

5.5 Discharge via Infiltration

- 5.5.1 Any impermeable areas that can drain to soakaway or an alternative method of infiltration would significantly improve the sustainability of any surface water systems.
- 5.5.2 The Cranfield Soil and AgriFood Institute (CSAI), Soilscapes viewer identifies the soils to be slowly permeable, seasonally wet, slightly acid but base-rich loamy and clayey. The British Geology Survey (BGS) mapping data indicates that the bedrock geology consists of a mixture of Bowland Shale Formation (Mudstone) and Pendleside Sandstone Member (Sandstone) and has superficial deposits associated with Till and Devensian.
- 5.5.3 Based on the ground conditions identified by the published online datasets, it can be considered that infiltration would not likely provide a viable drainage solution for the development site due to the impermeable strata. A ground investigation report (Ref: STN3505NM-G01) was also undertaken for Phase 1 and identified soakaways were not suitable to be used as a method for managing surface water run-off. Infiltration rates however, vary on a site by site basis and therefore it would be recommended further investigation in the form of Soakaway Testing to BRE365, takes place within Phase 2 & 3 areas upon planning approval, to confirm these areas are also not suitable for an infiltration-based solution.

5.6 Discharge to Watercourse

- 5.6.1 Assuming infiltration is not suitable for managing all the surface water run-off generated by the development, the next method in the drainage hierarchy is discharge surface water to a watercourse. As previously mentioned, most of the site naturally drains into the Ordinary Watercourse crossing the development site.
- 5.6.2 The surface water run-off generated by the development is therefore proposed to mimic the existing situation and discharge into the existing Ordinary Watercourse crossing the development site, as illustrated in the preliminary drainage proposals plan (**Figure 6**). This approach is similar to that proposed and agreed for the earlier Phase 1 and mimics the existing situation through the current mechanisms of run-off management.
- 5.6.3 Detailed design will need to be carried out to confirm whether a site wide gravity solution can be achieved. Although, the site naturally drains to the Ordinary Watercourse at present, when the development proposed levels are considered and formal connections made. It is likely that multiple surface water outfalls will be required to accommodate the layout proposals, the specifics will be confirmed during detailed design.
- 5.6.4 Consents will be required from LCC who are the LLFA and responsible in part for Ordinary Watercourses in terms of proposed works. Consent would be required for any new outfall structures on the Ordinary Watercourse, and any culverting (to accommodate crossings shown on the layout). Agreement would also be required for the proposed rates of discharge to the Ordinary Watercourse, to ensure no increase risk to others result from the site.
- 5.6.5 In accordance with the LCC, there is a requirement to maintain an easement from existing Ordinary Watercourses and Main Rivers. The EA and LCC both require an 8m easement

to be maintained from the Top of Bank of the watercourse into the development area. The easement should provide clear and unimpeded access for future maintenance no fencing, walls or buildings should be present within the designated easement as shown within the proposed planning layout.

Figure 6: Preliminary Proposed Drainage Plan extract (Betts Hydro, 2018)

In accordance with the SuDS Manual (CIRIA 753) and the Non-Statutory Technical 5.6.6 Standards for Sustainable Drainage Systems (March 2015) all sites should endeavour to achieve as close to pre-development greenfield rates as is viable. Based on the development area, the pre-development greenfield rate (QBar) is calculated to be 84.91/s using the FEH Statistical Method (see summary in Appendix I). The proposals are therefore to restrict surface water run-off to mimic a pre-development greenfield situation. The overall rate of discharge would need to be proportioned between the number of outfalls where necessary. This will be confirmed during detailed design, when the drainage technical detailed are reviewed.

Impermeable Area (2.806ha)	1 In 1 Year	1 In 30 Year	1 In 100 Year + 30% CC
Restricted Run-Off Rate	84.91/s	84.91/s	84.91/s
Estimated Stormwater Storage Volume	117cu.m-290cu.m	515cu.m-853cu.m	1113cu.m-1720cu.m

Table 4: Estimated Stormwater Storage Requirements (Betts Hydro, 2018)

It would be beneficial to implement SuDS features where at all feasible, subject to ground investigation and a detailed levels review. If designed appropriately the SuDS features such as a pond/basin could potentially aid in the attenuation requirements for the proposals (if located appropriately) and provide added benefits in terms of water quality improvements. Detailed design will be required to confirm whether SuDS can be

incorporated, at present indicative proposals allow for the inclusion of SuDS, including a pond/basin at multiple outfall points proposed.

