

PHASE II GEO-ENVIRONMENTAL SITE ASSESSMENT

Land North of Church Raike Chipping Preston PR3 2QL

Prepared for:

Report Ref: 12-424-R1-2 Date Issued: July 2022

e3p | Environmental | Energy | Engineering

ЕЗР

Taylor Road Trafford Park Urmston M41 7JQ

Tel : + 00 (0) 161 707 9612 http://www.e3p.co.uk

Registered in England No.: 807255262

QUALITY ASSURANCE

REMARKS	Final	Version 2			
DATE	May 2018	July 2022			
PREPARED BY	S Murray	N Sellars			
QUALIFICATIONS	BSc, FGS	MSci (Hons), FGS			
CHECKED BY	R Walker	R Walker			
QUALIFICATIONS	BSc(Hons), FGS, IAEG	BSc(Hons), FGS, AIEMA, AMICE, MIEnvSc, CEnv			
AUTHORISED BY	M Dyer	M Dyer			
QUALIFICATIONS	BSc, FGS, AIEMA, MIEnvSc, CEnv	BSc, FGS, AIEMA, MIEnvSc, CEnv			
PROJECT NUMBER	12-424				
IMS Template Reference: QR012-3					

EXECUTIVE SUMMAR	Y					
Site Address	(Parcel 4) Land North	of Church Raike, Chipping, Preston, PR3 2QL				
Grid Reference	E 361944, N 443515	E 361944, N 443515				
Site Area	Circa 0.6Ha					
Current Site Use	north east of Preston Chipping Brook is loc 2.50m lower in eleva generally with the sur to the road to the sou current temporary acc Ground Investigation Upon entering the site	The site is an irregular parcel of land to the north of the town of chipping, north east of Preston within the forest of Bowland area of natural beauty. Chipping Brook is located along the northern boundary of the site circa 2.50m lower in elevation than the site. The site is a natural mound generally with the surrounding land to the west, but circa 2m in elevation to the road to the south and east. A steep ramp from the east provides current temporary access to the site that has been formed to facilitate the Ground Investigation works. Upon entering the site, and at the top of the access slope, the developable				
	area is generally topographically level as a plateaux. This area in the site is circa 3m higher than the surrounding land.The site is predominantly covered in grasses with mature and semi mature trees forming the boundary in conjunction with a post and wire fence to the west and stone wall to the south.					
Proposed Development	E3P have not been provided with a proposed development plan as however, it is expected that the intention will be to construct a low-r residential development comprising a number of mixed dwellings v associated gardens, estate roads and infrastructure.					
	It is understood that there will be a significant cut and fill exercise across the site to create a level platform for the development.					
	Drift Geology	Till (Devensian – Clay) across the site.				
	Bedrock Geology	Park Style Limestone Member – Limestone				
Environmental Setting	Hydrogeology	Secondary Undifferentiated (drift) overlying Secondary A aquifer (Solid). No groundwater abstractions have been identified within a 1km radius.				
	Hydrology	Chipping Brook is located circa 4m north.				
	Flood Risk	Unaffected by flooding from rivers.				
	Subsidence Hazard	Moderate Risk				
Site History		ent Ordnance Survey mapping dating from circa 1850 nfirmed the site has been greenfield to present day.				
Previous Reports	To E3Ps knowledge there have not been any reports completed previously pertinent to the specific parcel within the wider chipping development area. Brownfield solutions have previously completed a desk study report that included this parcel within a larger area however, no intrusive works have been completed.					
Utility LocationsA review of online utility plan for the site and surrounding area inform a combined sewer running along the northern boundary to the site and a further surface water line along Church Raike to the south of the site.						

EXECUTIVE SUMMAR	Y					
	There are no current registered landfill sites within 2000m of the site.					
Landfill Sites & Ground Gases	There are two historic landfill sites within 1000m of the site. Both these sites are located 642m from the site and are licenced to Colte Coates farm. The licence was surrendered on 29th April 1994 with the waste type noted as inert.					
Radon	The site is in an area where full radon precautions may be required accordance BRE Report 211 'Radon – Guidance on protective measur for new dwellings' 2007 Edition.					
Coal Mining / Land Stability	The site is not within an area of historic or future coal mining. As such there is no requirement for further assessment.					
E3P Intrusive Ground	Investigation					
Site Investigation Works	E3P has completed an intrusive Ground Investigation comprising mechanically excavated trial pits, window sample boreholes, super heavy dynamic probe tests and environmental monitoring installations.					
	Made Ground					
	Made Ground has not been encountered within any exploratory horizon locations during the investigation. Due to the lack of historic developme across the site the absence of anthropogenic fill material is to be expected					
	Drift					
	Drift deposits were encountered within all exploratory locations to depths of between 0.20m and in excess of 4.0m bgl. The drift deposits are generally consistent and comprise a dark brown sandy silty clayey gravel of sandstone, mudstone and limestone. Generally, with depth the size and content of the granular components increases with boulders becoming more frequent.					
Ground Conditions	There is also localised yellowish brown sandy gravelly clay to depths between 0.2 and in excess of 1.0m in window samples and trial pits in the west and south of the site. This is also locally interbedded with the dark brown clayey gravel and gravelly glay.					
	Solid					
	The solid bedrock geology has not been encountered due to obstructions in the form of oversize boulders at depths in excess of 6m bgl impeding the penetration of drilling and testing equipment. The use of a Super Heavy Dynamic Probe test advanced the investigation to a depth of 13.0m bgl however, again refusal in dense gravels and obstructions ceased progress. The solid geology is indicated to comprise limestone bedrock from BSG information, however, historical borehole memoirs in the area show Millstone Grit (Carboniferous Sandstone) from 15.00m bgl.					
	Groundwater					
	Groundwater has been encountered as slow seepages and perched water at depths between 0.90m and 2.00m bgl.					

