic TPH >C10-C12                  | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Aromatic TPH >C12-C16                  | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Aromatic TPH >C16-C21                  | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | < 0.10         |
| Aromatic TPH >C21-C35                  | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | 14             |
| Aromatic TPH >C35-C44                  | N       | 2680         | mg/kg   | 0.10       | < 0.10         | < 0.10         | 1.4            |
| Total Aromatic Hydrocarbons            | N       | 2680         | mg/kg   | 1.0        | < 1.0          | < 1.0          | 15             |
| Total Petroleum Hydrocarbons           | N       | 2680         | mg/kg   | 2.0        | < 2.0          | < 2.0          | 47             |
| Dichlorodifluoromethane                | U       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |
| Chloromethane                          | M       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |
| Vinyl Chloride                         | М       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |
| Bromomethane                           | M       | 2760         | μg/kg   | 20         | < 20           | < 20           | < 20           |
| Chloroethane                           | U       | 2760         | μg/kg   | 2.0        | < 2.0          | < 2.0          | < 2.0          |
| Trichlorofluoromethane                 | M       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |
| 1,1-Dichloroethene                     | M       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |
| Trans 1,2-Dichloroethene               | M       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |
| 1,1-Dichloroethane                     | M       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |
| cis 1,2-Dichloroethene                 | M<br>U  | 2760         | μg/kg   | 1.0<br>5.0 | < 1.0<br>< 5.0 | < 1.0<br>< 5.0 | < 1.0          |
| Bromochloromethane                     | M       | 2760         | μg/kg   | 1.0        | < 5.0<br>< 1.0 | < 5.0<br>< 1.0 | < 5.0          |
| Trichloromethane 1,1,1-Trichloroethane | M       | 2760<br>2760 | μg/kg   | 1.0        | < 1.0<br>< 1.0 | < 1.0<br>< 1.0 | < 1.0<br>< 1.0 |
|                                        |         |              | μg/kg   |            |                |                |                |
| Tetrachloromethane                     | M       | 2760         | μg/kg   | 1.0        | < 1.0          | < 1.0          | < 1.0          |

Page 2 of 7



| Client: Soiltechnics Limited |         | Che          | ntest J | ob No.:   | 16-04814      | 16-04814      | 16-04814      |
|------------------------------|---------|--------------|---------|-----------|---------------|---------------|---------------|
| Quotation No.:               |         | Chemte       | st Sam  | ple ID.:  | 261045        | 261046        | 261047        |
| Order No.: 21026             |         | Clie         | nt Samp | le Ref.:  | TP101         | TP108         | TP125         |
|                              |         | Clic         | ent Sam | ple ID.:  | 7-001         | 7-003         | 7-005         |
|                              |         |              | Sampl   | е Туре:   | SOIL          | SOIL          | SOIL          |
|                              |         |              | Top De  |           | 0.90          | 0.50          | 0.50          |
|                              |         |              | Date Sa | impled:   | 16-Feb-2016   | 17-Feb-2016   | 18-Feb-2016   |
| Determinand                  | Accred. | SOP          | Units   | LOD       |               |               |               |
| 1,1-Dichloropropene          | U       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Benzene                      | М       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichloroethane           | М       | 2760         | μg/kg   | 2.0       | < 2.0         | < 2.0         | < 2.0         |
| Trichloroethene              | М       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichloropropane          | М       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Dibromomethane               | М       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Bromodichloromethane         | М       | 2760         | μg/kg   | 5.0       | < 5.0         | < 5.0         | < 5.0         |
| cis-1,3-Dichloropropene      | N       | 2760         | μg/kg   | 10        | < 10          | < 10          | < 10          |
| Toluene                      | М       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Trans-1,3-Dichloropropene    | N       | 2760         | μg/kg   | 10        | < 10          | < 10          | < 10          |
| 1,1,2-Trichloroethane        | М       | 2760         | μg/kg   | 10        | < 10          | < 10          | < 10          |
| Tetrachloroethene            | М       | 2760         |         | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,3-Dichloropropane          | U       | 2760         | µg/kg   | 2.0       | < 2.0         | < 2.0         | < 2.0         |
| Dibromochloromethane         | U       | 2760         | µg/kg   | 10        | < 10          | < 10          | < 10          |
| 1,2-Dibromoethane            | M       | 2760         | μg/kg   | 5.0       | < 5.0         | < 5.0         | < 5.0         |
| Chlorobenzene                | М       | 2760         | µg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,1,1,2-Tetrachloroethane    | М       | 2760         | µg/kg   | 2.0       | < 2.0         | < 2.0         | < 2.0         |
| Ethylbenzene                 | М       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| m & p-Xylene                 | М       | 2760         | µg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| o-Xylene                     | М       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Styrene                      | М       | 2760         | µg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Tribromomethane              | U       | 2760         | µg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Isopropylbenzene             | M       | 2760         | µg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Bromobenzene                 | М       | 2760         | µg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,2,3-Trichloropropane       | N       | 2760         | µg/kg   | 50        | < 50          | < 50          | < 50          |
| N-Propylbenzene              | U       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 2-Chlorotoluene              | M       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,3,5-Trimethylbenzene       | M       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 4-Chlorotoluene              | U       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Tert-Butylbenzene            | U       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,2,4-Trimethylbenzene       | M       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| Sec-Butylbenzene             | U       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,3-Dichlorobenzene          | M       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 4-Isopropyltoluene           | U       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,4-Dichlorobenzene          | M<br>U  | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| N-Butylbenzene               | M       | 2760<br>2760 | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |
| 1,2-Dichlorobenzene          | U U     | 2760         | μg/kg   | 1.0<br>50 | < 1.0<br>< 50 | < 1.0<br>< 50 | < 1.0<br>< 50 |
| 1,2-Dibromo-3-Chloropropane  | _       |              | μg/kg   |           |               |               |               |
| 1,2,4-Trichlorobenzene       | M       | 2760         | μg/kg   | 1.0       | < 1.0         | < 1.0         | < 1.0         |

Page 3 of 7



| Client: Soiltechnics Limited |         | Che    | ntest Jo | ob No.:  | 16-04814    | 16-04814    | 16-04814    |
|------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|
| Quotation No.:               |         | Chemte | st Sam   | ple ID.: | 261045      | 261046      | 261047      |
| Order No.: 21026             |         | Clie   | nt Samp  | le Ref.: | TP101       | TP108       | TP125       |
|                              |         | Clic   | ent Sam  | ple ID.: | 7-001       | 7-003       | 7-005       |
|                              |         |        | Sample   | е Туре:  | SOIL        | SOIL        | SOIL        |
|                              |         |        | Top Dep  |          | 0.90        | 0.50        | 0.50        |
|                              |         |        | Date Sa  | mpled:   | 16-Feb-2016 | 17-Feb-2016 | 18-Feb-2016 |
| Determinand                  | Accred. | SOP    | Units    | LOD      |             |             |             |
| Hexachlorobutadiene          | U       | 2760   | μg/kg    | 1.0      | < 1.0       | < 1.0       | < 1.0       |
| 1,2,3-Trichlorobenzene       | U       | 2760   | μg/kg    | 2.0      | < 2.0       | < 2.0       | < 2.0       |
| Carbon Disulphide            | N       | 2760   | μg/kg    | 50       | < 50        | < 50        | < 50        |
| Methyl Tert-Butyl Ether      | М       | 2760   | μg/kg    | 1.0      | < 1.0       | < 1.0       | < 1.0       |
| N-Nitrosodimethylamine       | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Phenol                       | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2-Chlorophenol               | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Bis-(2-Chloroethyl)Ether     | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 1,3-Dichlorobenzene          | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 1,4-Dichlorobenzene          | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 1,2-Dichlorobenzene          | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2-Methylphenol               | N       |        | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Bis(2-Chiorolsopropyl)Ether  | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Hexachloroethane             | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| N-Nitrosodi-n-propylamine    | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 4-Methylphenol               | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Nitrobenzene                 | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Isophorone                   | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2-Nitrophenol                | Ñ       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2,4-Dimethylphenol           | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Bis(2-Chloroethoxy)Methane   | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2,4-Dichlorophenol           | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 1,2,4-Trichlorobenzene       | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Naphthalene                  | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 4-Chloroaniline              | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Hexachlorobutadiene          | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 4-Chloro-3-Methylphenol      | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2-Methylnaphthalene          | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Hexachlorocyclopentadiene    | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2,4,6-Trichlorophenol        | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2,4,5-Trichlorophenol        | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2-Chloronaphthalene          | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2-Nitroaniline               | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Acenaphthylene               | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Dimethylphthalate            | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2,6-Dinitrotoluene           | N N     | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Acenaphthene                 | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Dibenzofuran                 | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 4-Chlorophenylphenylether    | N       | 2790   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      |

Page 4 of 7



| Client: Soiltechnics Limited |         | Che    | mtest J | ob No.:  | 16-04814    | 16-04814    | 16-04814    |
|------------------------------|---------|--------|---------|----------|-------------|-------------|-------------|
| Quotation No.:               |         | Chemte | st Sam  | ple ID.: | 261045      | 261046      | 261047      |
| Order No.: 21026             |         | Clie   | nt Samp | le Ref.: | TP101       | TP108       | TP125       |
|                              |         | Cli    | ent Sam | ple ID.: | 7-001       | 7-003       | 7-005       |
|                              | i       |        | Sampl   | е Туре:  | SOIL        | SOIL        | SOIL        |
|                              |         |        | Top De  | oth (m): | 0.90        | 0.50        | 0.50        |
|                              |         |        | Date Sa | mpled:   | 16-Feb-2016 | 17-Feb-2016 | 18-Feb-2016 |
| Determinand                  | Accred. | SOP    | Units   | LOD      |             |             |             |
| 2,4-Dinitrotoluene           | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Fluorene                     | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Diethyl Phthalate            | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 4-Nitroaniline               | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 2-Methyl-4,6-Dinitrophenol   | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Azobenzene                   | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| 4-Bromophenylphenyl Ether    | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Hexachlorobenzene            | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Pentachlorophenol            | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Phenanthrene                 | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Anthracene                   | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Carbazole                    | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| DI-N-Butyl Phthalate         | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Fluoranthene                 | N       | 2790   | mg/kg   | 0.50     | < 0.50      | 0.55        | < 0.50      |
| Pyrene                       | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Butylbenzyl Phthalate        | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Benzo[a]anthracene           | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Chrysene                     | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Bis(2-Ethylhexyl)Phthalate   | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Di-N-Octyl Phthalate         | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Benzo[b]fluoranthene         | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Benzo[k]fluoranthene         | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Benzo[a]pyrene               | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Indeno(1,2,3-c,d)Pyrene      | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Dibenz(a,h)Anthracene        | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Benzo[g,h,i]perylene         | N       | 2790   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |
| Naphthalene                  | М       | 2800   | mg/kg   | 0.10     | < 0.10      | 0.37        | 0.20        |
| Acenaphthylene               | N       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Acenaphthene                 | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Fluorene                     | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Phenanthrene                 | М       | 2800   | mg/kg   | 0.10     | < 0.10      | 0.76        | 0.35        |
| Anthracene                   | М       | 2800   | mg/kg   | 0.10     | < 0.10      | 0.13        | < 0.10      |
| Fluoranthene                 | M       | 2800   | mg/kg   | 0.10     | < 0.10      | 0.22        | 0.78        |
| Pyrene                       | М       | 2800   | mg/kg   | 0.10     | < 0.10      | 0.21        | 0.67        |
| Benzo[a]anthracene           | M       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.15        |
| Chrysene                     | M       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.19        |
| Benzo[b]fluoranthene         | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.16        |
| Benzo[k]fluoranthene         | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |
| Benzo[a]pyrene               | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.15        |

Page 5 of 7



| Client: Soiltechnics Limited |         | Che              | mtest Jo | b No.:   | 16-04814    | 16-04814    | 16-04814    |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
|------------------------------|---------|------------------|----------|----------|-------------|-------------|-------------|--------|--|--------|--|--------|--|--------|--|--------------|--|------|--------|--------|--------|
| Quotation No.:               | 1 4     | Chemte           | st Sam   | ple ID.: | 261045      | 261046      | 261047      |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
| Order No.: 21026             |         | Clie             | nt Samp  | le Ref.: | TP101       | TP108       | TP125       |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
|                              |         | Cli              | ent Sam  | ple ID.: | 7-001       | 7-003       | 7-005       |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
|                              |         |                  | Sample   | е Туре:  | SOIL        | SOIL        | SOIL        |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
|                              |         |                  | Top Dep  | oth (m): | 0.90        | 0.50        | 0.50        |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
|                              |         |                  | Date Sa  | mpled:   | 16-Feb-2016 | 17-Feb-2016 | 18-Feb-2016 |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
| Determinand                  | Accred. | SOP              | Units    | LOD      |             |             |             |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
| Indeno(1,2,3-c,d)Pyrene      | М       | 2800             | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
| Dibenz(a,h)Anthracene        | N 280   |                  | N 2800 r |          | N 2800 m    |             | N 2800 mg/l | N 2800 |  | N 2800 |  | N 2800 |  | N 2800 |  | N 2800 mg/kg |  | 0.10 | < 0.10 | < 0.10 | < 0.10 |
| Benzo[g,h,i]perylene         | М       | M 2800 mg        |          |          | < 0.10      | < 0.10      | < 0.10      |        |  |        |  |        |  |        |  |              |  |      |        |        |        |
| Total Of 16 PAH's            | N       | N 2800 mg/kg 2.0 |          |          |             | < 2.0       | 2.7         |        |  |        |  |        |  |        |  |              |  |      |        |        |        |



#### **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 60 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>





# Chemtest The right chemistry to deliver results

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

## **Final Report**

Report No.:

16-06222-1

**Initial Date of Issue:** 

23-Mar-2016

Client

Soiltechnics Limited

**Client Address:** 

Cedar Barn
White Lodge
Walgrave
Northampton
Northamptonshire

NN6 9PY

Contact(s):

Rachel Brown

**Project** 

STN3505NM - Chipping Lane

**Quotation No.:** 

Date Received:

16-Mar-2016

Order No.:

21137

**Date Instructed:** 

21-Mar-2016

No. of Samples:

29

3

**Target Date:** 

Results Due:

23-Mar-2016

Turnaround (Wkdays):

23-Mar-2016

Date Approved:

23-Mar-2016

Approved By:

Details:

Robert Monk, Technical Development

Chemist



## Results - Leachate

| Project: STN3505NM - Chipping | Lane    |      |         |         |             |             |             |             |
|-------------------------------|---------|------|---------|---------|-------------|-------------|-------------|-------------|
| Client: Soiltechnics Limited  |         |      | ntest J |         | 16-06222    | 16-06222    | 16-06222    | 16-06222    |
| Quotation No.:                |         |      | st Sam  |         | 267964      | 267975      | 267979      | 267990      |
| Order No.: 21137              |         |      | nt Samp |         | TP102       | TP110       | TP114       | TP125       |
|                               |         | Cli  | ent Sam |         | 9-043       | 9-080       | 9-098       | 9-148       |
|                               |         |      |         | e Type: | SOIL        | SOIL        | SOIL        | SOIL        |
|                               |         |      | Top De  |         | 0.20        | 0.10        | 0.10        | 0.50        |
|                               |         |      | Date Sa |         | 16-Feb-2016 | 17-Feb-2016 | 17-Feb-2016 | 18-Feb-2016 |
| Determinand                   | Accred. | SOP  | Units   | LOD     |             |             |             |             |
| pH                            | U       | 1010 |         | N/A     | 7.9         | 6.2         | 6.5         | 8.3         |
| Nitrate                       | U       | 1220 | mg/l    | 0.50    | 6.5         | 4.8         | 2.4         | 2.0         |
| Sulphate                      | U       | 1220 | mg/l    | 1.0     | 10          | 4.2         | 2.7         | 2.4         |
| Cyanide (Total)               | U       | 1300 | mg/l    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Cyanide (Free)                | U       | 1300 | mg/l    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Cyanide (Complex)             | U       | 1300 | mg/l    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Sulphide                      | U       | 1325 | mg/l    | 0.050   | < 0.050     | < 0.050     | < 0.050     | < 0.050     |
| Arsenic (Dissolved)           | U       | 1450 | μg/l    | 1.0     | 2.5         | 2.7         | 5.6         | 1.4         |
| Boron (Dissolved)             | U       | 1450 | μg/l    | 20      | < 20        | 26          | < 20        | < 20        |
| Beryllium (Dissolved)         | U       | 1450 | μg/l    | 1.0     | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| Cadmium (Dissolved)           | U       | 1450 | μg/l    | 0.080   | 0.13        | 0.26        | 0.18        | < 0.080     |
| Chromium (Dissolved)          | U       | 1450 | μg/l    | 1.0     | 2.4         | 4.5         | 6.6         | < 1.0       |
| Copper (Dissolved)            | U       | 1450 | μg/I    | 1.0     | 6.3         | 13          | 13          | 5.7         |
| Mercury (Dissolved)           | U       | 1450 | μg/l    | 0.50    | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
| Nickel (Dissolved)            | U       | 1450 | μg/l    | 1.0     | 1.9         | 4.3         | 4.2         | < 1.0       |
| Lead (Dissolved)              | U       | 1450 | μg/l    | 1.0     | 6.8         | 11          | 10          | 1.2         |
| Selenium (Dissolved)          | U       | 1450 | μg/l    | 1.0     | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| Vanadium (Dissolved)          | U       | 1450 | μg/l    | 1.0     | 6.4         | 7.6         | 18          | 2.4         |
| Zinc (Dissolved)              | U       | 1450 | μg/l    | 1.0     | 5.3         | 17          | 18          | 1.9         |
| Naphthalene                   | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Acenaphthylene                | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Acenaphthene                  | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Fluorene                      | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Phenanthrene                  | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Anthracene                    | υ       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Fluoranthene                  | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Pyrene                        | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Benzo[a]anthracene            | υ       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Chrysene                      | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Benzo[b]fluoranthene          | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Benzo[k]fluoranthene          | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Benzo[a]pyrene                | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Indeno(1,2,3-c,d)Pyrene       | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Dibenz(a,h)Anthracene         | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Benzo[g,h,i]perylene          | U       | 1800 | μg/l    | 0.10    | < 0.10      | < 0.10      | < 0.10      | < 0.10      |
| Total Of 16 PAH's             | U       | 1800 | μg/l    | 2.0     | < 2.0       | < 2.0       | < 2.0       | < 2.0       |
| Total Phenols                 | U       | 1920 | mg/l    | 0.030   | < 0.030     | < 0.030     | < 0.030     | < 0.030     |



| Ciliant: Soiltechnics Limited                                                                                                                                                                                                                                  | Chemt Clic Cl SOP 2030 2040 2040 2040 2010 2120 2175 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Top Dep<br>Date Sa<br>Units<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ple ID.:<br>le Ref.:<br>ple ID.:<br>e Type:<br>pth (m):<br>ampled:              | 16-06222<br>267963<br>IP101<br>9-037<br>3OIL<br>0.30<br>16-Feb-2016<br>20<br>Brown<br>Roots<br>Clay | 16-06222<br>267964<br>IP102<br>9-043<br>SOIL<br>0.20<br>16-Feb-2016<br>32<br>Brown<br>Roots | 16-06222<br>267965<br>IP102<br>9-045<br>SOIL<br>1.00<br>16-Feb-2016 | 16-06222<br>267966<br>IP103<br>9-048<br>SOIL<br>0.10<br>16-Feb-2016 | 16-06222<br>267967<br>1P103<br>9-049<br>SOIL<br>0.30<br>16-Feb-2016 | 16-06222<br>267968<br>IP104<br>9-054<br>SOIL<br>0.10<br>16-Feb-2016 | 16-06222<br>267969<br>IP106<br>9-064<br>SOIL<br>0.10<br>16-Feb-2016 | 16-06222<br>267970<br>IP106<br>9-066<br>SOIL<br>1.10<br>16-Feb-2016 | 16-06222<br>267971<br>IP107<br>9-069<br>SOIL<br>0.10<br>17-Feb-2016 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| Order No.: 21137  Determinand Accr Moisture N Soil Colour N Other Material N Soil Texture N Boron (Hot Water Soluble) M Sulphate (2:1 Water Soluble) as SO4 M Total Sulphur M Cyanide (Complex) M                                                              | Click | ent Samplient Sa | ile Ref.: ple ID.: e Type: oth (m): empled: LOD 0.020 N/A N/A N/A N/A           | 1P101<br>9-037<br>SOIL<br>0.30<br>16-Feb-2016<br>20<br>Brown<br>Roots<br>Clay                       | 1P102<br>9-043<br>SOIL<br>0.20<br>16-Feb-2016<br>32<br>Brown                                | 9-045<br>SOIL<br>1.00<br>16-Feb-2016                                | 9-048<br>SOIL<br>0.10<br>16-Feb-2016                                | 1P103<br>9-049<br>SOIL<br>0.30<br>16-Feb-2016                       | 9-054<br>SOIL<br>0.10<br>16-Feb-2016                                | 1P106<br>9-064<br>SOIL<br>0.10<br>16-Feb-2016                       | 1P106<br>9-066<br>SOIL<br>1.10<br>16-Feb-2016                       | 9-069<br>SOIL<br>0.10<br>17-Feb-2016                                |
| Determinand Accr Moisture N Soil Colour N Other Material N Soil Texture N Boron (Hot Water Soluble) M Sulphate (2:1 Water Soluble) as SO4 M Cyanide (Complex) M Cyanide (Complex)                                                                              | 2030<br>2040<br>2040<br>2040<br>2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ent Sample Sample Top Del Date Sa Units % mg/kg g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ple ID.:<br>e Type:<br>pth (m):<br>ampled:<br>LOD<br>0.020<br>N/A<br>N/A<br>N/A | 9-037<br>SOIL<br>0.30<br>16-Feb-2016<br>20<br>Brown<br>Roots<br>Clay                                | 9-043<br>SOIL<br>0.20<br>16-Feb-2016<br>32<br>Brown                                         | 9-045<br>SOIL<br>1.00<br>16-Feb-2016                                | 9-048<br>SOIL<br>0.10<br>16-Feb-2016                                | 9-049<br>SOIL<br>0.30<br>16-Feb-2016                                | 9-054<br>SOIL<br>0.10<br>16-Feb-2016                                | 9-064<br>SOIL<br>0.10<br>16-Feb-2016                                | 9-066<br>SOIL<br>1.10<br>16-Feb-2016                                | 9-069<br>SOIL<br>0.10<br>17-Feb-2016                                |
| Moisture                                                                                                                                                                                                                                                       | ed. SOP 2030 2040 2040 2040 2010 2120 2120 2175 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample<br>Top Dep<br>Date Sa<br>Units<br>%<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Type:<br>oth (m):<br>ampled:<br>LOD<br>0.020<br>N/A<br>N/A<br>N/A<br>N/A      | SOIL<br>0.30<br>16-Feb-2016<br>20<br>Brown<br>Roots<br>Clay                                         | SOIL<br>0.20<br>16-Feb-2016<br>32<br>Brown                                                  | SOIL<br>1.00<br>16-Feb-2016                                         | 90IL<br>0.10<br>16-Feb-2016<br>31                                   | SOIL<br>0.30<br>16-Feb-2016                                         | SOIL<br>0.10<br>16-Feb-2016                                         | SOIL<br>0.10<br>16-Feb-2016                                         | SOIL<br>1.10<br>16-Feb-2016                                         | SOIL<br>0.10<br>17-Feb-2016                                         |
| Moisture                                                                                                                                                                                                                                                       | 2030<br>2040<br>2040<br>2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Top Dep<br>Date Sa<br>Units<br>%<br>mg/kg<br>g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oth (m):<br>ampled:<br>LOD<br>0.020<br>N/A<br>N/A<br>N/A<br>N/A                 | 0.30<br>16-Feb-2016<br>20<br>Brown<br>Roots<br>Clay                                                 | 0.20<br>16-Feb-2016<br>32<br>Brown                                                          | 1.00<br>16-Feb-2016                                                 | 0.10<br>16-Feb-2016<br>31                                           | 0.30<br>16-Feb-2016                                                 | 0.10<br>16-Feb-2016                                                 | 0.10<br>16-Feb-2016                                                 | 1.10<br>16-Feb-2016                                                 | 0.10<br>17-Feb-2016                                                 |
| Moisture                                                                                                                                                                                                                                                       | 2030<br>2040<br>2040<br>2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date Sa<br>Units<br>%<br>mg/kg<br>g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nmpled:<br>LOD<br>0.020<br>N/A<br>N/A<br>N/A<br>N/A                             | 16-Feb-2016 20 Brown Roots Clay                                                                     | 16-Feb-2016<br>32<br>Brown                                                                  | 16-Feb-2016<br>18                                                   | 16-Feb-2016<br>31                                                   | 16-Feb-2016                                                         | 16-Feb-2016                                                         | 16-Feb-2016                                                         | 16-Feb-2016                                                         | 17-Feb-2016                                                         |
| Moisture                                                                                                                                                                                                                                                       | 2030<br>2040<br>2040<br>2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wnits % mg/kg g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.020<br>N/A<br>N/A<br>N/A<br>N/A                                               | 20<br>Brown<br>Roots<br>Clay                                                                        | 32<br>Brown                                                                                 | 18                                                                  | 31                                                                  |                                                                     |                                                                     |                                                                     |                                                                     |                                                                     |
| Moisture                                                                                                                                                                                                                                                       | 2030<br>2040<br>2040<br>2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.020<br>N/A<br>N/A<br>N/A<br>N/A                                               | Brown<br>Roots<br>Clay                                                                              | Brown                                                                                       |                                                                     |                                                                     | 17                                                                  | 31                                                                  | 31                                                                  | 16                                                                  |                                                                     |
| Soil Colour                                                                                                                                                                                                                                                    | 2040<br>2040<br>2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg<br>g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>N/A<br>N/A                                                        | Brown<br>Roots<br>Clay                                                                              | Brown                                                                                       |                                                                     |                                                                     | 17                                                                  | 31                                                                  | 31                                                                  | 16                                                                  | , ,,,                                                               |
| Other Material         N           Soil Texture         N           pH         M           Boron (Hot Water Soluble)         M           Sulphate (2:1 Water Soluble) as SO4         M           Total Sulphur         M           Cyanide (Complex)         M | 2040<br>2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>N/A                                                               | Roots<br>Clay                                                                                       |                                                                                             | Brown                                                               |                                                                     |                                                                     |                                                                     | 01                                                                  | 10                                                                  | 26                                                                  |
| Soil Texture N pH M Boron (Hot Water Soluble) M Sulphate (2:1 Water Soluble) as SO4 M Total Sulphur M Cyanide (Complex) M                                                                                                                                      | 2040<br>2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A                                                                      | Clay                                                                                                | Roots                                                                                       |                                                                     | Brown                                                               | Brown                                                               | Brown                                                               | Brown                                                               | Brown                                                               | Brown                                                               |
| pH M Boron (Hot Water Soluble) M Sulphate (2:1 Water Soluble) as SO4 M Total Sulphur M Cyanide (Complex) M                                                                                                                                                     | 2010<br>2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                             |                                                                                                     |                                                                                             | NONE                                                                | NONE                                                                | Roots                                                               | Roots                                                               | Roots                                                               | NONE                                                                | NONE                                                                |
| Boron (Hot Water Soluble) M<br>Sulphate (2:1 Water Soluble) as SO4 M<br>Total Sulphur M<br>Cyanide (Complex) M                                                                                                                                                 | 2120<br>2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                                     | Clay                                                                                        | Clay                                                                | Clay                                                                | Clay                                                                | Clay                                                                | Clay                                                                | Clay                                                                | Clay                                                                |
| Sulphate (2:1 Water Soluble) as SO4 M Total Sulphur M Cyanide (Complex) M                                                                                                                                                                                      | 2120<br>2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40                                                                            | 8.2                                                                                                 | 7.6                                                                                         | 7.5                                                                 | 7.2                                                                 | 8.3                                                                 | 6.0                                                                 | 5.0                                                                 | 8.0                                                                 | 6.2                                                                 |
| Total Sulphur M Cyanide (Complex) M                                                                                                                                                                                                                            | 2175<br>2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | < 0.40                                                                                              | 0.43                                                                                        |                                                                     | < 0.40                                                              | < 0.40                                                              | < 0.40                                                              | < 0.40                                                              |                                                                     | < 0.40                                                              |
| Total Sulphur M Cyanide (Complex) M                                                                                                                                                                                                                            | 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010                                                                           |                                                                                                     |                                                                                             | < 0.010                                                             |                                                                     |                                                                     |                                                                     |                                                                     | < 0.010                                                             |                                                                     |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.010                                                                           |                                                                                                     |                                                                                             | 0.016                                                               |                                                                     |                                                                     |                                                                     |                                                                     | 0.040                                                               |                                                                     |
| Cyanide (Free)                                                                                                                                                                                                                                                 | 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | < 0.50                                                                                              | < 0.50                                                                                      |                                                                     | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              |                                                                     | < 0.50                                                              |
| Cyanide (1100)                                                                                                                                                                                                                                                 | 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | < 0.50                                                                                              | < 0.50                                                                                      |                                                                     | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              |                                                                     | < 0.50                                                              |
| Cyanide (Total) M                                                                                                                                                                                                                                              | 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | < 0.50                                                                                              | < 0.50                                                                                      |                                                                     | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              |                                                                     | < 0.50                                                              |
| Sulphate (Acid Soluble) M                                                                                                                                                                                                                                      | 2430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.010                                                                           |                                                                                                     |                                                                                             | < 0.010                                                             |                                                                     |                                                                     |                                                                     |                                                                     | 0.016                                                               |                                                                     |
| Arsenic                                                                                                                                                                                                                                                        | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                             | 15                                                                                                  | 14                                                                                          |                                                                     | 11                                                                  | 14                                                                  | 13                                                                  | 13                                                                  |                                                                     | 11                                                                  |
| Beryllium U                                                                                                                                                                                                                                                    | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                             | < 1.0                                                                                               | < 1.0                                                                                       |                                                                     | < 1.0                                                               | 1.0                                                                 | < 1.0                                                               | < 1.0                                                               |                                                                     | < 1.0                                                               |
| Cadmium M                                                                                                                                                                                                                                                      | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.20                                                                                                | 0.30                                                                                        |                                                                     | 0.27                                                                | 0.18                                                                | 0.25                                                                | 0.36                                                                |                                                                     | 0.18                                                                |
| Chromium M                                                                                                                                                                                                                                                     | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                             | 23                                                                                                  | 33                                                                                          |                                                                     | 30                                                                  | 41                                                                  | 29                                                                  | 30                                                                  |                                                                     | 27                                                                  |
| Copper M                                                                                                                                                                                                                                                       | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | 110                                                                                                 | 59                                                                                          |                                                                     | 24                                                                  | 24                                                                  | 17                                                                  | 24                                                                  |                                                                     | 20                                                                  |
| Mercury M                                                                                                                                                                                                                                                      | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.25                                                                                                | 0.22                                                                                        |                                                                     | 0.20                                                                | 0.11                                                                | 0.14                                                                | 0.22                                                                |                                                                     | 0.13                                                                |
| Nickel M                                                                                                                                                                                                                                                       | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | 25                                                                                                  | 27                                                                                          |                                                                     | 25                                                                  | 47                                                                  | 21                                                                  | 23                                                                  |                                                                     | 23                                                                  |
| Lead                                                                                                                                                                                                                                                           | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | 71                                                                                                  | 74                                                                                          |                                                                     | 56                                                                  | 21                                                                  | 42                                                                  | 60                                                                  |                                                                     | 38                                                                  |
| Selenium M                                                                                                                                                                                                                                                     | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                                                                            | < 0.20                                                                                              | 0.40                                                                                        |                                                                     | 0.37                                                                | < 0.20                                                              | 0.35                                                                | 0.52                                                                |                                                                     | 0.33                                                                |
| Vanadium U                                                                                                                                                                                                                                                     | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0                                                                             | 29                                                                                                  | 48                                                                                          |                                                                     | 37                                                                  | 43                                                                  | 36                                                                  | 40                                                                  |                                                                     | 36                                                                  |
| Zinc M                                                                                                                                                                                                                                                         | 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | 110                                                                                                 | 110                                                                                         |                                                                     | 78                                                                  | 57                                                                  | 64                                                                  | 86                                                                  |                                                                     | 47                                                                  |
| Chromium (Hexavalent) N                                                                                                                                                                                                                                        | 2490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                            | < 0.50                                                                                              | < 0.50                                                                                      |                                                                     | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              | < 0.50                                                              |                                                                     | < 0.50                                                              |
| Organic Matter M                                                                                                                                                                                                                                               | 2625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.40                                                                            | 2.9                                                                                                 | 7.6                                                                                         |                                                                     | 6.4                                                                 | 1.1                                                                 | 6.0                                                                 | 7.4                                                                 |                                                                     | 5.9                                                                 |
| Naphthalene M                                                                                                                                                                                                                                                  | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | < 0.10                                                                                              | < 0.10                                                                                      |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Acenaphthylene N                                                                                                                                                                                                                                               | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | < 0.10                                                                                              | < 0.10                                                                                      |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Acenaphthene M                                                                                                                                                                                                                                                 | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | < 0.10                                                                                              | < 0.10                                                                                      |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Fluorene M                                                                                                                                                                                                                                                     | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | < 0.10                                                                                              | < 0.10                                                                                      |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Phenanthrene M                                                                                                                                                                                                                                                 | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 1.6                                                                                                 | 1.5                                                                                         |                                                                     | 0.10                                                                | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Anthracene M                                                                                                                                                                                                                                                   | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.31                                                                                                | 0.35                                                                                        |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Fluoranthene M                                                                                                                                                                                                                                                 | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 2.3                                                                                                 | 3.6                                                                                         |                                                                     | 0.25                                                                | < 0.10                                                              | < 0.10                                                              | 0.11                                                                |                                                                     | < 0.10                                                              |
| Pyrene M                                                                                                                                                                                                                                                       | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 2.0                                                                                                 | 3.5                                                                                         |                                                                     | 0.23                                                                | < 0.10                                                              | < 0.10                                                              | 0.14                                                                |                                                                     | < 0.10                                                              |
| Benzo[a]anthracene M                                                                                                                                                                                                                                           | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.58                                                                                                | 1.5                                                                                         |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Chrysene M                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.70                                                                                                | 1.9                                                                                         |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Benzo[b]fluoranthene M                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.96                                                                                                | 2.6                                                                                         |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Benzo[k]fluoranthene M                                                                                                                                                                                                                                         | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.18                                                                                                | 0.84                                                                                        |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Benzo[a]pyrene M                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.65                                                                                                | 2.0                                                                                         |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |
| Indeno(1,2,3-c,d)Pyrene M                                                                                                                                                                                                                                      | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                                                            | 0.39                                                                                                | 1.4                                                                                         |                                                                     | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              | < 0.10                                                              |                                                                     | < 0.10                                                              |