5.7 Discharge to Public Sewer Network

5.7.1 UU sewer records identify there to be a public surface water sewer (375mm.dia) which presently crosses the development site from the southern boundary towards Phase 1. Should infiltration not be feasible then the surface water flows generated are proposed to discharge to the existing Ordinary Watercourse crossing the site and not the existing sewer network.

5.8 Climate Change

- 5.8.1 There are indications that the climate in the UK is changing significantly and it is widely believed that the nature of climate change will vary greatly by region. Current expert opinion indicates the likelihood that future climate change would produce more frequent short duration and high intensity rainfall events with the addition of more frequent periods of long duration rainfall. It is believed that the impact of climate change means there is likely to be a long-term increase in the average sea levels, with an expectation that sea levels will rise gradually. An increase in flood water levels means that future flooding events will occur more frequently and will have a greater impact.
- 5.8.2 In light of the future uncertainties Climate Change should be accounted for within the design of all new developments. The recently published Environment Agency document 'Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities' supersedes Defra's policy statement on Flood Risk and Coastal Erosion Risk Management (2009) and should be used for future proposals. Climate change factors have been considered and any increase in the level of flood risk (to the site) from climate change is likely to be related to the increase in rainfall intensity and duration and its impact upon the surface water drainage system.
- 5.8.3 The site is subject to an existing outline approval (Ref: 3/2014/0764) and the design of Phases 2 & 3 of this development will conform to the criteria already agreed and embedded in the approved planning documentation. The Climate Change factor that has been considered for an increase in rainfall intensity is 30%

6.0 FOUL WATER MANAGEMENT

- 6.1 Due to the existing land-use onsite, no existing foul water connections to the public sewer network are present. Review of the UU sewer records identifies a foul water pumping station onsite adjacent to the southern boundary. This pumping station has been accounted for within the planning proposals and a public foul water sewer (375mm.dia) associated with the pumping station has been identified onsite adjacent to the southern boundary (see sewer records in **Appendix C**).
- Phase 1 has a separate approved drainage management strategy as detailed in the approved supporting FRA&DMS (REF:HYD068_CHIPPING.LANE_FRA&DMS), which shows foul from this portion of development will outfall into the foul water system located within Inglewhite Road to the south-east of Phase 1 (**Appendix C**).
- 6.3 Based on the proposals for the construction of up to 184no. residential units for Phase 2 & 3, the approximate peak foul water flows generated by the development are 8.5l/s. This is based on 4000 litres per dwelling per 24 hours; the guidance contained within Sewers for Adoption (SfA).
- 6.4 The proposals are therefore to connect flows from Phase 2 & 3 to the foul water pumping station within Phase 1 which ultimately connects into the public sewer network within Inglewhite Road. The pumping station within Phase 1 has been designed to also accommodate flows from Phase 2 & 3 however, formal consent is still required from UU approving this connection, discussion with UU shown in **Appendix C**. In addition, a predevelopment enquiry has been sent to UU a response is outstanding.
- 6.3 Detailed design will confirm the full technical details based on the engineering constraints. Consent from UU will be required for works to the public sewer infrastructure. It is recommended that early discussion is undertaken to confirm acceptance of the strategy and identify any additional considerations such as preferred point of connection and capacity constraints. Initial discussion has been carried out to get an agreement in principle at this time.

7.0 SUMMARY AND CONCLUSIONS

7.1 This Flood Risk Assessment and Drainage Management Strategy was commissioned by Barratt Homes referred to hereafter as 'the client'. This report has been prepared to support a full planning application for the construction of a residential development on land to the east of Chipping Lane in Longridge. Phase 1 has planning approval (Ref: 3/2014/0764) and is supported by a separate, approved Flood Risk Assessment and Drainage Management Strategy (HYD068_CHIPPING.LANE_FRA&DMS). This assessment therefore focuses on the residential development proposed as part of Phase 2 & 3 only. Phase 2 & 3 collectively cover 10.66ha, although the proposed development area covers a smaller portion at 6.24ha.