EXECUTIVE SUMMAR	Ŷ				
Human Health	A Tier I Human Health Risk Assessment has been undertaken using the chemical analysis results of the soils and comparing to the relevant Tier I criteria. This assessment has identified the presence of a single isolated occurrence of dibenzo(a,h)anthracene. The identified elevated concentration has primary exposure pathway related to dermal contact and ingestion, soil ingestion and consumption of homegrown produce. This is considered to be an isolated occurrence and so during a phase of enabling works to construct a suitable development platform this will be treated as a hotspot, delineated with the impacted soils removed and placed in an area of low future impact. Chemical analysis of the natural drift deposits and topsoils have identified these soils to be acceptable for use within the future development, however further chemical validation samples will be required to confirm this.				
Controlled Waters	A controlled waters risk assessment has been completed using the leachate samples taken during the site investigation. A marginal exceedance of Cadmium has been identified however, given the general low soluble nature of the identified contaminant of concern in addition to the relatively low sensitivity of the site with respect to controlled waters, it is considered there is unlikely to be any degree of unacceptable risk to the controlled water receptors and the wider environ.				
Ground Gas	A CL;aire RB17 assessment has been completed due to the lack of potential sources of ground gas production. This assessment achieved a point score of 15 which classifies the site as suitable for CS1/green characterisation. As such gas mitigation measures will not be required in the construction of new dwellings.				
Potable Water Infrastructure	The site is suitable for PE Potable Supply Infrastructure.				
Geotechnical Assessn	ient				
	Relic obstructions are not expected and were not exposed during the intrusive Ground Investigation however; the presence of oversized materials within the natural strata cannot be ruled out.				
Underground Obstructions & Anomalies	During a phase of cut fill enabling works to create a developable platform, all below ground obstructions will require grubbing out to enable the construction of proposed sub-structure and infrastructure.				
Anomanes	The current ditch will present areas of locally poor ground, these areas will need to be located, delineated and investigated prior to the excavation and removal of all deleterious materials. The resulting excavation should be backfilled with material to be engineered in accordance with a suitable geotechnical specification in due consideration of the end use.				
Allowable Bearing Pressure	The underlying natural granular drift deposits have been assessed as being medium dense to dense with a net ABP in the order of 150kN/m ² at circa 1.00m bgl increasing to in excess of 150-200kN/m ² with depth.				

EXECUTIVE SUMMAR	Y				
	Due to the existing large variances in the site topography, a phase of cut and fill enabling works will be required to create a development platform suitable for a residential development. This will generally comprise increasing levels on the north and south side of the development strip to increase the slope stability.				
Foundation Options	Given the nature of the site and proposed detached bespoke dwellings it will be necessary for the project Structural Engineer to design specific foundations for each dwelling considering the proposed floor levels, sub- structure design and post enabling works ground conditions.				
	It is considered probable the foundation solutions will be a combination of shallow strip, deeper Trench Fill and specialist engineered solutions to include Pier & Beam's and possible transfer of loads by piling.				
Building Floor Slabs	Ground bearing floor slabs are unlikely to be viable given the anticipated depths of shallow highly clay bound granular soils.				
Heave Precautions	The underlying material is considered to be predominantly granular in nature and therefore precautions to limit the effect of volumetric instability associated with cohesive soils will not be necessary in the design of the proposed development.				
Soakaway Drainage	The Made Ground and underlying granular soils have a high cohesive content which would preclude the use of infiltration drainage systems.				
Sulphate Assessment	Concrete classification will be DS1 AC1s.				
CBR Design %	Granular soils can be re-engineered to ensure 5% within the sub-grade during favourable climatic conditions. Natural clay soils will provide a CBR in the order of 3-4% during drier climatic periods, however If water is allowed to shed onto the formation, the CBR will reduce to <2% which will require specialist engineering of the sub-grade.				
Cut / Fill	Development levels unknown at this time, however significant cut fill works will be required to prepare the development platform.				
Waste Characterisation	Stable Non-Reactive (non-hazardous / inert). Any material that is to be disposed to landfill should undergo assessment using Technical Guidance WM3: Waste Classification - Guidance on the classification and assessment of waste.				
Slope Stability	Steep sloped embankments are present to the north and south of the proposed development area. As and when the proposed detailed development design is finalised, it will be necessary to undertake modelled slope assessment to assess the Ultimate Limit State stability of the final slope contour to consider any applied structural or infrastructure loading.				
Recommendations	 Based on the findings of the intrusive site investigation, the following additional works are recommended to be completed in due course: Slope Stability Assessment; Plot Specific Foundation Schedule (upon receipt of the final development levels); Arboriculture Survey; Geotechnical Earthworks Strategy (Infrastructure). Remediation & Enabling Works strategy; 				