Page 3 of 11



| i Toject. O Missosium - Ompping Lane |         |        |         |          |             |             |             |             |             |             |             |             |             |
|--------------------------------------|---------|--------|---------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Soiltechnics Limited         |         | Che    | mtest J | b No.:   | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    |
| Quotation No.:                       | (       | Chemte | st Sam  | ple ID.: | 267963      | 267964      | 267965      | 267966      | 267967      | 267968      | 267969      | 267970      | 267971      |
| Order No.: 21137                     |         | Clie   | nt Samp | le Ref.: | TP101       | TP102       | TP102       | TP103       | TP103       | TP104       | TP106       | TP106       | TP107       |
|                                      |         | Cli    | ent Sam | ple ID.: | 9-037       | 9-043       | 9-045       | 9-048       | 9-049       | 9-054       | 9-064       | 9-066       | 9-069       |
|                                      |         |        | Sample  | е Туре:  | SOIL        |
|                                      |         |        | Top Dep | oth (m): | 0.30        | 0.20        | 1.00        | 0.10        | 0.30        | 0.10        | 0.10        | 1.10        | 0.10        |
|                                      |         |        | Date Sa | mpled:   | 16-Feb-2016 | 17-Feb-2016 |
| Determinand                          | Accred. | SOP    | Units   | LOD      |             |             |             |             |             |             |             |             |             |
| Dibenz(a,h)Anthracene                | N       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      |
| Benzo[g,h,i]perylene                 | М       | 2800   | mg/kg   | 0.10     | 0.38        | 1.3         |             | < 0.10      | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      |
| Total Of 16 PAH's                    | N       | 2800   | mg/kg   | 2.0      | 10          | 21          |             | < 2.0       | < 2.0       | < 2.0       | < 2.0       |             | < 2.0       |
| Total Phenois                        | М       | 2920   | mg/kg   | 0.30     | < 0.30      | < 0.30      |             | < 0.30      | < 0.30      | < 0.30      | < 0.30      |             | < 0.30      |



| Project: STN3505NM - Chipping Lane  |         |        |          |          |             |             |             |             |             |             |             |             |             |
|-------------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Soiltechnics Limited        |         |        | mtest Jo |          | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    |
| Quotation No.:                      | (       | Chemte | st Sam   | ple ID.: | 267972      | 267973      | 267974      | 267975      | 267976      | 267977      | 267978      | 267979      | 267980      |
| Order No.: 21137                    |         |        | nt Samp  |          | TP108       | TP108       | TP108       | TP110       | TP110       | TP112       | TP113       | TP114       | TP114       |
|                                     |         | Clie   | ent Sam  | ple ID.: | 9-072       | 7-003       | 9-073       | 9-080       | 9-083       | 9-089       | 9-093       | 9-098       | 9-100       |
|                                     |         |        | Sample   | e Type:  | SOIL        |
|                                     |         |        | Top Dep  | oth (m): | 0.10        | 0.50        | 1.80        | 0.10        | 1.70        | 0.10        | 0.10        | 0.10        | 1.30        |
|                                     |         |        | Date Sa  | mpled:   | 17-Feb-2016 |
| Determinand                         | Accred. | SOP    | Units    | LOD      |             |             |             |             |             |             |             |             |             |
| Moisture                            | N       | 2030   | %        | 0.020    | 27          | 18          | 15          | 30          | 17          | 28          | 23          | 34          | 19          |
| Soil Colour                         | N       | 2040   |          | N/A      | Brown       |
| Other Material                      | N       | 2040   |          | N/A      | Roots       | NONE        | NONE        | NONE        | Roots       | NONE        | Roots       | NONE        | NONE        |
| Soil Texture                        | N       | 2040   |          | N/A      | Clay        |
| pH                                  | M       | 2010   |          | N/A      | 7.3         | 8.2         | 8.0         | 5.2         | 8.3         | 5.8         | 5.5         | 5.5         | 8.0         |
| Boron (Hot Water Soluble)           | М       | 2120   | mg/kg    | 0.40     | < 0.40      | < 0.40      |             | 0.85        |             | 0.71        | 0.42        | < 0.40      |             |
| Sulphate (2:1 Water Soluble) as SO4 | М       | 2120   | g/l      | 0.010    |             |             | < 0.010     |             | < 0.010     |             |             |             | < 0.010     |
| Total Sulphur                       | М       | 2175   | %        | 0.010    |             |             | 0.014       |             | < 0.010     |             |             |             | 0.016       |
| Cyanide (Complex)                   | М       | 2300   | mg/kg    | 0.50     | < 0.50      | < 0.50      |             | < 0.50      |             | < 0.50      | < 0.50      | < 0.50      |             |
| Cyanide (Free)                      | М       | 2300   | mg/kg    | 0.50     | < 0.50      | < 0.50      |             | < 0.50      |             | < 0.50      | < 0.50      | < 0.50      |             |
| Cyanide (Total)                     | М       | 2300   | mg/kg    | 0.50     | < 0.50      | < 0.50      |             | < 0.50      |             | < 0.50      | < 0.50      | < 0.50      |             |
| Sulphate (Acid Soluble)             | М       | 2430   | %        | 0.010    |             |             | < 0.010     |             | < 0.010     |             |             |             | < 0.010     |
| Arsenic                             | М       | 2450   | mg/kg    | 1.0      | 13          | 13          |             | 16          |             | 12          | 11          | 11          |             |
| Beryllium                           | U       | 2450   | mg/kg    | 1.0      | < 1.0       | < 1.0       |             | 1.1         |             | < 1.0       | 1.0         | < 1.0       |             |
| Cadmlum                             | М       | 2450   | mg/kg    | 0.10     | 0.27        | 0.17        |             | 0.36        |             | 0.27        | 0.29        | 0.25        |             |
| Chromium                            | М       | 2450   | mg/kg    | 1.0      | 36          | 26          |             | 33          |             | 29          | 29          | 29          |             |
| Copper                              | М       | 2450   | mg/kg    | 0.50     | 27          | 29          |             | 29          |             | 21          | 21          | 23          |             |
| Mercury                             | М       | 2450   | mg/kg    | 0.10     | 0.16        | 0.12        |             | 0.18        |             | 0.17        | 0.17        | 0.18        |             |
| Nickel                              | М       | 2450   | mg/kg    | 0.50     | 33          | 29          |             | 29          |             | 25          | 25          | 22          |             |
| Lead                                | М       | 2450   | mg/kg    | 0.50     | 52          | 35          |             | 80          |             | 53          | 47          | 54          |             |
| Selenium                            | М       | 2450   | mg/kg    | 0.20     | 0.26        | < 0.20      |             | 0.49        |             | 0.43        | 0.38        | 0.46        |             |
| Vanadium                            | U       | 2450   | mg/kg    | 5.0      | 39          | 28          |             | 42          |             | 33          | 34          | 38          |             |
| Zinc                                | М       | 2450   | mg/kg    | 0.50     | 74          | 63          |             | 80          |             | 63          | 75          | 74          |             |
| Chromium (Hexavalent)               | N       | 2490   | mg/kg    | 0.50     | < 0.50      | < 0.50      |             | < 0.50      |             | < 0.50      | < 0.50      | < 0.50      |             |
| Organic Matter                      | M       | 2625   | %        | 0.40     | 3.5         | 2.8         |             | 5.7         |             | 4.8         | 4.3         | 8.1         |             |
| Naphthalene                         | М       | 2800   | mg/kg    | 0.10     | < 0.10      | 0.17        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Acenaphthylene                      | N       | 2800   | mg/kg    | 0.10     | < 0.10      | < 0.10      |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Acenaphthene                        | М       | 2800   | mg/kg    | 0.10     | < 0.10      | < 0.10      |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Fluorene                            | М       | 2800   | mg/kg    | 0.10     | < 0.10      | < 0.10      |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Phenanthrene                        | M       | 2800   | mg/kg    | 0.10     | < 0.10      | 0.72        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Anthracene                          | М       | 2800   | mg/kg    | 0.10     | < 0.10      | 0.13        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Fluoranthene                        | М       | 2800   | mg/kg    | 0.10     | < 0.10      | 1.9         |             | < 0.10      |             | < 0.10      | < 0.10      | 0.21        |             |
| Pyrene                              | М       | 2800   | mg/kg    | 0.10     | < 0.10      | 1.5         |             | < 0.10      |             | < 0.10      | < 0.10      | 0.23        |             |
| Benzo[a]anthracene                  | М       | 2800   | mg/kg    |          | < 0.10      | 0.41        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Chrysene                            | М       | 2800   | mg/kg    | 0.10     | < 0.10      | 0.70        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Benzo[b]fluoranthene                | М       | 2800   | mg/kg    |          | < 0.10      | 0.82        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Benzo[k]fluoranthene                | М       | 2800   | mg/kg    | 0.10     | < 0.10      | 0.21        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Benzo[a]pyrene                      | М       | 2800   | mg/kg    |          | < 0.10      | 0.49        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Indeno(1,2,3-c,d)Pyrene             | М       | 2800   | mg/kg    | 0.10     | < 0.10      | 0.32        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |

Page 5 of 11



| i Toject. O Missosium - Ompping Lane |         |        |         |          |             |             |             |             |             |             |             |             |             |
|--------------------------------------|---------|--------|---------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Soiltechnics Limited         |         | Che    | mtest J | ob No.:  | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    |
| Quotation No.:                       | (       | Chemte | est Sam | ple ID.: | 267972      | 267973      | 267974      | 267975      | 267976      | 267977      | 267978      | 267979      | 267980      |
| Order No.: 21137                     |         | Clie   | nt Samp | le Ref.: | TP108       | TP108       | TP108       | TP110       | TP110       | TP112       | TP113       | TP114       | TP114       |
|                                      |         | Cli    | ent Sam | ple ID.: | 9-072       | 7-003       | 9-073       | 9-080       | 9-083       | 9-089       | 9-093       | 9-098       | 9-100       |
|                                      |         |        | Sampl   | e Type:  | SOIL        |
|                                      |         |        | Top De  | oth (m): | 0.10        | 0.50        | 1.80        | 0.10        | 1.70        | 0.10        | 0.10        | 0.10        | 1.30        |
|                                      |         |        | Date Sa | ampled:  | 17-Feb-2016 |
| Determinand                          | Accred. | SOP    | Units   | LOD      |             |             |             |             |             |             |             |             |             |
| Dibenz(a,h)Anthracene                | N       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Benzo[g,h,i]perylene                 | М       | 2800   | mg/kg   | 0.10     | < 0.10      | 0.29        |             | < 0.10      |             | < 0.10      | < 0.10      | < 0.10      |             |
| Total Of 16 PAH's                    | N       | 2800   | mg/kg   | 2.0      | < 2.0       | 7.7         |             | < 2.0       |             | < 2.0       | < 2.0       | < 2.0       |             |
| Total Phenois                        | М       | 2920   | mg/kg   | 0.30     | < 0.30      | < 0.30      |             | < 0.30      |             | < 0.30      | < 0.30      | < 0.30      |             |



| Project: STN3505NM - Chipping Lane  |         |        |         |          |             |             |             |             |             |             |             |             |             |
|-------------------------------------|---------|--------|---------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Soiltechnics Limited        |         | Che    | mtest J | ob No.:  | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    |
| Quotation No.:                      | (       | Chemte | st Sam  | ple ID.: | 267981      | 267982      | 267983      | 267984      | 267985      | 267986      | 267987      | 267988      | 267989      |
| Order No.: 21137                    |         | Clie   | nt Samp | le Ref.: | TP116       | TP117       | TP118       | TP118       | TP119       | TP120       | TP122       | TP123       | TP124       |
|                                     |         | Clic   | ent Sam | ple ID.: | 9-106       | 9-110       | 9-114       | 9-117       | 9-119       | 9-124       | 9-137       | 9-138       | 9-142       |
|                                     |         |        | Sampl   | е Туре:  | SOIL        |
|                                     |         |        | Top De  | oth (m): | 0.10        | 0.10        | 0.10        | 1.80        | 0.10        | 0.10        | 1.80        | 0.10        | 0.10        |
|                                     |         |        | Date Sa | ampled:  | 17-Feb-2016 | 17-Feb-2016 | 18-Feb-2016 |
| Determinand                         | Accred. | SOP    | Units   | LOD      |             |             |             |             |             |             |             |             |             |
| Moisture                            | N       | 2030   | %       | 0.020    | 24          | <b>2</b> 5  | 25          | 16          | 39          | 30          | 15          | 32          | 27          |
| Soil Colour                         | N       | 2040   |         | N/A      | Brown       |
| Other Material                      | N       | 2040   |         | N/A      | Roots       | Roots       | Roots       | Roots       | Roots       | Roots       | NONE        | Roots       | Roots       |
| Soil Texture                        | N       | 2040   |         | N/A      | Clay        |
| pH                                  | M       | 2010   |         | N/A      | 5.8         | 5.8         | 5.3         | 8.3         | 5.6         | 5.5         | 8.3         | 5.9         | 5.6         |
| Boron (Hot Water Soluble)           | М       | 2120   | mg/kg   | 0.40     | 0.45        | 0.56        | 0.53        |             | 0.61        | 0.77        |             | 0.72        | 0.72        |
| Sulphate (2:1 Water Soluble) as SO4 | М       | 2120   | g/l     | 0.010    |             |             |             | < 0.010     |             |             | < 0.010     |             |             |
| Total Sulphur                       | М       | 2175   | %       | 0.010    |             |             |             | 0.014       |             |             | 0.013       |             |             |
| Cyanide (Complex)                   | М       | 2300   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |
| Cyanide (Free)                      | М       | 2300   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |
| Cyanide (Total)                     | М       | 2300   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |
| Sulphate (Acid Soluble)             | М       | 2430   | %       | 0.010    |             |             |             | < 0.010     |             |             | < 0.010     |             |             |
| Arsenic                             | M       | 2450   | mg/kg   | 1.0      | 12          | 11          | 14          |             | 22          | 14          |             | 10          | 10          |
| Beryllium                           | U       | 2450   | mg/kg   | 1.0      | 1.1         | 1.1         | 1.1         |             | 1.3         | 1.2         |             | 1.0         | 1.0         |
| Cadmlum                             | М       | 2450   | mg/kg   | 0.10     | 0.30        | 0.21        | 0.29        |             | 0.50        | 0.32        |             | 0.28        | 0.26        |
| Chromium                            | М       | 2450   | mg/kg   | 1.0      | 35          | 35          | 37          |             | 46          | 36          |             | 32          | 32          |
| Copper                              | М       | 2450   | mg/kg   | 0.50     | 36          | 27          | 32          |             | 44          | 26          |             | 22          | 20          |
| Mercury                             | М       | 2450   | mg/kg   | 0.10     | 0.23        | 0.17        | 0.20        |             | 0.25        | 0.18        |             | 0.16        | 0.16        |
| Nickel                              | М       | 2450   | mg/kg   | 0.50     | 29          | 30          | 26          |             | 31          | 29          |             | 27          | 25          |
| Lead                                | М       | 2450   | mg/kg   | 0.50     | 65          | 41          | 61          |             | 96          | 57          |             | 42          | 42          |
| Selenium                            | М       | 2450   | mg/kg   | 0.20     | 0.34        | 0.32        | 0.41        |             | 0.67        | 0.38        |             | 0.37        | 0.39        |
| Vanadium                            | U       | 2450   | mg/kg   | 5.0      | 44          | 40          | 49          |             | 59          | 42          |             | 37          | 43          |
| Zinc                                | М       | 2450   | mg/kg   | 0.50     | 110         | 59          | 83          |             | 120         | 82          |             | 62          | 54          |
| Chromium (Hexavalent)               | N       | 2490   | mg/kg   | 0.50     | < 0.50      | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |             | < 0.50      | < 0.50      |
| Organic Matter                      | M       | 2625   | %       | 0.40     | 4.3         | 5.2         | 6.6         |             | 10          | 5.5         |             | 5.7         | 4.3         |
| Naphthalene                         | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Acenaphthylene                      | N       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Acenaphthene                        | M       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Fluorene                            | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Phenanthrene                        | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.75        |             | 0.11        | < 0.10      |             | < 0.10      | < 0.10      |
| Anthracene                          | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.16        |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Fluoranthene                        | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 1.5         |             | 0.36        | < 0.10      |             | < 0.10      | < 0.10      |
| Pyrene                              | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 1.4         |             | 0.31        | < 0.10      |             | < 0.10      | < 0.10      |
| Benzo[a]anthracene                  | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.29        |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Chrysene                            | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | 0.33        |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Benzo[b]fluoranthene                | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Benzo[k]fluoranthene                | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Benzo[a]pyrene                      | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Indeno(1,2,3-c,d)Pyrene             | М       | 2800   | mg/kg   | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |

Page 7 of 11



| i Toject. O Missosium - Ompping Lane |         |        |          |          |             |             |             |             |             |             |             |             |             |
|--------------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Client: Soiltechnics Limited         |         | Che    | mtest Jo | ob No.:  | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    | 16-06222    |
| Quotation No.:                       | (       | Chemte | est Sam  | ple ID.: | 267981      | 267982      | 267983      | 267984      | 267985      | 267986      | 267987      | 267988      | 267989      |
| Order No.: 21137                     |         | Clie   | nt Samp  | le Ref.: | TP116       | TP117       | TP118       | TP118       | TP119       | TP120       | TP122       | TP123       | TP124       |
|                                      |         | Cli    | ent Sam  | ple ID.: | 9-106       | 9-110       | 9-114       | 9-117       | 9-119       | 9-124       | 9-137       | 9-138       | 9-142       |
|                                      |         |        | Sample   | е Туре:  | SOIL        |
|                                      |         |        | Top Dep  | oth (m): | 0.10        | 0.10        | 0.10        | 1.80        | 0.10        | 0.10        | 1.80        | 0.10        | 0.10        |
|                                      |         |        | Date Sa  | mpled:   | 17-Feb-2016 | 17-Feb-2016 | 18-Feb-2016 |
| Determinand                          | Accred. | SOP    | Units    | LOD      |             |             |             |             |             |             |             |             |             |
| Dibenz(a,h)Anthracene                | N       | 2800   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Benzo[g,h,i]perylene                 | М       | 2800   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |             | < 0.10      | < 0.10      |
| Total Of 16 PAH's                    | N       | 2800   | mg/kg    | 2.0      | < 2.0       | < 2.0       | 4.4         |             | < 2.0       | < 2.0       |             | < 2.0       | < 2.0       |
| Total Phenois                        | М       | 2920   | mg/kg    | 0.30     | < 0.30      | < 0.30      | < 0.30      |             | < 0.30      | < 0.30      |             | < 0.30      | < 0.30      |

| Client: Soiltechnics Limited        |         | Che   | mtest Jo | ob No.:  | 16-06222    | 16-06222    |
|-------------------------------------|---------|-------|----------|----------|-------------|-------------|
| Quotation No.:                      |         | hemte | st Sam   | ple ID.: | 267990      | 267991      |
| Order No.: 21137                    |         | Clie  | nt Samp  | le Ref.: | TP125       | TP125       |
|                                     |         | Cli   | ent Sam  | ple ID.: | 9-148       | 9-149       |
|                                     |         |       | Sample   | е Туре:  | SOIL        | SOIL        |
|                                     |         |       | Top Dep  | oth (m): | 0.50        | 1.20        |
|                                     |         |       | Date Sa  | mpled:   | 18-Feb-2016 | 18-Feb-2016 |
| Determinand                         | Accred. | SOP   | Units    | LOD      |             |             |
| Moisture                            | N       | 2030  | %        | 0.020    | 21          | 21          |
| Soil Colour                         | N       | 2040  |          | N/A      | Brown       | Brown       |
| Other Material                      | N       | 2040  |          | N/A      | Roots       | Roots       |
| Soil Texture                        | N       | 2040  |          | N/A      | Clay        | Clay        |
| pH                                  | М       | 2010  |          | N/A      | 7.9         | 6.5         |
| Boron (Hot Water Soluble)           | М       | 2120  | mg/kg    | 0.40     | < 0.40      |             |
| Sulphate (2:1 Water Soluble) as SO4 | М       | 2120  | g/l      | 0.010    |             | < 0.010     |
| Total Sulphur                       | М       | 2175  | %        | 0.010    |             | 0.022       |
| Cyanide (Complex)                   | М       | 2300  | mg/kg    | 0.50     | < 0.50      |             |
| Cyanide (Free)                      | М       | 2300  | mg/kg    | 0.50     | < 0.50      |             |
| Cyanide (Total)                     | М       | 2300  | mg/kg    | 0.50     | < 0.50      |             |
| Sulphate (Acid Soluble)             | М       | 2430  | %        | 0.010    |             | 0.030       |
| Arsenic                             | М       | 2450  | mg/kg    | 1.0      | 11          |             |
| Beryllium                           | U       | 2450  | mg/kg    | 1.0      | < 1.0       |             |
| Cadmium                             | М       | 2450  | mg/kg    | 0.10     | 0.18        |             |
| Chromium                            | М       | 2450  | mg/kg    | 1.0      | 32          |             |
| Copper                              | М       | 2450  | mg/kg    | 0.50     | 18          |             |
| Mercury                             | М       | 2450  | mg/kg    | 0.10     | 0.10        |             |
| Nickel                              | М       | 2450  | mg/kg    | 0.50     | 31          |             |
| Lead                                | М       | 2450  | mg/kg    | 0.50     | 26          |             |
| Selenium                            | М       | 2450  | mg/kg    | 0.20     | 0.23        |             |
| Vanadium                            | U       | 2450  | mg/kg    | 5.0      | 32          |             |
| Zinc                                | М       | 2450  | mg/kg    | 0.50     | 46          |             |
| Chromium (Hexavalent)               | N       | 2490  | mg/kg    | 0.50     | < 0.50      |             |
| Organic Matter                      | М       | 2625  | %        | 0.40     | 2.8         |             |
| Naphthalene                         | М       | 2800  |          | 0.10     | < 0.10      |             |
| Acenaphthylene                      | N       | 2800  |          | 0.10     | < 0.10      |             |
| Acenaphthene                        | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |
| Fluorene                            | М       | 2800  |          | 0.10     | < 0.10      |             |
| Phenanthrene                        | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |
| Anthracene                          | М       | 2800  |          | 0.10     | < 0.10      |             |
| Fluoranthene                        | М       | 2800  |          | 0.10     | < 0.10      |             |
| Pyrene                              | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |
| Benzo[a]anthracene                  | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |
| Chrysene                            | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |
| Benzo[b]fluoranthene                | М       | 2800  |          | 0.10     | < 0.10      |             |
| Benzo[k]fluoranthene                | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |
| Benzo[a]pyrene                      | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |
| Indeno(1,2,3-c,d)Pyrene             | М       | 2800  | mg/kg    | 0.10     | < 0.10      |             |

Page 9 of 11



| Froject. 3 11133031111 - Chipping La | 1110    |       |         |          |             |             |
|--------------------------------------|---------|-------|---------|----------|-------------|-------------|
| Client: Soiltechnics Limited         |         | Che   | mtest J | ob No.:  | 16-06222    | 16-06222    |
| Quotation No.:                       |         | hemte | st Sam  | ple ID.: | 267990      | 267991      |
| Order No.: 21137                     |         | Clie  | nt Samp | le Ref.: | TP125       | TP125       |
|                                      |         | Cli   | ent Sam | ple ID.: | 9-148       | 9-149       |
|                                      |         |       | Sample  | е Туре:  | SOIL        | SOIL        |
|                                      |         |       | Top Dep | oth (m): | 0.50        | 1.20        |
|                                      |         |       | Date Sa | mpled:   | 18-Feb-2016 | 18-Feb-2016 |
| Determinand                          | Accred. | SOP   | Units   | LOD      |             |             |
| Dibenz(a,h)Anthracene                | N       | 2800  | mg/kg   | 0.10     | < 0.10      |             |
| Benzo[g,h,i]perylene                 | M       | 2800  | mg/kg   | 0.10     | < 0.10      |             |
| Total Of 16 PAH's                    | N       | 2800  | mg/kg   | 2.0      | < 2.0       |             |
| Total Phenois                        | М       | 2920  | ma/ka   | 0.30     | < 0.30      |             |



#### **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

#### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

Adopted Model:

Mercury#

Nickel Selenium Vanadium



0.2

32.9

0.4

84.1 Zinc

Mercury#

Selenium

Vanadium

Nickel

#### Analysis of test data in relation to concentrations of inorganic chemical contaminants

0.2

27.7

0.4

39.5

76.0

0

0.7

0.2 21

| Receptor:       |           | Current si         | ite user        |          |          |       |                              |                            |               |                     |               |      |               |                                |                          |                            |                    |                |
|-----------------|-----------|--------------------|-----------------|----------|----------|-------|------------------------------|----------------------------|---------------|---------------------|---------------|------|---------------|--------------------------------|--------------------------|----------------------------|--------------------|----------------|
| Test procedur   | .0        |                    | Summ            | ary of t | est data |       |                              | Initial comparison         | Outlier tes   | it                  |               |      |               | Normality                      | test                     |                            | UCL                |                |
| Contaminant     | eline     | Guideline<br>value | No. of<br>tests | Min.     | Max.     | Mean  | of tests<br>e<br>eline value | Initial screening          | outlier       | umber of<br>utilers | tion of<br>er | _    | Concentration | Shapiro-Wilk<br>Normality test | Probability<br>plot test | Data normally distributed? | 95% UCL of<br>mean | Contaminant    |
|                 | Guideline | mg/kg              |                 | mg/kg    | mg/kg    | mg/kg | No. c<br>abov<br>guide       |                            | Pass<br>test? | Num<br>outiji       | Locati        | Dept | mg/kg         |                                |                          |                            | mg/kg              |                |
| Arsenic         | S4UL      | 40                 | 21              | 10.0     | 22.0     | 12.9  | 0                            | Mean value below guideline | n             |                     |               |      |               | not normal                     | not normal               | n                          | 15.4               | Arsenic        |
| Beryllium       | S4UI      | 1.7                | 71              | 1.0      | 1.3      | 1.0   | n                            | Mean value below guideline | п             |                     |               |      |               | not normal                     | not normal               | n                          | 1.1                | Beryllium      |
| Boron           | S4UL      | 11000              | 21              | 0.4      | 0.9      | 0.5   | 0                            | Mean value below guideline | У             |                     |               |      |               | not normal                     | not normal               | n                          | 0.7                | Boron          |
| Cadmium         | S4UL      | 85                 | 21              | 0.2      | 0.5      | 0.3   | ٥                            | Mean value below guideline | n             |                     |               |      |               | not normal                     | not normal               | п                          | 0.3                | Cadmium        |
| Chromium        | S4UL      | 910                | 21              | 23.0     | 46.0     | 32.4  | 0                            | Mean value below guideline | n             |                     |               |      |               | normal                         | normal                   | у                          | 34.3               | Chromium       |
| Copper          | S4UL      | 7100               | 21              | 17.0     | 110.0    | 31.1  | 0                            | Mean value below guideline | n             |                     |               |      |               | not normal                     | not normal               | n                          | 50.6               | Copper         |
| Cyanide (total) | ATK       | 34                 | 21              | 0.5      | 0.5      | 0.5   | 0                            | Mean value below guideline | У             |                     |               |      |               | not normal                     | not normal               | n                          | 0.5                | Cyanide (total |
| l oad           | ATK       | 383                | 21              | 21.0     | 96.0     | 53.0  | 0                            | Mean value below guideline | v             |                     |               |      |               | normal                         | normal                   | v                          | 59.8               | heal           |