Flood Risk

- 7.2 The site is located wholly within Flood Zone 1 based on the Environment Agency Flood Map for Planning. The proposals are for a residential-led development, which is considered 'More Vulnerable' in Table 2: Flood Risk Vulnerability Classification within Planning Practice Guidance. This 'More Vulnerable' development is confirmed to be appropriate within Flood Zone 1, providing there is no increase in flood risk elsewhere due to the proposals.
- Consultations with the Environment Agency, Ribble Valley Borough Council, Lancashire County Council and United Utilities have been undertaken and did not identify any historical incidents of flooding to the site or within the neighbouring areas. This assessment has considered all sources of flood risk, this includes the existing Ordinary Watercourse crossing the site which is understood to outfall into Higgin Brook 1km north of the site. As part of Phase 1, hydraulic modelling of the Ordinary Watercourse was undertaken to determine the potential flow risks associated with the proposed culverting the Ordinary Watercourse for vehicular crossing as part of Phase 1. The outcomes of the modelling exercise evidenced the risk to the proposals from the existing Ordinary Watercourse is low. The full Hydraulic Assessment has been appended to this assessment for full details. To summarise the proposed Phase 2 & 3 development area will, following the implementation of mitigation measures remain flood free in all key storm events, including the 1 in 100-year (1% AEP) plus Climate Change event without having any impact on the neighbouring land/properties.
- 7.4 The site is at 'very low' to 'low' flood risk from the reviewed sources of flooding. The primary source of flood risk is considered to be from surface water where the risk varies across the site from 'very low' to 'high' within the natural low-lying areas of site. The risks post-development from surface water will be effectively managed through implementation of the mitigation measures proposed within this assessment, including appropriate ground levels design and inclusion of a suitable surface water management infrastructure. To minimise flood risk from surface water it would also be recommended that natural drainage routes through the site be maintained within the proposals, including the existing Ordinary Watercourse, crossing the site from the southern boundary to the north.

Drainage Strategy

- 7.6 To ensure surface water flood risk to others does not increase, it is important to ensure surface water run-off is appropriately managed in accordance with the sustainable drainage hierarchy. Three methods have therefore been reviewed for the appropriate management of surface water run-off. These have been applied in the order of priority being; discharge via infiltration, to a watercourse and finally to public sewerage system.
- 7.7 Based on the ground conditions identified by the published online datasets, infiltration is not considered to provide a viable drainage solution for the development due to the impermeable strata. A ground investigation report (Ref: STN3505NM-G01) was also undertaken for Phase 1 and identified soakaways were not suitable to be used as a method for managing surface water run-off. As infiltration rates can vary on a site by site basis, the Local Planning Authority may still require onsite Soakaway Testing to be undertaken to evidence this is true for Phase 2 & 3, prior to full commencement of works.
- Assuming infiltration is not feasible, the next method in the drainage hierarchy should be discharge to a watercourse. Most of the site naturally drains to the Ordinary Watercourse crossing the site at present and the proposals are therefore to mimic the existing situation, discharging surface water run-off from the site to the watercourse using the existing onsite features where practical. Detailed design will need to confirm feasibility of a site wide gravity solution, although this is anticipated as most of the site naturally drains in this manner at present. It is assumed that multiple outfalls to the watercourse will be required given the scale of the development and formal consents will be required from Lancashire County Council for any works to the Ordinary Watercourse, including agreement of the proposed discharge rates and points of connection.
- 7.9 In accordance with the SuDS Manual and the Non-Statutory Technical Standards for Sustainable Drainage Systems, all sites should endeavour to achieve as close to predevelopment greenfield rates as viable. The proposals are to therefore discharge to the watercourse crossing the site mimicking pre-development greenfield situation, QBar is calculated to be 84.91/s and will need to be proportioned between the multiple proposed points of outfall. Restricting the rate of discharge will generate an onsite stormwater storage requirement which will be catered for on the site prior to discharge to the watercourse. It would be beneficial to implement SuDS features including permeable surfaces and bio-filtration where at all feasible (subject to ground investigation and contamination review). Given the scale of development it is proposed that pond/basin features be included onsite near to the proposed outfall location(s). If designed appropriately the SuDS features could potentially aid in the attenuation requirements for the proposals and provide added benefits in terms of water quality. Detailed design will be required to confirm whether SuDS can be incorporated.
- 7.10 This Flood Risk Assessment and Drainage Management Strategy has been prepared in consultation with the relevant interested parties and incorporates their comments where possible. The report is commensurate with the scale and nature of the development proposals and in summary, the development can be considered appropriate in accordance with the Planning Practice Guidance.