Table of Contents

1. INTRODUCTION 8 1.1 Background 8 1.2 Proposed Development 8 1.3 Objectives 9 1.4 Previous Reports 9 1.5 Limitations 10 1.6 Confidentiality 10 2. GROUND INVESTIGATION 11 2.1 General 11 2.2 Insitu Standard Penetration Testing (SPT) 12 2.3 Laboratory Analysis 12 3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground. 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Visual and Offactory Evidence of Contamination 14 3.1.7 Soil Infiltration 16 3.1.10 PH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2.1			0
1.2 Proposed Development 8 1.3 Objectives 9 1.4 Previous Reports 9 1.5 Limitations 10 1.6 Confidentiality 10 2. GROUND INVESTIGATION 11 2.1 General 11 2.2 In-Situ Standard Penetration Testing (SPT) 12 2.3 Laboratory Analysis 12 3. GROUND AND GROUNDWATER CONDITIONS 13 3.1.1 Summary of Ground Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drit Deposits 13 3.1.4 Solid Gelogy 13 3.1.5 Groundwater 14 3.1.6 Visual and Olfactory Evidence of Contamination 14 3.1.7 Soli Offittration 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.10 pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale			
1.3 Objectives			
1.4 Previous Reports 9 1.5 Limitations 10 1.6 Confidentiality 10 2. GROUND INVESTIGATION 11 2.1 General 11 2.2 In-Situ Standard Penetration Testing (SPT) 12 2.3 Laboratory Analysis 12 3.4 GROUND AND GROUNDWATER CONDITIONS 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Groundwater Conditions 13 3.1.7 Nisul and Olfactory Evidence of Contamination 14 3.1.7 Solid Geology 13 3.1.8 Ground Gas 16 3.1.9 Soli Infiltration 16 3.1.10 pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17			
1.5 Limitations 10 1.6 Confidentiality 10 2. GROUND INVESTIGATION 11 2.1 General 11 2.2 Laboratory Analysis 12 3.1 GROUND AND GROUNDWATER CONDITIONS 13 3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Made Ground 13 3.1.5 Groundwater 14 3.1.6 Solid Geology 13 3.1.7 Soli Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soli Infiltration 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2 Ground Gas 23 4.1 Huran Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 26			
1.6 Confidentiality 10 2. GROUND INVESTIGATION 11 2.1 General 11 2.2 In-Situ Standard Penetration Testing (SPT) 12 2.3 Laboratory Analysis 12 3. GROUND AND GROUNDWATER CONDITIONS 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Origonud Verter 14 3.1.5 Groundwater 14 3.1.5 Groundwater 14 3.1.6 Solid Stability and Ease of Excavation 14 3.1.6 Solid Infirmation 16 3.1.10 pH and Sulphate 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25			
2. GROUND INVESTIGATION. 11 2.1 General. 11 2.2 In-Situ Standard Penetration Testing (SPT). 12 2.3 Laboratory Analysis 12 3. GROUND AND GROUNDWATER CONDITIONS 13 3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.4 Solid Conjections 13 3.1.5 Groundwater 13 3.1.4 Solid Conjections 13 3.1.5 Groundwater 14 3.1.6 Solid Conjections Vidence of Contamination 14 3.1.7 Solid Conjections 16 3.1.1 Solid Stability and Ease of Excavation 16 3.1.1 DH and Sulphate 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 17 4.3 Ground Gas 23 <	-		
2.1 General. 11 2.2 In-Situ Standard Penetration Testing (SPT) 12 2.3 Laboratory Analysis 12 3. GROUND AND GROUNDWATER CONDITIONS 13 3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Solid Cology 13 3.1.7 Solid Cology 13 3.1.8 Side Stability and Difactory Evidence of Contamination 14 3.1.7 Soli Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 PH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 26 5.3 Ground Gas 23 4.4	1.6	Confidentiality	10
2.1 General. 11 2.2 In-Situ Standard Penetration Testing (SPT) 12 2.3 Laboratory Analysis 12 3. GROUND AND GROUNDWATER CONDITIONS 13 3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Solid Cology 13 3.1.7 Solid Cology 13 3.1.8 Side Stability and Difactory Evidence of Contamination 14 3.1.7 Soli Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 PH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 26 5.3 Ground Gas 23 4.4	2 CP(11
2.2 In-Situ Standard Penetration Testing (SPT) 12 2.3 Laboratory Analysis 12 3. GROUND AND GROUNDWATER CONDITIONS 13 3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Visual and Olfactory Evidence of Contamination 14 3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16<			
2.3 Laboratory Analysis 12 3. GROUND AND GROUNDWATER CONDITIONS 13 3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground. 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Visual and Olfactory Evidence of Contamination 14 3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 28 5.4			
3. GROUND AND GROUNDWATER CONDITIONS 13 3.1. Ground and Groundwater Conditions 13 3.1.1. Summary of Ground Conditions 13 3.1.2. Made Ground 13 3.1.3. Drift Deposits 13 3.1.4. Solid Geology 13 3.1.5. Groundwater 14 3.1.6. Visual and Olfactory Evidence of Contamination 14 3.1.7. Soil Consistency 14 3.1.8. Side Stability and Ease of Excavation 14 3.1.9. Soil Infiltration 16 3.1.10. pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.1 Human Health Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26		Laboratory Apolycia	12
3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Visual and Offactory Evidence of Contamination 14 3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4	2.3		12
3.1 Ground and Groundwater Conditions 13 3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Visual and Offactory Evidence of Contamination 14 3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4	3 GR	OUND AND GROUNDWATER CONDITIONS	13
3.1.1 Summary of Ground Conditions 13 3.1.2 Made Ground 13 3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Visual and Olfactory Evidence of Contamination 14 3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Dil Infiltration 16 3.1.10 pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 <t< td=""><td></td><td></td><td></td></t<>			