Mean value below guldeline

Mean value below guideline

Mean value below guideline

Mean value below guideline

Mean value below guideline

Category 4 Screening Level
Suitable for Use Level as published by LQM/CIEH
Soil Guideline Value as published by the Environment Agency 2009
Generic Assessment Criterion as published by LQM and CIEH
Soil Screening Value as derived by Soiltechnics
Soil Screening Value derived by Atkins
No Guideline Value
Guideline from BPG Note 5 as published by Forest Research C4SL S4UL SGV GAC SSV ATK NGV BPG5

S4UL

S4UL

S4UL

S4UL

S4UL

1.2

180

430

40000

21 0.1 0.3

21 21.0 47.0

21 46.0 120.0

Assumed to be elemental mercury as initial screening value

Title

Analysis of test data in relation to concentrations of inorganic chemical contaminants. Table number 1

not norma

normal

not normal

normal



#### Analysis of test data in relation to concentrations of organic chemical contaminants

Adopted model: Receptor:

| Receptor:              | Current   | site user                   |                 |               |         |               |                                    |                            |                       |                    |                        |       |                        |                                |                          |                            |                             |                       |
|------------------------|-----------|-----------------------------|-----------------|---------------|---------|---------------|------------------------------------|----------------------------|-----------------------|--------------------|------------------------|-------|------------------------|--------------------------------|--------------------------|----------------------------|-----------------------------|-----------------------|
| Test procedure         |           |                             | Summ            | nary of       | test da | ta            |                                    | Initial Screening          | Outlier               | test               |                        |       |                        | Normality 1                    | test                     |                            | UCL                         |                       |
| Contaminant            | Guideline | Guideline<br>value<br>mg/kg | No. of<br>tests | Min.<br>mg/kg | Max.    | Mean<br>mg/kg | No. of tests<br>above<br>guideline | Initial screening          | Pass outlier<br>test? | Number of outliers | Location of<br>outlier | Depth | Concentration<br>mg/kg | Shapiro-Wilk<br>Normality test | Probability<br>plot test | Data normally distributed? | 95% UCL<br>of mean<br>mg/kg | Contaminant           |
| Acenaphthene           | S4UL      | 210                         | 21              | 0.1           | 0.1     | 0.1           | 0                                  | Mean value below guideline | У                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Acenaphthene          |
| Acenaphthylene         | S4UL      | 170                         | 21              | 0.1           | 0.1     | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Acenaphthylene        |
| Anthracene             | S4UL      | 2400                        | 21              | 0.1           | 0.4     | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.2                         | Anthracene            |
| Benzo(a)anthracene     | S4UL      | 7.2                         | 21              | 0.1           | 1.5     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.5                         | Benzo(a)anthracene    |
| Benzo(a)pyrene         | S4UL      | 2.2                         | 21              | 0.1           | 2.0     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.6                         | Benzo(a)pyrene        |
| Benzo(b)fluoranthene   | S4UL      | 2.6                         | 21              | 0.1           | 2.6     | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.8                         | Benzo(b)fluoranthene  |
| Benzo(g,h,i)perylene   | S4UL      | 320                         | 21              | 0.1           | 1.3     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.4                         | Benzo(g,h,i)perylene  |
| Benzo(k)fluoranthene   | S4UL      | 77                          | 21              | 0.1           | 0.8     | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.3                         | Benzo(k)fluoranthene  |
| Chrysene               | S4UL      | 15                          | 21              | 0.1           | 1.9     | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.7                         | Chrysene              |
| Dibenzo(a,h)anthracene | S4UL      | 0.24                        | 21              | 0.1           | 0.1     | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Dibenzo(a,h)anthracer |
| Fluoranthene           | S4UL      | 280                         | 21              | 0.1           | 3.6     | 0.5           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 1.5                         | Fluoranthene          |
| Fluorene               | S4UL      | 170                         | 21              | 0.1           | 0.1     | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Fluorene              |
| ndeno(1,2,3-cd)pyrene  | S4UL      | 27                          | 21              | 0.1           | 1.4     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.5                         | Indeno(1,2,3-cd)pyren |
| Naphthalene            | S4UL      | 2.3                         | 21              | 0.1           | 0.2     | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Naphthalene           |
| Phenanthrene           | S4UL      | 95                          | 21              | 0.1           | 1.6     | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.7                         | Phenanthrene          |
| Phenols                | S4UL      | 280                         | 21              | 0.3           | 0.3     | 0.3           | 0                                  | Mean value below guideline | У                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.3                         | Phenois               |
| Pyrene                 | S4UI      | 620                         | 21              | 0.1           | 3.5     | 0.5           | 0                                  | Mean value below guideline | п                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 1.3                         | Pyrene                |

Category 4 Screening Level
Suitable for Use Level as published by LQM/CIEH
Soil Guideline Value as published by the Environment Agency 2009
Generic Assessment Criterion as published by LQM and CIEH
Soil Screening Value as derived by Soiltechnics
Soil Screening Value derived by Atkins
No Guideline Value

Title
Analysis of test data in relation to concentrations of organic chemical contaminants.

Report ref: STN3505NM-G02 Revision 0

April 2016 Appendix H



#### Analysis of test data in relation to concentrations of inorganic chemical contaminants

| Adopted Model<br>Receptor: | :                   | Residenti<br>Proposed |                 |          |          |       |                               |                            |               |               |                       |       |               |                                |                          |                            |                    |                 |
|----------------------------|---------------------|-----------------------|-----------------|----------|----------|-------|-------------------------------|----------------------------|---------------|---------------|-----------------------|-------|---------------|--------------------------------|--------------------------|----------------------------|--------------------|-----------------|
| Test procedu               | re                  |                       | Summ            | ary of t | est data |       |                               | Initial comparison         | Outlier tes   | st            |                       |       |               | Normality 1                    | test                     |                            | UCL                |                 |
| Contaminant                | Guideline<br>source | Guideline<br>value    | No. of<br>tests | Min.     | Max.     | Mean  | of tests<br>re<br>eline value | Initial screening          | outlier       | ber of<br>ers | ocation of<br>utilier | _     | Concentration | Shapiro-Wilk<br>Normality test | Probability<br>plot test | Data normally distributed? | 95% UCL of<br>mean | Contaminant     |
|                            | Guid                | mg/kg                 |                 | mg/kg    | mg/kg    | mg/kg | No. of<br>above<br>guideli    |                            | Pass<br>test? | Number        | Local                 | Depth | mg/kg         |                                |                          |                            | mg/kg              |                 |
| Arsenic                    | S4UL                | 37                    | 21              | 10.0     | 22.0     | 12.9  | 0                             | Mean value below guideline | n             |               |                       |       |               | not normal                     | not normal               | п                          | 15.4               | Arsenic         |
| Beryllium                  | S4UL                | 1.7                   | 21              | 1.0      | 1.3      | 1.0   | ñ                             | Mean value helow guideline | п             |               |                       |       |               | not normal                     | not normal               | n                          | 1.1                | Beryllium       |
| Boron                      | S4UL                | 290                   | 21              | 0.4      | 0.9      | 0.5   | 0                             | Mean value below guideline | У             |               |                       |       |               | not normal                     | not normal               | n                          | 0.7                | Boron           |
| Cadmium                    | S4UL                | 11                    | 21              | 0.2      | 0.5      | 0.3   | ٥                             | Mean value below guideline | n             |               |                       |       |               | not normal                     | not normal               | п                          | 0.3                | Cadmium         |
| Chromium                   | S4UL                | 910                   | 21              | 23.0     | 46.0     | 32.4  | 0                             | Mean value below guideline | n             |               |                       |       |               | normal                         | normal                   | у                          | 34.3               | Chromium        |
| Copper                     | S4UL                | 2400                  | 21              | 17.0     | 110.0    | 31.1  | 0                             | Mean value below guideline | n             |               |                       |       |               | not normal                     | not normal               | n                          | 50.6               | Copper          |
| Cyanide (total)            | ATK                 | 34                    | 21              | 0.5      | 0.5      | 0.5   | 0                             | Mean value below guideline | у             |               |                       |       |               | not normal                     | not normal               | n                          | 0.5                | Cyanide (total) |
| Lead                       | ATK                 | 276                   | 21              | 21.0     | 96.0     | 53.0  | 0                             | Mean value below guideline | У             |               |                       |       |               | normal                         | normal                   | у                          | 59.8               | Lead            |
| Mercury#                   | S4UL                | 1.2                   | 21              | 0.1      | 0.3      | 0.2   | 0                             | Mean value below guideline | У             |               |                       |       |               | normal                         | normal                   | у                          | 0.2                | Mercury#        |
| Nickel                     | \$4UL               | 180                   | 21              | 21.0     | 47.0     | 27.7  | 0                             | Mean value below guideline | n             |               |                       |       |               | not normal                     | not normal               | n                          | 32.9               | Nickel          |
| Selenium                   | S4UL                | 250                   | 21              | 0.2      | 0.7      | 0.4   | 0                             | Mean value below guideline | п             |               |                       |       |               | normal                         | normal                   | у                          | 0.4                | Selenium        |
| Vanadlum                   | S4UL                | 410                   | 21              | 28.0     | 59.0     | 39.5  | ō                             | Mean value below guideline | п             |               |                       |       |               | normal                         | normal                   | у                          | 47.7               | Vanadlum        |
| Zinc                       | S4UL                | 3700                  | 21              | 46.0     | 120.0    | 76.0  | 0                             | Mean value below guideline | у             |               |                       |       |               | normal                         | normal                   | У                          | 84.1               | Zinc            |

C4SL S4UL SGV GAC SSV ATK NGV BPG5

Category 4 Screening Level
Suitable for Use Level as published by LQM/CIEH
Soil Guideline Value as published by the Environment Agency 2009
Generic Assessment Criterion as published by LQM and CIEH
Soil Screening Value as derived by Soiltechnics
Soil Screening Value derived by Atkins
No Guideline Value
Guideline from BPG Note 5 as published by Forest Research

Assumed to be elemental mercury as initial screening value

Title
Analysis of test data in relation to concentrations of inorganic chemical contaminants. Table number



#### Analysis of test data in relation to concentrations of organic chemical contaminants

| Adopted model:<br>Receptor: | Residen<br>Propose  | tial<br>d site user         |                 |               |          |               |                                    |                            |                       |                    |                        |       |                        |                                |                          |                            |                             |                        |
|-----------------------------|---------------------|-----------------------------|-----------------|---------------|----------|---------------|------------------------------------|----------------------------|-----------------------|--------------------|------------------------|-------|------------------------|--------------------------------|--------------------------|----------------------------|-----------------------------|------------------------|
| Test procedure              |                     |                             | Summ            | ary of        | test dat | ta            |                                    | Initial Screening          | Outlier               | test               |                        |       |                        | Normality t                    | est                      |                            | UCL                         |                        |
| Contaminant                 | Guideline<br>source | Guideline<br>value<br>mg/kg | No. of<br>tests | Min.<br>mg/kg | Max.     | Mean<br>mg/kg | No. of tests<br>above<br>guideline | Initial screening          | Pass outlier<br>test? | Number of outliers | Location of<br>outlier | Depth | Concentration<br>mg/kg | Shapiro-Wilk<br>Normality test | Probability<br>plot test | Data normally distributed? | 95% UCL<br>of mean<br>mg/kg | Contaminant            |
| Acenaphthene                | S4UL                | 3000                        | 21              | 0.1           | 0.1      | 0.1           | 0                                  | Mean value below guideline | v                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Acenaphthene           |
| Acenaphthylene              | S4UL                | 2900                        | 21              | 0.1           | 0.1      | 0.1           | 0                                  | Mean value below guideline | y                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Acenaphthylene         |
| Anthracene                  | S4UL                | 31000                       | 21              | 0.1           | 0.4      | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.2                         | Anthracene             |
| Benzo(a)anthracene          | S4UL                | 11                          | 21              | 0.1           | 1.5      | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.5                         | Benzo(a)anthracene     |
| Benzo(a)pyrene              | S4UL                | 3.2                         | 21              | 0.1           | 2.0      | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.6                         | Benzo(a)pyrene         |
| Benzo(b)fluoranthene        | S4UL                | 3.9                         | 21              | 0.1           | 2.6      | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 8.0                         | Benzo(b)fluoranthene   |
| Benzo(g,h,i)perylene        | S4UL                | 360                         | 21              | 0.1           | 1.3      | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.4                         | Benzo(g,h,i)perylene   |
| Benzo(k)fluoranthene        | S4UL                | 110                         | 21              | 0.1           | 8.0      | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.3                         | Benzo(k)fluoranthene   |
| Chrysene                    | S4UL                | 30                          | 21              | 0.1           | 1.9      | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.7                         | Chrysene               |
| Dibenzo(a,h)anthracene      | S4UL                | 0.31                        | 21              | 0.1           | 0.1      | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Dibenzo(a,h)anthracene |
| Fluoranthene                | S4UL                | 1500                        | 21              | 0.1           | 3.6      | 0.5           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 1.5                         | Fluoranthene           |
| Fluorene                    | S4UL                | 2800                        | 21              | 0.1           | 0.1      | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Fluorene               |
| Indeno(1,2,3-cd)pyrene      | 54UL                | 45                          | 21              | 0.1           | 1.4      | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.5                         | Indeno(1,2,3-cd)pyrene |
| Naphthalene                 | S4UL                | 2.3                         | 21              | 0.1           | 0.2      | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Naphthalene            |
| Phenanthrene                | S4UL                | 1300                        | 21              | 0.1           | 1.6      | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | п                          | 0.7                         | Phenanthrene           |
| Phenols                     | S4UL                | 750                         | 21              | 0.3           | 0.3      | 0.3           | 0                                  | Mean value below guideline | y                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.3                         | Phenois                |

Mean value below guideline

Catagory 4 Screening Level
Suitable for Use Level as published by LQM/CIEH
Soil Guideline Value as published by the Environment Agency 2009
Generic Assessment Criterion as published by LQM and CIEH
Soil Screening Value as derived by Soiltechnics
Soil Screening Value derived by Atkins
No Guideline Value
Guideline from BPG Note 5 as published by Forest Research

Assumed to be elemental mercury as initial screening value

Title
Analysis of test data in relation to concentrations of organic chemical contaminants.