8.0 RECOMMENDATIONS

- 8.1 For 'more vulnerable' development located within Flood Zone 1, it is typical to set the Finished Floor Levels (FFL) of residential dwellings to a minimum of 150mm above the existing ground levels. By ensuring the FFLs are raised sufficiently above the external levels (following any re-grade) should mitigate any risk of flooding from a variety of sources, including groundwater and surface water run-off risks at the proposed development.
- 8.2 Any overland flows generated by the proposed development must be controlled, safe avenues directing overland flow away from any existing and proposed buildings are advised. As with any development it is also advised that external levels fall away from property to minimise the flood risk from a variety of sources.
- 8.3 In accordance with LCC there is a requirement to maintain an easement from the existing Ordinary Watercourse for future maintenance. The LCC typically require an 8m easement to be maintained from the Top of Bank of Ordinary Watercourses into the development area. The easement should provide clear and unimpeded access for future maintenance including no fencing, walls or buildings. Ordinary Watercourses are also required to remain open channel where possible. Culverting of the watercourse for crossing purposes however, is typically accepted by LCC as occurred on Phase 1 of development, providing the culverting is kept to a minimum and follows LCC design requirements. Early discussion with LCC is advised to get approval of any culvert proposals.
- 8.4 To minimise the flood risk to the neighbouring property and proposed dwellings it is proposed that the surface water run-off generated by the proposals be managed effectively with the peak rates of run-off being restricted to the equivalent of the predevelopment situation
- 8.5 Detailed drainage design will be required to refine the drainage strategy following more in-depth levels and layout review. Early discussion with all relevant parties including the EA, LCC, RVBC and UU is advised for any proposed works. Consents will be required from LCC who are the LLFA and therefore in charge of the Ordinary Watercourses in terms of proposed works. Consent would be required for any new outfall structures on the Ordinary Watercourse, and any culverting (to accommodate crossings shown on the layout). Agreement would also be required to agree the proposed rates of discharge to the Ordinary Watercourse.
- 8.6 The proposed onsite surface water drainage system will need to be sized to contain the 30yr return period event wholly below ground with overland run-off from storm events up to and including the 1 in 100yr return period storm event with a 40% allowance for climate change being contained onsite.
- 8.7 It is important that should any drainage systems not be offered for adoption to either the United Utilities or Lancashire County Council then an appropriate maintenance regime should be scheduled with a suitably qualified management company for these private drainage systems.

BIBLIOGRAPHY & REFERENCES

Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities
- Environment Agency/DEFRA 2016

CIRIA 522: Sustainable urban drainage systems - design manual for England and Wales (2000).

CIRIA 523: Sustainable urban drainage systems – best practice manual (2001).

CIRIA 609: Sustainable drainage systems. Hydraulic, structural and water quality advice (2004).

CIRIA 624: Development and flood risk - guidance for the construction industry (2004).

CIRIA 635: Designing for Exceedance in urban drainage: Good practice (2006).

CIRIA 644: Building Greener (2007).

CIRIA 753: The SUDS manual (2015).

Flood Risk to People - Phase 2 (FD2321/TR2), DEFRA and the Environment Agency (2006).

Flood estimation for small catchments: Institute of Hydrology Report No.124, NERC (1994).

Flood Estimation Handbook, Centre for Ecology and Hydrology (1999).

Planning Policy Statement 25: Development and Flood Risk (2006).

Sewers for Adoption 7th Edition, WRc (2012).

National Planning Policy Framework, Ministry of Housing, Communities and Local Government (2018).