3.1.2 Made Ground	-		
3.1.3 Drift Deposits 13 3.1.4 Solid Geology 13 3.1.5 Groundwater 14 3.1.6 Visual and Olfactory Evidence of Contamination 14 3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 14 3.1.0 pH and Sulphate 16 3.2.1 Investigation Rationale 16 3.2.2 Ground Gas 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2.2 Ground Gas 16 3.2.3 Ground Gas 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potentia			
3.1.5 Groundwater 14 3.1.6 Visual and Olfactory Evidence of Contamination 14 3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate 16 3.2.1 Ground Gas 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 17 4.1 Human Health Risk Assessment 17 4.1 Human Health Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 <td>-</td> <td></td> <td></td>	-		
3.1.6 Visual and Olfactory Evidence of Contamination 14 3.1.7 Soil Consistency. 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate. 16 3.2 Ground Gas 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction<	3.1.4	4 Solid Geology	13
3.1.7 Soil Consistency 14 3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate. 16 3.2 Ground Gas 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction 29 5.8 Drainage 29 5.9 Concrete Durability 29	3.1.5		
3.1.8 Side Stability and Ease of Excavation 14 3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate 16 3.2 Ground Gas 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT 17 4.1 Human Health Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction 29 5.8 Drainage 29 5.9 Concrete Durability 29 5.10 Excavations 29 5.11			
3.1.9 Soil Infiltration 16 3.1.10 pH and Sulphate 16 3.2 Ground Gas 16 3.2.1 Investigation Rationale 16 3.2.1 Investigation Rationale 16 4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction 29 5.8 Drainage 29 5.9 Concrete Durability 29 5.10 Excavations 29 5.11			
3.1.10 pH and Sulphate			
3.2 Ground Gas 16 3.2.1 Investigation Rationale 16 4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction 29 5.8 Drainage 29 5.9 Concrete Durability 29 5.10 Excavations 29 5.11 Slope Stability 30 5.12 Further Works 30			
3.2.1 Investigation Rationale 16 4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction 29 5.8 Drainage 29 5.9 Concrete Durability 29 5.10 Excavations 29 5.11 Slope Stability 30 5.12 Further Works 30			
4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT 17 4.1 Human Health Risk Assessment 17 4.2 Controlled Waters Risk Assessment 20 4.3 Ground Gas 23 4.4 Conceptual Site Model 25 5. GEOTECHNICAL ASSESSMENT 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction 29 5.8 Drainage 29 5.9 Concrete Durability 29 5.10 Excavations 29 5.11 Slope Stability 30 5.12 Further Works 30	-		
4.1Human Health Risk Assessment.174.2Controlled Waters Risk Assessment.204.3Ground Gas.234.4Conceptual Site Model.255.GEOTECHNICAL ASSESSMENT.265.1Proposed Development265.2Summary of Ground Conditions.265.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage.295.9Concrete Durability295.10Excavations295.11Slope Stability.305.12Further Works30	3.2.	i investigation Rationale	10
4.1Human Health Risk Assessment.174.2Controlled Waters Risk Assessment.204.3Ground Gas.234.4Conceptual Site Model.255.GEOTECHNICAL ASSESSMENT.265.1Proposed Development265.2Summary of Ground Conditions.265.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage.295.9Concrete Durability295.10Excavations295.11Slope Stability.305.12Further Works30	4. TIEI	R I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT	
4.2Controlled Waters Risk Assessment204.3Ground Gas234.4Conceptual Site Model255.GEOTECHNICAL ASSESSMENT265.1Proposed Development265.2Summary of Ground Conditions265.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30			
4.3Ground Gas234.4Conceptual Site Model255.GEOTECHNICAL ASSESSMENT265.1Proposed Development265.2Summary of Ground Conditions265.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30			
4.4Conceptual Site Model.255.GEOTECHNICAL ASSESSMENT265.1Proposed Development265.2Summary of Ground Conditions265.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30			
5. GEOTECHNICAL ASSESSMENT. 26 5.1 Proposed Development 26 5.2 Summary of Ground Conditions 26 5.3 Site Preparation 26 5.4 Foundation Conditions & Assessment of Potential Bearing Capacities 27 5.5 Ground Floor Slabs 28 5.6 Heave Precautions 29 5.7 Pavement Construction 29 5.8 Drainage 29 5.9 Concrete Durability 29 5.10 Excavations 29 5.11 Slope Stability 30 5.12 Further Works 30	-		
5.1Proposed Development265.2Summary of Ground Conditions265.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	1. 1		
5.2Summary of Ground Conditions265.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	5. GEC	DTECHNICAL ASSESSMENT	
5.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	5.1	Proposed Development	
5.3Site Preparation265.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	5.2	Summary of Ground Conditions	
5.4Foundation Conditions & Assessment of Potential Bearing Capacities275.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	5.3		
5.5Ground Floor Slabs285.6Heave Precautions295.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	5.4		
5.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	5.5		
5.7Pavement Construction295.8Drainage295.9Concrete Durability295.10Excavations295.11Slope Stability305.12Further Works30	5.6	Heave Precautions	
5.8 Drainage			
5.9 Concrete Durability 29 5.10 Excavations 29 5.11 Slope Stability 30 5.12 Further Works 30			
5.10 Excavations 29 5.11 Slope Stability 30 5.12 Further Works 30			
5.11 Slope Stability		•	
5.12 Further Works			
	5.13		