Report ref: STN3505NM-G02 Revision 0

April 2016 Appendix H



#### Analysis of test data in relation to concentrations of inorganic chemical contaminants

| Adopted Model<br>Receptor: | l:                  |                             | I/Commer<br>tion opera |          |          |               |                                          |                            |                       |                    |                      |       |                        |                                |                          |                            |                             |                 |
|----------------------------|---------------------|-----------------------------|------------------------|----------|----------|---------------|------------------------------------------|----------------------------|-----------------------|--------------------|----------------------|-------|------------------------|--------------------------------|--------------------------|----------------------------|-----------------------------|-----------------|
| Test procedu               | re                  |                             | Summ                   | ary of t | est data | i             |                                          | Initial comparison         | Outlier tes           | st                 |                      |       |                        | Normality 1                    | test                     |                            | UCL                         |                 |
| Contaminant                | Guideline<br>source | Guideline<br>value<br>mg/kg | No. of<br>tests        | Min.     | Max.     | Mean<br>mg/kg | No. of tests<br>above<br>guideline value | Initial screening          | Pass outlier<br>test? | Number of outliers | ocation of<br>utiler | Depth | Concentration<br>mg/kg | Shapiro-Wilk<br>Normality test | Probability<br>plot test | Data normally distributed? | 95% UCL of<br>mean<br>mg/kg | Contaminant     |
|                            | <u> 5 8</u>         | mg/kg                       |                        | mg/kg    | mg/ng    | IIIg/kg       | No.<br>guic                              |                            | E 2                   | žď                 | 28                   | ă     | mg/kg                  |                                |                          |                            | mg/ng                       |                 |
| Arsenic                    | SGV                 | 640                         | 21                     | 10.0     | 22.0     | 12.9          | 0                                        | Mean value below guideline | n                     |                    |                      |       |                        | not normal                     | not normal               | п                          | 15.4                        | Arsenic         |
| Beryllium                  | GAC                 | 420                         | 21                     | 1.0      | 1.3      | 1.0           | n                                        | Mean value below guideline | п                     |                    |                      |       |                        | not normal                     | not normal               | п                          | 1.1                         | Beryllium       |
| Boron                      | GAC                 | 192000                      | 21                     | 0.4      | 0.9      | 0.5           | 0                                        | Mean value below guideline | У                     |                    |                      |       |                        | not normal                     | not normal               | n                          | 0.7                         | Boron           |
| Cadmium                    | SGV                 | 230                         | 21                     | 0.2      | 0.5      | 0.3           | ٥                                        | Mean value below guideline | n                     |                    |                      |       |                        | not normal                     | not normal               | n                          | 0.3                         | Cadmium         |
| Chromium                   | GAC                 | 30400                       | 21                     | 23.0     | 46.0     | 32.4          | 0                                        | Mean value below guideline | n                     |                    |                      |       |                        | normal                         | normal                   | У                          | 34.3                        | Chromium        |
| Copper                     | GAC                 | 71700                       | 21                     | 17.0     | 110.0    | 31.1          | 0                                        | Mean value below guideline | n                     |                    |                      |       |                        | not normal                     | not normal               | n                          | 50.6                        | Copper          |
| Cyanide (total)            | ATK                 | 34                          | 21                     | 0.5      | 0.5      | 0.5           | 0                                        | Mean value below guideline | У                     |                    |                      |       |                        | not normal                     | not normal               | n                          | 0.5                         | Cyanide (total) |
| Lead                       | ATK                 | 6490                        | 21                     | 21.0     | 96.0     | 53.0          | 0                                        | Mean value below guideline | У                     |                    |                      |       |                        | normal                         | normal                   | у                          | 59.8                        | Lead            |
| Mercury#                   | SGV                 | 26                          | 21                     | 0.1      | 0.3      | 0.2           | 0                                        | Mean value below guldeline | У                     |                    |                      |       |                        | normal                         | normal                   | у                          | 0.2                         | Mercury#        |
| Nickel                     | SGV                 | 1800                        | 21                     | 21.0     | 47.0     | 27.7          | 0                                        | Mean value below guideline | n                     |                    |                      |       |                        | not normal                     | not normal               | n                          | 32.9                        | Nickel          |
| Selenium                   | SGV                 | 13000                       | 21                     | 0.2      | 0.7      | 0.4           | 0                                        | Mean value below guideline | п                     |                    |                      |       |                        | normal                         | normal                   | у                          | 0.4                         | Selenium        |
| Vanadlum                   | GAC                 | 3160                        | 21                     | 28.0     | 59.0     | 39.5          | 0                                        | Mean value below guideline | п                     |                    |                      |       |                        | normal                         | normal                   | у                          | 47.7                        | Vanadium        |
| Zinc                       | GAC                 | 665000                      | 21                     | 46.0     | 120.0    | 76.0          | 0                                        | Mean value below guideline | у                     |                    |                      |       |                        | normal                         | normal                   | У                          | 84.1                        | Zinc            |

Category 4 Screening Level
Suitable for Use Level as published by LQM/CIEH
Soil Guideline Value as published by the Environment Agency 2009
Generic Assessment Criterion as published by LQM and CIEH
Soil Screening Value as derived by Soiltechnics
Soil Screening Value as derived by Atkins
No Guideline Value
Guideline from BPG Note 5 as published by Forest Research

Assumed to be elemental mercury as initial screening value

Title
Analysis of test data in relation to concentrations of inorganic chemical contaminants. Table number



#### Analysis of test data in relation to concentrations of organic chemical contaminants

Adopted model: Receptor: Industrial/Commercial
Construction operative and vegetation

| THE CONTROL OF THE CO | ••••••              | • • p •                     |                 | одонано |         |               |                                    |                            |                       |                    |                        |       |                        |                                |                          |                            |                             |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|-----------------|---------|---------|---------------|------------------------------------|----------------------------|-----------------------|--------------------|------------------------|-------|------------------------|--------------------------------|--------------------------|----------------------------|-----------------------------|----------------------|
| Test procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                             | Sumn            | nary of | test da | ta            |                                    | Initial Screening          | Outlier               | test               |                        |       |                        | Normality 1                    | test                     |                            | UCL                         |                      |
| Contaminant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Guideline<br>source | Guideline<br>value<br>mg/kg | No. of<br>tests | Min.    | Max.    | Mean<br>mg/kg | No. of tests<br>above<br>guideline | Initial screening          | Pass outlier<br>test? | Number of outliers | Location of<br>outlier | Depth | Concentration<br>mg/kg | Shapiro-Wilk<br>Normality test | Probability<br>plot test | Data normally distributed? | 95% UCL<br>of mean<br>mg/kg | Contaminant          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                             |                 |         |         |               |                                    |                            |                       |                    |                        |       |                        |                                |                          |                            |                             |                      |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S4UL                | 3000                        | 21              | 0.1     | 0.1     | 0.1           | 0                                  | Mean value below guideline | У                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Acenaphthene         |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S4UL                | 2900                        | 21              | 0.1     | 0.1     | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Acenaphthylene       |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S4UL                | 31000                       | 21              | 0.1     | 0.4     | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.2                         | Anthracene           |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S4UL                | 11                          | 21              | 0.1     | 1.5     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.5                         | Benzo(a)anthracene   |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S4UL                | 3.2                         | 21              | 0.1     | 2.0     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.6                         | Benzo(a)pyrene       |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S4UL                | 3.9                         | 21              | 0.1     | 2.6     | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.8                         | Benzo(b)fluoranthen  |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S4UL                | 360                         | 21              | 0.1     | 1.3     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.4                         | Benzo(g,h,i)perylene |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S4UL                | 110                         | 21              | 0.1     | 0.8     | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.3                         | Benzo(k)fluoranthen  |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S4UL                | 30                          | 21              | 0.1     | 1.9     | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.7                         | Chrysene             |
| Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S4UL                | 0.31                        | 21              | 0.1     | 0.1     | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Dibenzo(a,h)anthrace |
| luoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S4UL                | 1500                        | 21              | 0.1     | 3.6     | 0.5           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 1.5                         | Fluoranthene         |
| luorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S4UL                | 2800                        | 21              | 0.1     | 0.1     | 0.1           | 0                                  | Mean value below guideline | у                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Fluorene             |
| ndeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S4UL                | 45                          | 21              | 0.1     | 1.4     | 0.2           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | п                          | 0.5                         | Indeno(1,2,3-cd)pyre |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S4UL                | 2.3                         | 21              | 0.1     | 0.2     | 0.1           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.1                         | Naphthalene          |
| henanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S4UL                | 1300                        | 21              | 0.1     | 1.6     | 0.3           | 0                                  | Mean value below guideline | n                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.7                         | Phenanthrene         |
| Phenols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S4UL                | 750                         | 21              | 0.3     | 0.3     | 0.3           | 0                                  | Mean value below guideline | y                     |                    |                        |       |                        | not normal                     | not normal               | n                          | 0.3                         | Phenols              |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S4UL                | 3700                        | 21              | 0.1     | 3.5     | 0.5           | 0                                  | Mean value below guideline | п                     |                    |                        |       |                        | not normal                     | not normal               | п                          | 1.3                         | Pyrene               |

Catagory 4 Screening Level
Suitable for Use Level as published by LQM/CIEH
Soil Guideline Value as published by the Environment Agency 2009
Generic Assessment Criterion as published by LQM and CIEH
Soil Screening Value as derived by Soiltechnics
Soil Screening Value derived by Atkins
No Guideline Value
Guideline from BPG Note 5 as published by Forest Research

Title
Analysis of test data in relation to concentrations of organic chemical contaminants.

Report ref: STN3505NM-G02 Revision 0

April 2016 Appendix H

Mercury

Selenium Vanadlum

Nickel

S4UL

S4UL

S4UL

S4UI

BPG5



0.2

32.9 Nickel

0.4

84.1 Zinc

Mercury#

Selenium

Vanadium

#### Analysis of test data in relation to concentrations of inorganic chemical contaminants

0.2

27.7

0.4

39.5

76.0

0

| Adopted Model:<br>Receptor: |           | Industrial<br>Vegetatio |                 | cial and E | BPG5     |       |                                |                            |             |               |               |       |               |                                |                          |                            |                    |                 |
|-----------------------------|-----------|-------------------------|-----------------|------------|----------|-------|--------------------------------|----------------------------|-------------|---------------|---------------|-------|---------------|--------------------------------|--------------------------|----------------------------|--------------------|-----------------|
| Test procedure              |           |                         | Summ            | ary of to  | est data |       |                                | Initial comparison         | Outlier tes | t             |               |       |               | Normality t                    | est                      |                            | UCL                |                 |
| Contaminant                 | eline     | Guideline<br>value      | No. of<br>tests | Min.       | Max.     | Mean  | of tests<br>we<br>deline value | Initial screening          | outlier     | ber of<br>ers | tion of<br>er | _     | Concentration | Shapiro-Wilk<br>Normality test | Probability<br>plot test | Data normally distributed? | 95% UCL of<br>mean | Contaminant     |
|                             | Guideline | mg/kg                   |                 | mg/kg      | mg/kg    | mg/kg | No. o<br>abov<br>guide         |                            | Pass (test? | Number        | Locati        | Depth | mg/kg         |                                |                          |                            | mg/kg              |                 |
| Arsenic                     | S4UL      | 640                     | 21              | 10.0       | 22.0     | 12.9  | 0                              | Mean value below guideline | n           |               |               |       |               | not normal                     | not normal               | n                          | 15.4               | Arsenic         |
| Beryllium                   | S4UI      | 12                      | 21              | 1.0        | 1.3      | 1.0   | n                              | Mean value helow guideline | n           |               |               |       |               | not normal                     | not normal               | n                          | 1.1                | Beryllium       |
| Boron                       | S4UL      | 240000                  | 21              | 0.4        | 0.9      | 0.5   | 0                              | Mean value below guideline | У           |               |               |       |               | not normal                     | not normal               | n                          | 0.7                | Boron           |
| Cadmium                     | S4UL      | 190                     | 21              | 0.2        | 0.5      | 0.3   | ٥                              | Mean value below guideline | n           |               |               |       |               | not normal                     | not normal               | п                          | 0.3                | Cadmium         |
| Chromium                    | S4UL      | 8600                    | 21              | 23.0       | 46.0     | 32.4  | 0                              | Mean value below guideline | n           |               |               |       |               | normal                         | normal                   | у                          | 34.3               | Chromium        |
| Copper                      | BPG5      | 130                     | 21              | 17.0       | 110.0    | 31.1  | 0                              | Mean value below guideline | n           |               |               |       |               | not normal                     | not normal               | n                          | 50.6               | Copper          |
| Cyanide (total)             | ATK       | 34                      | 21              | 0.5        | 0.5      | 0.5   | 0                              | Mean value below guideline | у           |               |               |       |               | not normal                     | not normal               | n                          | 0.5                | Cyanide (total) |
| Lead                        | ATK       | 6490                    | 21              | 21.0       | 96.0     | 53.0  | 0                              | Mean value below guideline | У           |               |               |       |               | normal                         | normal                   | У                          | 59.8               | Lead            |

Mean value below guldeline

Mean value below guideline

Mean value below guideline

Mean value below guideline

Mean value below guideline

Category 4 Screening Level
Suitable for Use Level as published by LQM/CIEH
Soil Guideline Value as published by the Environment Agency 2009
Generic Assessment Criterion as published by LQM and CIEH
Soil Screening Value as derived by Soiltechnics
Soil Screening Value derived by Atkins
No Guideline Value
Guideline from BPG Note 5 as published by Forest Research C4SL S4UL SGV GAC SSV ATK NGV BPG5 Assumed to be elemental mercury as initial screening value

0.7

21 0.1 0.3

21 21.0 47.0

21 0.2

21 46.0 120.0

58

980

12000

300

Title

Analysis of test data in relation to concentrations of inorganic chemical contaminants. Table number 7

not norma

normal

not normal

normal



## Summary of petroleum hydrocarbon test results

### BTEX (Red highlights indicate exceedance of guideline value)

| Indicator    | unit  | S4UL | Concentra | ition        |         |
|--------------|-------|------|-----------|--------------|---------|
|              |       |      | TP101     | <b>TP108</b> | TP125   |
|              |       |      | 0.90      | 0.50         | 0.50    |
| Benzene      | mg/kg | 0.33 | < 0.001   | < 0.001      | < 0.001 |
| Toluene      | mg/kg | 610  | < 0.001   | < 0.001      | < 0.001 |
| Ethylbenzene | mg/kg | 350  | < 0.001   | < 0.001      | < 0.001 |
| o-Xylene     | mg/kg | 250  | < 0.001   | < 0.001      | < 0.001 |
| m,p-Xylene   | mg/kg | 230  | < 0.001   | < 0.001      | < 0.001 |