Web-based References

Bingmaps - http://www.bing.com/Maps/

British Geological Survey - http://www.bgs.ac.uk/opengeoscience/home.html

Chronology of British Hydrological Events - www.dundee.ac.uk/

CIRIA - http://www.ciria.org/

Cranfield University - http://www.landis.org.uk/soilscapes/

Environment Agency - www.environment-agency.gov.uk/

FloodProBE - http://www.floodprobe.eu/

Flood Forum - http://www.floodforum.org.uk/

Flood London - http://www.floodlondon.com/

Google Maps - http://maps.google.co.uk/

Streetmap - http://www.streetmap.co.uk/

United Utilities - https://www.unitedutilities.com/

APPENDIX A: NPPF & PPG EXTRACTS

This page has been left intentionally

14. Meeting the challenge of climate change, flooding and coastal change

148. The planning system should support the transition to a low carbon future in a changing climate, taking full account of flood risk and coastal change. It should help to: shape places in ways that contribute to radical reductions in greenhouse gas emissions, minimise vulnerability and improve resilience; encourage the reuse of existing resources, including the conversion of existing buildings; and support renewable and low carbon energy and associated infrastructure.

Planning for climate change

- 149. Plans should take a proactive approach to mitigating and adapting to climate change, taking into account the long-term implications for flood risk, coastal change, water supply, biodiversity and landscapes, and the risk of overheating from rising temperatures⁴⁸. Policies should support appropriate measures to ensure the future resilience of communities and infrastructure to climate change impacts, such as providing space for physical protection measures, or making provision for the possible future relocation of vulnerable development and infrastructure.
- 150. New development should be planned for in ways that:
 - a) avoid increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and
 - b) can help to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards.
- 151. To help increase the use and supply of renewable and low carbon energy and heat, plans should:
 - a) provide a positive strategy for energy from these sources, that maximises the
 potential for suitable development, while ensuring that adverse impacts are
 addressed satisfactorily (including cumulative landscape and visual impacts);
 - consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and
 - c) identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for colocating potential heat customers and suppliers.

_

⁴⁸ In line with the objectives and provisions of the Climate Change Act 2008.

- 152. Local planning authorities should support community-led initiatives for renewable and low carbon energy, including developments outside areas identified in local plans or other strategic policies that are being taken forward through neighbourhood planning.
- 153. In determining planning applications, local planning authorities should expect new development to:
 - a) comply with any development plan policies on local requirements for decentralised energy supply unless it can be demonstrated by the applicant, having regard to the type of development involved and its design, that this is not feasible or viable; and
 - b) take account of landform, layout, building orientation, massing and landscaping to minimise energy consumption.
- 154. When determining planning applications for renewable and low carbon development, local planning authorities should:
 - a) not require applicants to demonstrate the overall need for renewable or low carbon energy, and recognise that even small-scale projects provide a valuable contribution to cutting greenhouse gas emissions; and
 - b) approve the application if its impacts are (or can be made) acceptable⁴⁹. Once suitable areas for renewable and low carbon energy have been identified in plans, local planning authorities should expect subsequent applications for commercial scale projects outside these areas to demonstrate that the proposed location meets the criteria used in identifying suitable areas.

Planning and flood risk

- 155. Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere.
- 156. Strategic policies should be informed by a strategic flood risk assessment, and should manage flood risk from all sources. They should consider cumulative impacts in, or affecting, local areas susceptible to flooding, and take account of advice from the Environment Agency and other relevant flood risk management authorities, such as lead local flood authorities and internal drainage boards.
- 157. All plans should apply a sequential, risk-based approach to the location of development taking into account the current and future impacts of climate change

⁴⁹ Except for applications for the repowering of existing wind turbines, a proposed wind energy development involving one or more turbines should not be considered acceptable unless it is in an area identified as suitable for wind energy development in the development plan; and, following consultation, it can be demonstrated that the planning impacts identified by the affected local community have been fully addressed and the proposal has their backing.