APPENDICES

Appendix I Limitations Appendix II Glossary Appendix III Drawings

Drawing No 12-424-001 – Site Location Plan Drawing No 12-424-003 – Historical Features Plan Drawing No 12-424-004 – Site Features Plan Drawing No 12-424-005 – Exploratory Hole Location Plan Drawing No 12-424-007 – Depth of Topsoil Plan Drawing No 12-424-008 – Depth of Founding Strata Drawing No 12-424-010 – Concept Site Model Plan Drawing No 12-424-021 – Indicative Masterplan

Appendix IVE3P Exploratory Hole LogsAppendix VChemical Testing ResultsAppendix VIOrigin of Tier I Generic Assessment CriteriaAppendix VIIGeotechnical Testing ResultsAppendix VIIISuper Heavy Dynamic Probe Certificates

1. INTRODUCTION

1.1 Background

E3P understands that Hodson Homes are currently appraising the proposed future development of Parcel 4 for low rise residential housing with associated adopted estate roads and utility infrastructure.

This report is required to determine potential contaminated land liabilities, remediation requirements and geotechnical engineering works that will be required as part of the proposed development for the proposed low rise residential development.

The scope of work consisted of following elements.

- Detailed review of historic information;
- Review of Desk Study information;
- Design of suitable intrusive Ground Investigation;
- Window sample probeholes with and construction of environmental monitoring installations;
- Mechanically excavated trial pits;
- In-situ Geotechnical Testing;
- Chemical & Geotechnical Laboratory analysis;
- Groundwater monitoring and sampling;
- Ground gas monitoring;
- Contamination Risk Assessment & Conceptual Site Model;
- Geotechnical Assessment & Interpretation; and,
- Factual and interpretive reporting.

1.2 Proposed Development

The proposed dwellings in this sector will be constructed at the higher elevation of the site with access to be gained from the highway to the east at a lower elevation.

To inform the development of this proposal, E3P visited site to review the access requirements and viable exploratory excavation techniques given the landform tapers with two areas of steep erosion to the north and south of the proposed development platform.

As part any future investigation, slope stability assessment is required to assess the potential mechanism for future failure and re-grade and re-enforcement requirements to ensure the require factor of safety in the construction of the dwellings.