#### Hydrocarbon banding (Red highlights indicate exceedance of GAC value)

| Fraction            | unit  | S4UL  | Concentra | ation        |         |  |
|---------------------|-------|-------|-----------|--------------|---------|--|
|                     |       |       | TP101     | <b>TP108</b> | TP125   |  |
|                     |       |       | 0.90      | 0.50         | 0.50    |  |
| Aliphatic           |       |       |           |              |         |  |
| EC 5 - 6            | mg/kg | 30    | < 0.010   | < 0.010      | < 0.010 |  |
| EC >6 - 8           | mg/kg | 73    | < 0.010   | < 0.010      | < 0.010 |  |
| EC >8 - 10          | mg/kg | 19    | < 0.10    | < 0.10       | < 0.10  |  |
| EC >10 - 12         | mg/kg | 93    | < 0.10    | < 0.10       | < 0.10  |  |
| EC >12 - 16         | mg/kg | 740   | < 0.10    | < 0.10       | < 0.10  |  |
| EC >16 - 35         | mg/kg | 45000 | < 0.10    | < 0.10       | 30      |  |
| EC >35 - 44         | mg/kg | 45000 | < 0.10    | < 0.10       | 2.3     |  |
| Aromatic            |       |       |           |              |         |  |
| EC 5 - 7 (benzene)  | mg/kg | 65    | < 0.010   | < 0.010      | < 0.010 |  |
| EC >7 - 8 (toluene) | mg/kg | 120   | < 0.010   | < 0.010      | < 0.010 |  |
| EC >8 - 10          | mg/kg | 27    | < 0.10    | < 0.10       | < 0.10  |  |
| EC >10 - 12         | mg/kg | 69    | < 0.10    | < 0.10       | < 0.10  |  |
| EC >12 - 16         | mg/kg | 140   | < 0.10    | < 0.10       | < 0.10  |  |
| EC >16 - 21         | mg/kg | 250   | < 0.10    | < 0.10       | < 0.10  |  |
| EC >21 - 35         | mg/kg | 890   | < 0.10    | < 0.10       | 14      |  |
| EC >35 - 44         | mg/kg | 890   | < 0.10    | < 0.10       | 1.4     |  |

#### **Notes**

S4UL Suitable for Use Level as published by LQM/CIEH

| Title                                         |
|-----------------------------------------------|
| Comparison of measured concentrations of      |
| petroleum hydrocarbons with guideline values. |

Table number

8



## **Summary of leachate test results**

| Receptor       | Groundwater |
|----------------|-------------|
| Water type     | Freshwater  |
| Fish type      | Cyprinid    |
| Water hardness | 50-100      |

Water hardness 50-100 mg/l (Based on information presented on the Drinking Water

| water naroness                | 50-100 mg/i (based on information presented on the |           |            |             |        | the Drinkin | e Drinking water |  |  |
|-------------------------------|----------------------------------------------------|-----------|------------|-------------|--------|-------------|------------------|--|--|
|                               |                                                    |           | Inspectora | te website) |        |             |                  |  |  |
| Contaminant                   | Guideline value                                    | Guideline | Location   | TP102       | TP110  | TP114       | TP125            |  |  |
|                               | (μg/l)                                             | source    | Depth (m)  | 0.20        | 0.10   | 0.10        | 0.50             |  |  |
| Inorganics (µg/I)             |                                                    |           |            |             |        |             |                  |  |  |
| Arsenic                       | 50                                                 | EQS (f)   |            | 2.5         | 2.7    | 5.6         | 1.4              |  |  |
| Boron                         | 2000                                               | EQS (f)   |            | < 20        | 26.0   | < 20        | < 20             |  |  |
| Cadmium                       | 5                                                  | EQS (f)   |            | 0.1         | 0.3    | 0.2         | < 0.080          |  |  |
| Chromium                      | 175                                                | EQS (f)   |            | 2.4         | 4.5    | 6.6         | < 1.0            |  |  |
| Copper                        | 6                                                  | EQS (f)   |            | 6.3         | 13.0   | 13.0        | 5.7              |  |  |
| Lead                          | <b>12</b> 5                                        | EQS (f)   |            | 6.8         | 11.0   | 10.0        | 1.2              |  |  |
| Mercury                       | 1                                                  | EQS (f)   |            | < 0.50      | < 0.50 | < 0.50      | < 0.50           |  |  |
| Nickel                        | 100                                                | EQS (f)   |            | 1.9         | 4.3    | 4.2         | < 1.0            |  |  |
| Selenium <sup>1</sup>         | 10                                                 | UKDWS     |            | < 1.0       | < 1.0  | < 1.0       | < 1.0            |  |  |
| Vanadium <sup>2</sup>         | 20                                                 | EQS (f)   |            | 6.4         | 7.6    | 18.0        | 2.4              |  |  |
| Zinc                          | 175                                                | EQS (f)   |            | 5.3         | 17.0   | 18.0        | 1.9              |  |  |
| Free Cyanide <sup>1</sup>     | 50                                                 | UKDWS     |            | < 50        | < 50   | < 50        | < 50             |  |  |
| Nitrate as N                  | 50000                                              | UKDWS     |            | 6500        | 4800   | 2400        | 2000             |  |  |
| Sulphate as SO4               | 400000                                             | EQS(f)    |            | 10000       | 4200   | 2700        | 2400             |  |  |
| PAH (μg/l)                    |                                                    |           |            |             |        |             |                  |  |  |
| Benzo(a)pyrene <sup>1,4</sup> | 0.01                                               | UKDWS     | <u> </u>   | < 0.10      | < 0.10 | < 0.10      | < 0.10           |  |  |
| Naphthalene <sup>2</sup>      | 10                                                 | EQS (f)   |            | < 0.10      | < 0.10 | < 0.10      | < 0.10           |  |  |
| Sum of 4 PAH <sup>1</sup>     | 0.1                                                | UKDWS     |            | <0.1*       | <0.1*  | <0.1*       | <0.1*            |  |  |

#### Notes

- 1 EQS values not available
- 2 UKDWS not available
- 3 Lower detectable limit above UKDWS. Concentrations below detectable limits are not considered further.
- \* Taken as lower detection limit
- # Taken as lower detection limit of a single compound

UKDWS UK Drinking Water Standard Guideline taken from "The Water Supply (Water Quality) Regulations 2000"

EQS (f) Environmental Quality Standard for freshwater published by the Environment Agency

EQS (s) Environmental Quality Standard for saltwater published by the Environment Agency

| Title                                                                            | Table number |
|----------------------------------------------------------------------------------|--------------|
| Comparison of measured concentrations with guideline values for water receptors. | 9            |



# soiltechnics

#### Initial Conceptual Model

Current site use commercial/industrial Proposed site use residential

| Source                              | Pathway                          |                   |                                                               |                                   | Receptor                 |                                      | Risk assessment to CIRIA C552 |                                                       |   |                                                        |                                   |       |                                    |             |
|-------------------------------------|----------------------------------|-------------------|---------------------------------------------------------------|-----------------------------------|--------------------------|--------------------------------------|-------------------------------|-------------------------------------------------------|---|--------------------------------------------------------|-----------------------------------|-------|------------------------------------|-------------|
|                                     | Humans                           |                   |                                                               |                                   |                          |                                      | Vegetation                    | Water                                                 |   |                                                        |                                   |       | Consequence of risk occurring Risk |             |
|                                     | Ingestion of air-<br>borne dusts | Ingestion of soil | Ingestion of vegetables<br>and soil attached to<br>vegetables | Inhalation of air-<br>borne dusts | Inhalation of<br>vapours | Dermal contact<br>with soil and dust | deposition to shoots          | Percolation of water<br>through contaminated<br>soils |   | Saturation of<br>contaminated soils<br>by flood waters |                                   |       | vla most likely pathway            |             |
| olls                                |                                  |                   |                                                               |                                   |                          |                                      |                               |                                                       |   |                                                        |                                   |       |                                    |             |
| Made Ground - Inorganic and organic | Likely                           | Likely            | Unlikely                                                      | Likely                            | Likely                   | Likely                               | -                             | -                                                     | - | -                                                      | Current site users                | Adult | Medium                             | Moderate    |
| ontmainants                         | Likely                           | Likely            | Likely                                                        | Likely                            | Likely                   | Likely                               |                               |                                                       |   |                                                        | Proposed site users               | Child | Medium                             | Moderate    |
|                                     | Likely                           | Likely            | Unlikely                                                      | Likely                            | Likely                   | Likely                               |                               |                                                       |   |                                                        | Construction operatives           | Adult | Medium                             | Moderate    |
|                                     |                                  | -                 |                                                               |                                   | -                        | -                                    | Likely                        |                                                       |   |                                                        | Vegetation (current and proposed) |       | Mild                               | Low/moderat |
|                                     |                                  |                   |                                                               |                                   |                          |                                      |                               |                                                       |   |                                                        |                                   |       |                                    |             |

#### Final Conceptual Model

Current site use commercial/industrial residential residential

| Source                                                  | Pathway                          |                   |                                                               | Receptor                          |                          | Risk assessment to CIRIA C552 |                                                               |                                                       |                                                             |                                                        |                                   |       |                                    |           |
|---------------------------------------------------------|----------------------------------|-------------------|---------------------------------------------------------------|-----------------------------------|--------------------------|-------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|-------|------------------------------------|-----------|
|                                                         | Humans                           |                   |                                                               |                                   |                          |                               | Vegetation                                                    | Water                                                 |                                                             |                                                        |                                   |       | Consequence of risk occurring Risk |           |
|                                                         | Ingestion of air-<br>borne dusts | Ingestion of soil | Ingestion of vegetables<br>and soil attached to<br>vegetables | Inhalation of air-<br>borne dusts | inhalation of<br>vapours |                               | Root uptake,<br>t deposition to shoots<br>and foliage contact | Percolation of water<br>through contaminated<br>soils | Near-surface water<br>run-off through<br>contaminated soils | Saturation of<br>contaminated soils<br>by flood waters |                                   |       | via most likely pathway            |           |
| oils                                                    |                                  |                   |                                                               |                                   |                          |                               |                                                               |                                                       |                                                             |                                                        |                                   |       |                                    |           |
| No measured exceedances of inorganic                    | Likely                           | Likely            | Unlikely                                                      | Likely                            | Likely                   | Likely                        |                                                               |                                                       |                                                             |                                                        | Current site users                | Adult | Minor                              | Low       |
| or organic contaminants                                 | Likely                           | Likely            | Likely                                                        | Likely                            | Likely                   | Likely                        |                                                               | -                                                     | -                                                           |                                                        | Proposed site users               | Child | Minor                              | Low       |
|                                                         | Likely                           | Likely            | Unlikely                                                      | Likely                            | Likely                   | Likely                        |                                                               |                                                       |                                                             |                                                        | Construction operatives           | Adult | Minor                              | Low       |
|                                                         | -                                | -                 |                                                               | -                                 | -                        | -                             | Likely                                                        | -                                                     | -                                                           | -                                                      | Vegetation (current and proposed) | -     | Minor                              | Low       |
|                                                         |                                  |                   |                                                               |                                   |                          |                               |                                                               | Unlikely                                              | Likely                                                      | Unlikely                                               | Water (current and proposed)      | -     | Minor                              | Low       |
| Leachate                                                |                                  |                   |                                                               |                                   |                          |                               |                                                               |                                                       |                                                             |                                                        |                                   |       |                                    |           |
| levated leachable concentrations of<br>opper in Topsoil |                                  |                   | -                                                             | -                                 | -                        |                               | -                                                             | Unlikely                                              | Likely                                                      | Unlikely                                               | Water (current and proposed)      | -     | Mild                               | Low-moder |

0



Proposed residential development Land east of Chipping Lane Longridge, Preston

Ground Investigation Report (Phase 3)



Proposed residential development
Phase 3
Land East of Chipping Lane
Longridge
Preston
PR3 2NA

## **GROUND INVESTIGATION REPORT**

|             | Soiltechnics Ltd. Ivy Mill Business Centre, Cro<br>Tel: (0161) 9470270 | own Street, Failsworth, Manchester, M35 9BG<br>E-mail: mail@soiltechnics.net |
|-------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Report ori  | ginators                                                               | •                                                                            |
| Prepared    |                                                                        |                                                                              |
| by          |                                                                        | tomasz.opara@soiltechnics.net                                                |
|             |                                                                        | Assistant geo-environmental Engineer, Soiltechnics                           |
|             | Tomasz Opara B.Sc., M.Sc.                                              | Limited                                                                      |
| Supervised/ |                                                                        |                                                                              |
| Reviewed    |                                                                        |                                                                              |
| by          |                                                                        |                                                                              |
|             |                                                                        | sam.dean@soiltechnics.net                                                    |
|             | Sam Dean B.Sc. (Hons)., FGS., MIEnvSc.                                 | Director, Soiltechnics Limited                                               |







# Aerial photograph of site



Approximate Phase 3 site boundaries edged in pink



## **Report status and format**

| Report  | Principal coverage     | Report status     |
|---------|------------------------|-------------------|
| section |                        | Revision Comments |
| 1       | Executive summary      |                   |
| 2       | Introduction           |                   |
| 3       | Desk study information |                   |
| 4       | Chemical contamination |                   |
| 5       | Gaseous contamination  |                   |
| 6       | Future investigations  |                   |
| 7       | Drawings               |                   |

## **List of drawings**

| Drawing | Principal coverage                                                                | Status   |          |
|---------|-----------------------------------------------------------------------------------|----------|----------|
|         |                                                                                   | Revision | Comments |
| 01      | Site location plan                                                                |          |          |
| 02      | Plan showing existing site features and location and extent of development phases |          |          |

## **List of appendices**

| Appendix | Content                                                                |
|----------|------------------------------------------------------------------------|
| Α        | Definitions of geo-environmental terms used in this report             |
| В        | Copies of Statutory Undertakers replies                                |
| С        | Copy of Phase 1 Desk Study report undertaken by Curtins Consulting Ltd |
| D        | Illustrative masterplan showing indicative development layout          |
| E        | Copy of correspondence received from Environmental Health              |
| F        | Conceptual site model                                                  |



## 1 Executive summary

We recommend the following executive summary is not read in isolation to the main report which follows.