- so as to avoid, where possible, flood risk to people and property. They should do this, and manage any residual risk, by:
- a) applying the sequential test and then, if necessary, the exception test as set out below;
- safeguarding land from development that is required, or likely to be required, for current or future flood management;
- using opportunities provided by new development to reduce the causes and impacts of flooding (where appropriate through the use of natural flood management techniques); and
- d) where climate change is expected to increase flood risk so that some existing development may not be sustainable in the long-term, seeking opportunities to relocate development, including housing, to more sustainable locations.
- 158. The aim of the sequential test is to steer new development to areas with the lowest risk of flooding. Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower risk of flooding. The strategic flood risk assessment will provide the basis for applying this test. The sequential approach should be used in areas known to be at risk now or in the future from any form of flooding.
- 159. If it is not possible for development to be located in zones with a lower risk of flooding (taking into account wider sustainable development objectives), the exception test may have to be applied. The need for the exception test will depend on the potential vulnerability of the site and of the development proposed, in line with the Flood Risk Vulnerability Classification set out in national planning guidance.
- 160. The application of the exception test should be informed by a strategic or sitespecific flood risk assessment, depending on whether it is being applied during plan production or at the application stage. For the exception test to be passed it should be demonstrated that:
 - a) the development would provide wider sustainability benefits to the community that outweigh the flood risk; and
 - the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.
- 161. Both elements of the exception test should be satisfied for development to be allocated or permitted.
- 162. Where planning applications come forward on sites allocated in the development plan through the sequential test, applicants need not apply the sequential test again. However, the exception test may need to be reapplied if relevant aspects of the proposal had not been considered when the test was applied at the planmaking stage, or if more recent information about existing or potential flood risk should be taken into account.

- 163. When determining any planning applications, local planning authorities should ensure that flood risk is not increased elsewhere. Where appropriate, applications should be supported by a site-specific flood-risk assessment⁵⁰. Development should only be allowed in areas at risk of flooding where, in the light of this assessment (and the sequential and exception tests, as applicable) it can be demonstrated that:
 - a) within the site, the most vulnerable development is located in areas of lowest flood risk, unless there are overriding reasons to prefer a different location;
 - b) the development is appropriately flood resistant and resilient;
 - c) it incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
 - d) any residual risk can be safely managed; and
 - e) safe access and escape routes are included where appropriate, as part of an agreed emergency plan.
- 164. Applications for some minor development and changes of use⁵¹ should not be subject to the sequential or exception tests but should still meet the requirements for site-specific flood risk assessments set out in footnote 50.
- 165. Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:
 - a) take account of advice from the lead local flood authority;
 - b) have appropriate proposed minimum operational standards;
 - c) have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
 - d) where possible, provide multifunctional benefits.

Coastal change

166. In coastal areas, planning policies and decisions should take account of the UK Marine Policy Statement and marine plans. Integrated Coastal Zone Management should be pursued across local authority and land/sea boundaries, to ensure effective alignment of the terrestrial and marine planning regimes.

⁵⁰ A site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.

⁵¹ This includes householder development, small non-residential extensions (with a footprint of less than 250m²) and changes of use; except for changes of use to a caravan, camping or chalet site, or to a mobile home or park home site, where the sequential and exception tests should be applied as appropriate.

- 167. Plans should reduce risk from coastal change by avoiding inappropriate development in vulnerable areas and not exacerbating the impacts of physical changes to the coast. They should identify as a Coastal Change Management Area any area likely to be affected by physical changes to the coast, and:
 - a) be clear as to what development will be appropriate in such areas and in what circumstances; and
 - b) make provision for development and infrastructure that needs to be relocated away from Coastal Change Management Areas.
- 168. Development in a Coastal Change Management Area will be appropriate only where it is demonstrated that:
 - a) it will be safe over its planned lifetime and not have an unacceptable impact on coastal change;
 - b) the character of the coast including designations is not compromised;
 - c) the development provides wider sustainability benefits; and
 - d) the development does not hinder the creation and maintenance of a continuous signed and managed route around the coast⁵².
- 169. Local planning authorities should limit the planned lifetime of development in a Coastal Change Management Area through temporary permission and restoration conditions, where this is necessary to reduce a potentially unacceptable level of future risk to people and the development.

_

⁵² As required by the Marine and Coastal Access Act 2009.

Revision date: 06 03 2014

What should be considered if bringing forward a Neighbourhood Development Order/Community Right to Build Order in an area at risk of flooding?

The general approach and requirements for site-specific flood risk assessments should be applied to developments in areas at risk of flooding to be permitted by Neighbourhood Development/ Community Right to Build Orders. This means that for any development proposals:

- in Flood Zone 2 or 3;
- or of at least 1 hectare;
- or in an area that has critical drainage problems (as notified to the local planning authority by the Environment Agency);
- or that may be subject to other sources of flood risk;

a site-specific flood risk assessment should support the draft Order. The flood risk assessment checklist may be helpful in this respect.