A snapshot of the wider chipping development area is indicated in Figure 1.1 overleaf:

1.3 Objectives

The objectives of the Geo-Environmental Investigation are to:

- Undertake a preliminary stage of sampling and analysis to provide an overview of environmental issues identified;
- Assess the implications of any potential environmental risks, liabilities and development constraints associated with the site in relation to the future use of the site and in relation to off-site receptors;
- Assess the geotechnical information and provide preliminary recommendations in relation to foundations, pavement construction and floor slabs; and,
- Provide recommendations regarding future works required.

1.4 **Previous Reports**

The following reports have previously been completed for the site:

Brown Field Solutions - Desk study assessment report, Church Raike, Chipping. Ref: Report No. LC/C2179/3452, dated 14 January 2016.

Brown Field Solutions - Geo-environmental assessment, Church Raike, Chipping. Ref: Report No. AJH/C2179/3577, dated 7 March 2013.

The Brownfield solutions report, whilst inclusive of the site, mainly focus on the phase 3 area of the proposed chipping redevelopment. No intrusive instigation has been completed within

the phase 4 area within their report. As such, there are no points specific and pertinent to the subject site.

1.5 Limitations

The limitations of this report are presented in Appendix I.

1.6 Confidentiality

E3P has prepared this report solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from E3P; a charge may be levied against such approval.

2. E3P GROUND INVESTIGATION

2.1 General Overview

A Ground Investigation has been designed based on the findings of the desk study with exploratory holes advanced to target specific potential contaminant sources. The investigation has also been used to collect geotechnical information to assist in the design and construction of the proposed development.

Exploratory fieldwork was completed between the 18th April 2018 and the 19th April 2018. The works are summarised in Table 2.1 below.

POTENTIAL SOURCE/RATIONALE	LOCATION HOLE	TYPE	MAXIMU M DEPTH (mbgl)	MONITORING WELLS RESPONSE ZONE (mbgl)
	WS101A		2.45	N/A
	WS101B		2.45	0.5-2.0
	WS101C			N/A
General Ground Conditions	WS102	Window	4.45	0.5-4.0
including the presence / nature	WS103A	Sample	1.45	N/A
of obstructions.	WS103B	Probehole	2.45	N/A
	WS103C		1.45	N/A
	WS104A		1.45	N/A
	WS104B		3.45	0.5-3.0
General Ground Conditions including the presence / nature of obstructions.	TP101-TP108	Mechanically Excavated Trial Pit	3.50	N/A
	SHDP1	Super Heavy	7.00	N/A
Deeper Geotechnical testing	SHDP2	Dynamic Probe Test	13.00	N/A

Table 2.1 Summary of Fieldwork

Mechanically excavated trial pits were advanced to investigate ground conditions and to retrieve environmental samples, spatially distributed to offer the maximum site coverage whilst also being advanced to target specific contaminant sources.

Window sample probeholes were advanced to undertaken in-situ detailed geotechnical testing, obtain environmental samples and install groundwater and ground gas monitoring wells.

The series of super-heavy dynamic probing were advanced to investigate the potential presence of shallow bedrock and to investigate the strengths of soils at depths greater than 5m bgl.

The sampling locations are illustrated in Drawing 12-424-005 (Appendix III). The ground conditions encountered are indicated on the logs which are provided in Appendix VI.

Return visits were made to monitor installations for groundwater level however, all locations were found to be dry.

2.2 In-Situ Standard Penetration Testing (SPT)

In-situ geotechnical testing was conducted using the Standard Penetration Test (SPT) and where the ground is granular, a 60° cone (SPT(C)) was used instead of the sampling tube. The results are shown in the probehole logs in Appendix VI and presented in Table 3.4 and discussed in Section 5.0.

2.3 Laboratory Analysis

Selected soil samples were submitted for a range of chemical analysis comprising, metals, pH, total sulphate, water soluble sulphate (2:1 extract), sulphide, cyanide, phenols, total and speciated poly-aromatic hydrocarbons (PAHs), SVOCs, VOCs, asbestos and total and speciated petroleum hydrocarbon (TPH).

I2 Analytical undertook the analytical work and the testing results are included in Appendix VII and discussed in Section 4.0

Selected samples were submitted to PSL Laboratory where the following geotechnical tests were undertaken:

- Course grained PSD (with 600 series classification)
- Dry density and optimum moisture content

Laboratory analysis sheets are included in Appendix IX and are summarised in Section 5.0:

3. GROUND AND GROUNDWATER CONDITIONS

3.1 Ground and Groundwater Conditions

3.1.1 Summary of Ground Conditions

The Ground Investigation generally confirms the published geology and identifies the strata set out in Table 3.1 below:

	DEPTH TO STRATUM (MBGL)									
HOLE	TOPSOIL	CLAY	ORG SILT	SAND	GRAVEL	BED ROCK				
WS101A	0.00-0.40	0.40-0.80	-	-	0.80-2.00	-				
WS101B	0.00-0.20	-	-	-	0.20-2.00	-				
WS101C	0.00-0.20	-	-	-	0.20-2.00	-				
WS102	0.00-0.30	-	-	-	0.30-4.00	-				
WS103A	0.00-0.30	-	-	-	0.30-2.00	-				
WS103B	0.00-0.30	-	-	-	0.30-2.00	-				
WS103C	0.00-0.40	-	-	-	0.40-1.00	-				
WS104A	0.00-0.20	-	-	-	0.20-2.00	-				
WS104B	0.00-0.50	-	-	-	0.50-3.00	-				
TP101	0.00-0.50	-	-	-	0.50-3.20	-				
TP102	0.00-0.20	-	-	-	0.20-3.40	-				
TP103	0.00-0.20	0.20-1.00	-	-	1.00-2.90	-				
TP104	0.00-0.30	1.60-3.00	-	-	0.30-1.60	-				
TP105	0.00-0.40	-	-	-	0.40-2.80	-				
TP106	0.00-0.80	-	-	-	0.80-3.10	-				
TP107	0.00-0.60	0.60-1.20	-	-	1.20-3.50	-				
TP108	0.00-0.30	0.30-1.80	-	-	1.80-3.50	-				

Table 3.1Summary of Strata

3.1.2 Made Ground

Made Ground has not been encountered within any exploratory hole locations during the investigation. Due to the lack of historic development across the site this is to be expected.

3.1.3 Drift Deposits

Drift deposits were encountered within all exploratory locations to depths of between 0.20m and in excess of 4.0m bgl.

The drift deposits are generally consistent and comprise a dark brown sandy silty clayey GRAVEL of sandstone, mudstone and limestone. Generally, with depth the size and content of the granular components increases with boulders becoming more frequent.

There is also localised yellowish brown sandy gravelly CLAY to depths between 0.2 and in excess of 1.0m in window samples and trial pits in the west and south of the site. This is also locally interbedded with the dark brown clayey GRAVEL and Gravelly CLAY.

3.1.4 Solid Geology

The solid bedrock geology has not been encountered due to obstructions in the form of oversize boulders at depths in excess of 6m bgl stopping the penetration of drilling and testing equipment. The use of a Super Heavy Dynamic Probe test advanced the investigation to a depth of 13.0m bgl however, again refusal in dense gravels and obstructions ceased progress. The solid geology is indicated to comprise limestone bedrock from BSG information, however, boreholes scans in the area show Millstone Grit (Carboniferous Sandstone) from 15.00m bgl.

3.1.5 Groundwater

Groundwater strikes were encountered as seepages. The depth of the seepages are shown on the exploratory hole records and summarised in Table 3.2 below:

LOCATION	DEPTH TO STRIKE (m)	NOTES
TP107	1.30	Very slow seepage
TP108	0.90	Slow perched
TP108	1.40	Slow seepage
TP108	2.00	Slow seepage

Table 3.2Summary Groundwater Strikes

3.1.6 Visual and Olfactory Evidence of Contamination

Visual and olfactory evidence of potential contamination has not been identified during the site investigation.

3.1.7 Soil Consistency

Due to the heavily granular nature of the soils encountered on site Undrained shear strength could not be completed. However, results of the Standard Penetration Tests, including soils densities derived from SPTs are included on Table 3.3.

3.1.8 Side Stability and Ease of Excavation

The sides of the exploratory trial pit excavations appeared to be generally stable during excavation.

The presence of mudstone cobbles in clayey gravel deposits meant that in certain places excavation was slow through the natural ground. The topsoil strata was excavated with relative ease.

BOREHOLES	DEPTH (mbgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N1)60	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)
WS101a	1	sandy silty clayey gravel	14	14.11	Medium Dense	N/A	N/A	N/A
WSTUTA	2	sandy silty clayey gravel	50	45.68	Dense	N/A	N/A	N/A
WS101b	1	sandy silty clayey gravel	50	50.41	Very Dense	N/A	N/A	N/A
	1	sandy silty clayey gravel	13	13.11	Medium Dense	N/A	N/A	N/A
WS102	2	sandy silty clayey gravel	21	19.18	Medium Dense	N/A	N/A	N/A
W3102	3	silty clayey gravel	32	27.83	Medium Dense	N/A	N/A	N/A
	4	sandy silty clayey gravel	50	42.24	Dense	N/A	N/A	N/A
W6102a	1	sandy silty clayey gravel	24	24.20	Medium Dense	N/A	N/A	N/A
WS103a	2	sandy silty clayey gravel	50	45.68	Dense	N/A	N/A	N/A
WS103b	1	sandy silty clayey gravel	50	50.41	Very Dense	N/A	N/A	N/A
WS104a	1	sandy silty clayey gravel	23	23.19	Medium Dense	N/A	N/A	N/A
W3104a	2	sandy silty clayey gravel	50	45.68	Dense	N/A	N/A	N/A
	1	sandy silty clayey gravel	22	22.18	Medium Dense	N/A	N/A	N/A
WS104b	2	sandy silty clayey gravel	29	26.49	Medium Dense	N/A	N/A	N/A
	3	sandy silty clayey gravel	31	26.96	Medium Dense	N/A	N/A	N/A