| Topic                                                 |      |                                                           | Summary                                                                                                                                           |                                                                            |                                       |                            | Abnormals |  |  |  |  |
|-------------------------------------------------------|------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|----------------------------|-----------|--|--|--|--|
| Site condition                                        | ns   |                                                           | The site comprised three open grassed fields separated by mature hedgerows                                                                        |                                                                            |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           | and sporadic trees, positioned on the north-western outskirts of Longridge,                                                                       |                                                                            |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           | Preston. It is understood that the land is currently used by livestock for                                                                        |                                                                            |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           | grazing. Higgin B                                                                                                                                 | rook is also recorde                                                       | d along part of                       | the south-western          |           |  |  |  |  |
|                                                       |      |                                                           | boundary of the sit                                                                                                                               |                                                                            |                                       |                            |           |  |  |  |  |
| Proposals                                             |      |                                                           | We understand th                                                                                                                                  | ne scheme in its entir                                                     | ety will consist of                   | redevelopment as           |           |  |  |  |  |
|                                                       |      |                                                           | areas of Public Ope                                                                                                                               | en Space and recreation                                                    | onal grounds.                         |                            |           |  |  |  |  |
| Investigations                                        |      |                                                           | Limited at this sta<br>information.                                                                                                               | Limited at this stage to collection, presentation and review of desk study |                                       |                            |           |  |  |  |  |
| History of the site                                   |      | Historically the site has remained undeveloped farm land. |                                                                                                                                                   |                                                                            |                                       |                            |           |  |  |  |  |
| Ground                                                | Soi  |                                                           | Strata.                                                                                                                                           | Typical Soil type                                                          | Approximate th                        | ickness                    |           |  |  |  |  |
| conditions                                            | -    | ological<br>Juence)                                       | Alluvium (NW of site only)                                                                                                                        | Clays and silts                                                            | <3m                                   |                            |           |  |  |  |  |
|                                                       |      | ,                                                         | Devensian Till                                                                                                                                    | Clay                                                                       | >5m                                   |                            |           |  |  |  |  |
|                                                       |      |                                                           | Pendleside                                                                                                                                        | Sandstone with                                                             | Up to 50m                             |                            |           |  |  |  |  |
|                                                       |      |                                                           | Sandstone                                                                                                                                         | mudstone and                                                               | - F                                   |                            |           |  |  |  |  |
|                                                       |      |                                                           | Member                                                                                                                                            | siltstones                                                                 |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           | Bowland Shale                                                                                                                                     | Mudstone,                                                                  | Up to 200m                            |                            |           |  |  |  |  |
|                                                       |      |                                                           | Formation                                                                                                                                         | siltstone with                                                             | Op to zoom                            |                            |           |  |  |  |  |
|                                                       |      |                                                           | TOTTILLION                                                                                                                                        | sandstones                                                                 |                                       |                            |           |  |  |  |  |
|                                                       | Gr   | oundwater                                                 | Strata.                                                                                                                                           | Aquifer                                                                    | Likely                                | Groundwater                |           |  |  |  |  |
|                                                       | and  |                                                           | Julata.                                                                                                                                           | designation                                                                | permeability                          | Groundwater                |           |  |  |  |  |
|                                                       |      | ohydrology                                                | Alluvium                                                                                                                                          | Secondary A                                                                | Low-moderate                          | Possibly in basal deposits |           |  |  |  |  |
|                                                       |      |                                                           | Devensian Till                                                                                                                                    | Unproductive<br>strata (r)                                                 | Low                                   | Unlikely                   |           |  |  |  |  |
|                                                       |      |                                                           | Pendleside                                                                                                                                        | Secondary A                                                                | Low to                                | Possibly at depth          |           |  |  |  |  |
|                                                       |      |                                                           | Sandstone                                                                                                                                         | aquifer (r)                                                                | moderate                              |                            |           |  |  |  |  |
|                                                       |      |                                                           | Member                                                                                                                                            |                                                                            |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           | Bowland Shale                                                                                                                                     | Secondary A and                                                            | Low to                                | Possibly at depth          |           |  |  |  |  |
|                                                       |      |                                                           | Formation                                                                                                                                         | secondary                                                                  | moderate                              |                            |           |  |  |  |  |
|                                                       |      |                                                           |                                                                                                                                                   | undifferentiated                                                           |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           |                                                                                                                                                   | aquifers (r)                                                               |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           |                                                                                                                                                   | n a source protection                                                      |                                       |                            |           |  |  |  |  |
| Land stability                                        | /    |                                                           | Site levels gently fa                                                                                                                             | all to the north-west a                                                    | nd thus not consid                    | ered to be at risk of      |           |  |  |  |  |
|                                                       |      |                                                           | instability. Site not                                                                                                                             | affected by opencast                                                       | workings or past n                    | nine workings              |           |  |  |  |  |
| Soil classifica                                       | tion |                                                           | N/A                                                                                                                                               |                                                                            |                                       |                            |           |  |  |  |  |
| Possible foundation solution                          |      | N/A                                                       |                                                                                                                                                   |                                                                            |                                       |                            |           |  |  |  |  |
| Soakaway feasibility                                  |      | N/A                                                       |                                                                                                                                                   |                                                                            |                                       |                            |           |  |  |  |  |
| Contamination                                         |      | Chemical                                                  |                                                                                                                                                   | w on site and based o                                                      | n adjacent land us                    | es.                        |           |  |  |  |  |
|                                                       | _    | Gas                                                       |                                                                                                                                                   |                                                                            | · · · · · · · · · · · · · · · · · · · |                            |           |  |  |  |  |
|                                                       |      |                                                           | Alluvium present in the north-western part of the site may contain organic matter which would provide a source of gasses. Given the nature of the |                                                                            |                                       |                            |           |  |  |  |  |
|                                                       |      | development, site considered at low risk.                 |                                                                                                                                                   |                                                                            |                                       |                            |           |  |  |  |  |
| Future investigations                                 |      |                                                           | pose a low risk of                                                                                                                                |                                                                            | dentified receptors.                  |                            |           |  |  |  |  |
|                                                       |      |                                                           | tions not considered r                                                                                                                            | _                                                                          | •                                     |                            |           |  |  |  |  |
|                                                       |      |                                                           |                                                                                                                                                   | ook should be deterr                                                       |                                       |                            |           |  |  |  |  |
|                                                       |      |                                                           |                                                                                                                                                   | completed in relation                                                      |                                       |                            |           |  |  |  |  |
| Statement v                                           | with | respect to                                                |                                                                                                                                                   | ed to present unacce                                                       |                                       |                            |           |  |  |  |  |
| Statement with respect to NPPF paragraphs 120 and 121 |      |                                                           | instability. Remed                                                                                                                                | iation to render the contamination consider                                | site fit for purpo                    | -                          |           |  |  |  |  |



### 2 Introduction

| 2.1 | Objectives                                |
|-----|-------------------------------------------|
| 2.2 | Client instructions and confidentiality   |
| 2.3 | Site location and scheme proposals        |
| 2.4 | Report format and investigation standards |
| 2.5 | Status of this report                     |
| 2.6 | Report distribution                       |

### 2.1 Objectives

- 2.1.1 This report describes a ground investigation carried out for the Phase 3 area of a proposed residential development located on land east of Chipping Lane, Longridge, Preston PR3 2NA.
- 2.1.2 The Phase 3 development of the Chipping Lane site incorporates areas of Public Open Space (POS) and recreational grounds. This report addresses issues relating to the health of identified human receptors and risks to controlled waters from ground conditions at the site.
- 2.1.3 A Phase 1 Desk Study Assessment has been previously undertaken for the site by Curtins Consulting Ltd (ref EB1355/GL/3692 Revision A dated April 2014). A copy of their report is presented in Appendix L. We understand that we have the benefit of using such information and have provided a summary of the data in Section 3 of this report. This will also form a basis for our interpretative chemical and gaseous contamination assessments presented in Sections 4 and 5 respectively.
- 2.1.4 The investigation has also been produced to support a planning application for the site (ref 3/2014/0764) by satisfying National Planning Policies Framework sections 120 and 121.

### 2.2 Client instructions and confidentiality

- 2.2.1 This report was prepared in June 2016 acting on instructions received from our client Barratt Homes (Manchester).
- 2.2.2 This report has been prepared for the sole benefit of our above named instructing client, but this report, and its contents, remains the property of Soiltechnics Limited until payment in full of our invoices in connection with production of this report.
- 2.2.3 Our original investigation proposals were outlined in our correspondence to Barratt Homes of 20<sup>th</sup> January 2016. The investigation generally followed our original investigation proposals. The investigation process was also determined to maintain as far as possible the original investigation budget costs.



### 2.3 Site location and scheme proposals

- 2.3.1 The National Grid reference for the site is 360447, 437970. A plan showing the location of the site is presented on Drawing 01, with the extent of the development phases presented on Drawing 02.
- 2.3.2 We understand the scheme in its entirety will comprise the construction of up to 363 dwellings within what is termed Phases 1 and 2 (refer to Drawing 02 for details), with associated landscaping, gardens, hardstanding and access roads. This report refers to the Phase 3 area in which areas of POS and recreational grounds are proposed in the northern and eastern areas of the development site.
- 2.3.3 We have received layout drawings of the proposed scheme with the indicative layout presented in Appendix D.

### 2.4 Report format and investigation standards

- 2.4.1 Sections 2 to 3 of this report describe the factual aspects of the investigation with Section 4 providing a risk assessment of likely chemical contamination with section 5 describing a similar risk assessment in relation to gaseous contamination. Section 6 outlines a strategy for any future investigations required to progress the scheme to detailed design and construction.
- 2.4.2 This report describes both contamination and geotechnical aspects of the site. The desk study process followed the principles of BS10175: 2011 'Investigation of potentially Contaminated Sites Code of Practice' and limited to a preliminary investigation as described in this document.
- 2.4.3 The extent and result of the preliminary investigation (desk study) undertaken by Curtins Consulting Ltd, in addition to site reconnaissance undertaken by Soiltechnics Ltd, is reported in Section 3.

#### 2.5 Status of this report

- 2.5.1 This report is final based on our current instructions.
- 2.5.2 This investigation has been carried out and reported based on our understanding of best practice. Improved practices, technology, new information and changes in legislation may necessitate an alteration to the report in whole or part after publication. Hence, should the development commence after expiry of one year from the publication date of this report then we would recommend the report be referred back to Soiltechnics for reassessment. Equally, if the nature of the development changes, Soiltechnics should be advised and a reassessment carried out if considered appropriate.



## 2.6 Report distribution

2.6.1 This report has been prepared to assist in the design and planning process of the development and normally will require distribution to the following parties, although this list may not be exhaustive:

| Party                                           | Reason                                                                                                                   |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Client                                          | For information/reference and cost planning.                                                                             |
| Developer/Contractor/project manager            | To ensure procedures are implemented, programmed and costed.                                                             |
| Planning department                             | Potentially to discharge planning conditions.                                                                            |
| Environment Agency                              | If ground controlled waters are affected and obtain approvals to<br>any remediation strategies.                          |
| Independent inspectors such as Building Control | To ensure procedures are implemented and compliance with building regulations.                                           |
| Project design team                             | To progress the design.                                                                                                  |
| Principal Designer (PD)                         | To advise in construction risk identification and management under the Construction (Design and Management) Regulations. |
| Table 2.6                                       |                                                                                                                          |



## 3 Desk study information and site observations

| 3.1  | General                                                                           |
|------|-----------------------------------------------------------------------------------|
| 3.2  | Description of the site                                                           |
| 3.3  | Injurious and invasive weeds and asbestos                                         |
| 3.4  | History of the site                                                               |
| 3.5  | Geology and geohydrology of the area                                              |
| 3.6  | Landfill and infilled ground                                                      |
| 3.7  | Radon                                                                             |
| 3.8  | Flood risk                                                                        |
| 3.9  | Enquiries with Statutory Undertakers                                              |
| 3.10 | Enquiries with Local Authority Building Control and Environmental Health Officers |

#### 3.1 General

3.1.1 A Phase 1 Detailed Desk Top Study has been previously undertaken for the site by Curtins Consulting Ltd (reference EB1355/GL/3692, revision A, issue 01, dated 14<sup>th</sup> April 2014). A copy of their report is presented in Appendix C. We understand that we have the benefit of using such information and have provided a summary of the data in following paragraphs, together with our own site observations. It should be noted that we have tailored the information to suite the current site boundary for the Phase 3 development area, which is shown in a slightly different position in the Curtins report.

### 3.2 Description of the site

- 3.2.1 The site is positioned on the north-western outskirts of Longridge, Preston, at an elevation of between approximately 101m and 122m AOD and with the topography of the site falling in a north-westerly direction. The site comprised of three open grassed fields separated by hedgerows and trees between approximately 2m and 15m in height. Localised ponding of surface water was evident, with two small ponds present along the eastern boundary of the most north-westerly located parcel of land. Higgin Brook is also recorded along part of the south-western boundary of this parcel of land, flowing in a north-westerly direction and culverted beyond the location of the adjacent cricket pavilion.
- 3.2.2 The site was bound to the north and east by further open grassed fields. Chipping Lane, further fields and a cricket pitch were located to the west. The grassed fields which form the Phase 1 and Phase 2 development areas are present to the south, with residential housing and Willows Farm present to the south-east.
- 3.2.3 A plan showing existing site features and location of exploratory points is presented as Drawing 02.



### 3.3 Injurious and invasive weeds and asbestos

#### 3.3.1 Injurious and invasive weeds

- 3.3.1.1 The following weeds are controlled under the Weeds Act 1959:
  - Common ragwort
  - Spear thistle
  - Creeping (or field) thistle
  - Broad-leaved dock
  - Curled dock
- 3.3.1.2 Whilst it is not an offence to have the above weeds growing on your land, you must:
  - Stop them spreading to agricultural land, particularly grazing areas or land used for forage, like silage and hay
  - Choose the most appropriate control method for the your site
  - Not plant them in the wild
- 3.3.1.3 Should you allow the spread of these weeds to another parties land, Natural England could serve you with an Enforcement Notice. You can also be prosecuted if you allow animals to suffer by eating these weeds.
- 3.3.1.4 In addition to the above, you must not plant in the wild or cause certain invasive and non-native plants to grow in the wild as outlined in the Wildlife and Countryside Act 1981. It is an offence under section 14(2) of the act to 'plant or otherwise cause to grow in the wild' any plants listed in schedule 9, part II. This can include moving contaminated soil or plant cuttings. The offence carries a fine or custodial sentence of up to two years. The most commonly found invasive, non-native plants include:
  - Japanese knotweed
  - Giant hogweed
  - Himalayan balsam
  - Rhododendron ponticum
  - New Zealand pigmyweed
- 3.3.1.5 You are not legally obliged to remove these plants or to control them. However, if you allow Japanese knotweed to spread to another party's land, you could be prosecuted for causing a private nuisance.
- 3.3.1.6 The presence of such weeds on site may have considerable effects on the cost/ timescale in developing the site. Japanese knotweed can cause significant damage to buildings, roads and pavements following development, if untreated prior to development.
- 3.3.1.7 Our investigations exclude surveys to identify the presence of injurious and invasive weeds. We did not observe any obvious evidence the above species; however, we recommend specialists in the identification and procedures to deal with injurious and invasive weeds are appointed prior to commencement of any works on site.



#### 3.3.2 Asbestos

- 3.3.2.1 Our investigations exclude surveys to identify the presence or absence of asbestos on site. It should be noted, however, that where intrusive investigations were undertaken we did not observe any obvious evidence of potential asbestos containing materials. This information does not constitute a site-specific risk assessment and we recommend specialists in the identification and control/disposal of asbestos are appointed prior to commencement of any works on site.
- 3.3.2.2 The presence of asbestos on site may have considerable effects on the cost/timescale in developing the site. There is good guidance in relation to asbestos available on the Health and Safety Executive (HSE) website.

### 3.4 History of the site

3.4.1 The recent pertinent history of the site, updated from the Curtins summary to reflect the current site boundary, is presented in the following table:

| Summai<br>Date  | On site                                                               | Off site                                                                                                                                                                                                                                            |
|-----------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1847            | Open fields including a<br>number of small ponds and<br>marshy areas. | Surrounding land predominantly agricultural. Quarrying works recorded between 500m and 1000m east of the site.                                                                                                                                      |
| 1893 to<br>1914 | No significant change                                                 | Pitt Street Mills (Corn & Bone) and a smithy are some 300m to the south. An iron and brass foundry present 350m to the south-west of the site. Victoria Mill and gasometer present 100m to south-eastern boundary. Tan Yard 500m to the south-east. |
| 1932 to<br>1956 | No significant change                                                 | The Pitt Street Mills (Corn & Bone) and smithy buildings recorded as a Bobbin works. Tank recorded at Willow Farm to the south-east of the site.                                                                                                    |
| 1961 to<br>1967 | No significant change                                                 | The Bobbin works is no longer recorded and the site has been redeveloped as Ashley Dairy. Some residential development has also occurred to the south and west.                                                                                     |
| 1968 to<br>1975 | No significant change                                                 | The iron and brass foundry was labelled as a works.  Significant development is occurring to the south of the slte (Longridge).                                                                                                                     |
| 1975 to<br>1996 | No significant change                                                 | No significant changes                                                                                                                                                                                                                              |
| 2001 to<br>2013 | No significant change                                                 | Ashley Dairy has been redeveloped as a superstore.                                                                                                                                                                                                  |
| Table 3.4       | .1                                                                    |                                                                                                                                                                                                                                                     |