Where the neighbourhood planning area is in Flood Zone 2 or 3, or is in an area with critical drainage problems, advice on the scope of the flood risk assessment required should be sought from the Environment Agency. Where the area may be subject to other sources of flooding, it may be helpful to consult other bodies involved in flood risk management, as appropriate.

Where a Neighbourhood Development/Community Right to Build Order is under consideration for a site/area in Flood Zone 2 or 3, which has not been allocated in the development plan through the Sequential Test, and if necessary the Exception Test, it will be necessary for those proposing the development, in having regard to the National Planning Policy Framework's policies on flood risk, to demonstrate why the development cannot reasonably be located in areas of lower flood risk.

In all cases where new development is proposed, the sequential approach to locating development in areas of lower flood risk should still be applied within a neighbourhood planning area.

Neighbourhood Development/Community Right to Build Orders that propose new development that would be:

- contrary to the flood risk vulnerability and flood zone compatibility table (Table 3), or;
- within areas at risk of flooding where sequential testing shows there to be places at lower flood risk which
 are suitable and reasonably available for the development proposed,

should not be considered appropriate, having regard to the national policies on development and flood risk.

Paragraph: 064 Reference ID: 7-064-20140306

Revision date: 06 03 2014

Flood Zone and flood risk tables

• Table 1: Flood Zones

- Table 2: Flood risk vulnerability classification
- Table 3: Flood risk vulnerability and flood zone 'compatibility'

Table 1: Flood Zones

These Flood Zones refer to the probability of river and sea flooding, ignoring the presence of defences. They are shown on the Environment Agency's Flood Map for Planning (Rivers and Sea (https://flood-map-for-planning.service.gov.uk/)), available on the Environment Agency's web site, as indicated in the table below.

Flood Zone	Definition	
Zone 1 Low Probability	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (Shown as 'clear' on the Flood Map – all land outside Zones 2 and 3)	
Zone 2 Medium Probability	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. (Land shown in light blue on the Flood Map)	
Zone 3a High Probability	Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or greater annual probability of sea flooding.(Land shown in dark blue on the Flood Map)	
Zone 3b The Functional Floodplain	This zone comprises land where water has to flow or be stored in times of flood. Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency. (Not separately distinguished from Zone 3a on the Flood Map)	

Note: The Flood Zones shown on the Environment Agency's Flood Map for Planning (Rivers and Sea) do not take account of the possible impacts of climate change and consequent changes in the future probability of flooding. Reference should therefore also be made to the Strategic Flood Risk Assessment when considering location and potential future flood risks to developments and land uses.

Paragraph: 065 Reference ID: 7-065-20140306

Revision date: 06 03 2014

Table 2: Flood risk vulnerability classification

Essential infrastructure

- Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk.
- Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood.
- · Wind turbines.

Highly vulnerable

- Police and ambulance stations; fire stations and command centres; telecommunications installations required to be operational during flooding.
- · Emergency dispersal points.
- · Basement dwellings.
- · Caravans, mobile homes and park homes intended for permanent residential use.
- Installations requiring hazardous substances consent. (Where there is a demonstrable need to locate
 such installations for bulk storage of materials with port or other similar facilities, or such installations with
 energy infrastructure or carbon capture and storage installations, that require coastal or water-side
 locations, or need to be located in other high flood risk areas, in these instances the facilities should be
 classified as 'Essential Infrastructure').

More vulnerable

- Hospitals
- Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels.
- Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels.
- Non-residential uses for health services, nurseries and educational establishments.
- Landfill* and sites used for waste management facilities for hazardous waste.
- Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan.

Less vulnerable

- Police, ambulance and fire stations which are not required to be operational during flooding.
- Buildings used for shops; financial, professional and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distribution; non-residential institutions not included in the 'more vulnerable' class; and assembly and leisure.
- · Land and buildings used for agriculture and forestry.
- Waste treatment (except landfill* and hazardous waste facilities).
- Minerals working and processing (except for sand and gravel working).
- · Water treatment works which do not need to remain operational during times of flood.
- Sewage treatment works, if adequate measures to control pollution and manage sewage during flooding events are in place.

Water-compatible development

- · Flood control infrastructure.
- Water transmission infrastructure and pumping stations.
- · Sewage transmission infrastructure and pumping stations.
- · Sand and gravel working.
- · Docks, marinas and wharves.
- · Navigation facilities.
- · Ministry of Defence defence installations.
- Ship building, repairing and dismantling, dockside fish processing and refrigeration and compatible activities requiring a waterside location.
- · Water-based recreation (excluding sleeping accommodation).
- Lifeguard and coastguard stations.
- Amenity open space, nature conservation and biodiversity, outdoor sports and recreation and essential facilities such as changing rooms.
- Essential ancillary sleeping or residential accommodation for staff required by uses in this category, subject to a specific warning and evacuation plan.

" * " Landfill is as defined in Schedule 10 of the Environmental Permitting (England and Wales) Regulations 2010 (http://www.legislation.gov.uk/uksi/2010/675/schedule/10/made).

Paragraph: 066 Reference ID: 7-066-20140306

Revision date: 06 03 2014

Table 3: Flood risk vulnerability and flood zone 'compatibility'

Table 3: flood risk vulnerability and flood zone 'compatibility' (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/575184/Table_3_-Flood risk vulnerability and flood zone compatibility .pdf) (PDF, 58.1KB, 1 page)

Key:

✓ Development is appropriate

X Development should not be permitted.

Notes to table 3:

- This table does not show the application of the Sequential Test which should be applied first to guide
 development to Flood Zone 1, then Zone 2, and then Zone 3; nor does it reflect the need to avoid flood
 risk from sources other than rivers and the sea;
- The Sequential and Exception Tests do not need to be applied to minor developments and changes of use, except for a change of use to a caravan, camping or chalet site, or to a mobile home or park home site;
- Some developments may contain different elements of vulnerability and the highest vulnerability category should be used, unless the development is considered in its component parts.

† In Flood Zone 3a essential infrastructure should be designed and constructed to remain operational and safe in times of flood.

- " * " In Flood Zone 3b (functional floodplain) essential infrastructure that has to be there and has passed the Exception Test, and water-compatible uses, should be designed and constructed to:
 - remain operational and safe for users in times of flood;
 - · result in no net loss of floodplain storage;
 - · not impede water flows and not increase flood risk elsewhere.

Paragraph: 067 Reference ID: 7-067-20140306

Revision date: 06 03 2014

Site-specific flood risk assessment: Checklist

1 - Development site and location

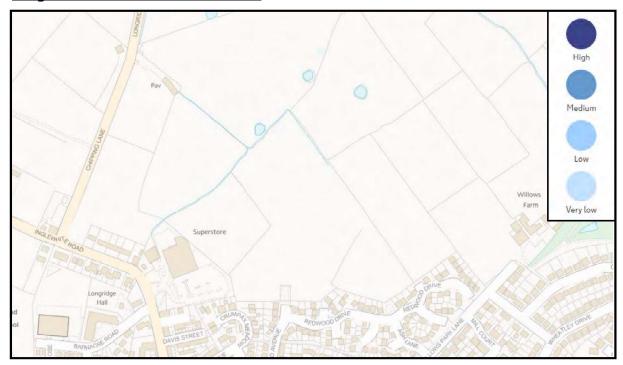
You can use this section to describe the site you are proposing to develop. It would be helpful to include, or make reference to, a location map which clearly indicates the development site.

- a. Where is the development site located? (eg postal address or national grid reference)
- b. What is the current use of the site? (eg undeveloped land, housing, shops, offices)
- c. Which Flood Zone (for river or sea flooding) is the site within? (ie Flood Zone 1, Flood Zone 2, Flood Zone
- 3). As a first step, you should check the Flood Map for Planning (http://apps.environment-agency.gov.uk/wiyby/37837.aspx) (Rivers and Sea). It is also a good idea to check the Strategic Flood Risk Assessment for the area available from the local planning authority.

2 - Development proposals

APPENDIX B: EA INFORMATION & CORRESPONDENCE

This page has been left intentionally blank


NATIONAL FLOOD MAPPING

Flood Map for Planning

Long Term Flood Risk - Rivers or Sea