Table 3.3 Standard/Cone Penetration Test Results

3.1.9 Soil Infiltration

Permeability testing has not been completed on this occasion however, considering the presence of low permeability clay within the gravel on the site, it is considered that soakaway drainage may not be suitable for the proposed development. However, the application of soakaway drainage will ultimately be dependent on the specific requirements of the development. All soakaways should be designed in accordance with BRE Special Digest 365 – *Soakaway Design*.

3.1.10 pH and Sulphate

Chemical analyses for pH and soluble sulphate content contained in Appendix VII (summarised below in Table 3.4), shows that the soils at the site generally meet Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with BRE Special Digest 1 (2005).

LOCATION	DEPTH (m)	SO₄ IN 2:1 WATER / SOIL (g/I)	pH VALUE	CLASSIFICATION
TP101	0.30	0.019	7.9	DS-1, AC-1s
TP101	2.00	0.12	8.0	DS-1, AC-1s
TP103	0,40	0.0061	7.4	DS-1, AC-1s
TP104	0.20	0.013	6.9	DS-1, AC-1s
TP104	2.50	0.29	8.0	DS-1, AC-1s
TP107	0.20	0.0092	7.6	DS-1, AC-1s
WS101A	0.40	0.015	7.1	DS-1, AC-1s
WS101B	1.20	0.025	8.2	DS-1, AC-1s
WS103A	0.80	0.020	7.1	DS-1, AC-1s
WS103B	1.80	0.34	6.9	DS-1, AC-1s

Table 3.4Summary of pH and Sulphate Data

3.2 Ground Gas

A ground gas assessment has been completed in accordance with guidance provided within CIRIA 665 Assessing risk posed by hazardous ground gases to buildings.

3.2.1 Investigation Rationale

The ICSM has identified that the site represents a very low ground gas source generation potential.

Within the context of the proposed residential end use and ground gas generation potential, it has been deemed appropriate in this instance to utilise an RB17 assessment with reference to standards and guidelines published in CIEH Research Bulletin 17 *A Pragmatic Approach to Ground Gas Risk Assessment* (RB17).

4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT

E3P has undertaken a Tier 1 qualitative risk assessment to determine if any potential contaminants within the underlying soils and groundwater pose an unacceptable level of risk to the identified receptors.

4.1 Human Health Risk Assessment

At a Tier 1 stage the long term (chronic) human health toxicity of the soil has been assessed by comparing the on-site concentrations of organic and inorganic compounds with reference values published in LQM / CIEH S4UL (S4UL3267).

The results of this comparison have been summarised within Table 4.1 (overleaf).

Table 4.1	Summary	of	Inorganic	and	Hydrocarbon	Toxicity	Assessment	for a
Residential E	nd Use		_					

DETERMINANT	UNIT	GAC	N	MC	LOC. OF EX	PATH- WAY	ASSESSMENT
Arsenic	mg/kg	37	10	23	N/A	1	No Further Action
Cadmium	mg/kg	11	10	3.3	N/A	1	No Further Action
Chromium (VI)	mg/kg	6.1	10	2.9	N/A	1	No Further Action
Lead	mg/kg	200	10	60	N/A	1	No Further Action
Mercury	mg/kg	11	10	< 0.3	N/A	2	No Further Action
Nickel	mg/kg	180	10	52	N/A	1	No Further Action
Selenium	mg/kg	250	10	13	N/A	1	No Further Action
Copper	mg/kg	2400	10	47	N/A	1	No Further Action
Zinc	mg/kg	3700	10	160	N/A	1	No Further Action
Cyanide - Total	mg/kg	791	10	< 1.0	N/A	1	No Further Action
Phenols - Total.	mg/kg	210	10	< 1.0	N/A	1	No Further Action
Asbestos	Fibres	NFD	6	Not detected	N/A		No Further Action
Naphthalene	mg/kg	2.3	10	< 0.05	N/A	2	No Further Action
Acenaphthylene	mg/kg	170	10	< 0.05	N/A	3	No Further Action
Acenaphthene	mg/kg	210	10	< 0.05	N/A	1	No Further Action
Fluorene	mg/kg	170	10	< 0.05	N/A	1	No Further Action
Phenanthrene	mg/kg	95	10	0.32	N/A	3	No Further Action
Anthracene	mg/kg	2400	10	< 0.05	N/A	3	No Further Action
Fluoranthene	mg/kg	280	10	0.97	N/A	3	No Further Action
Pyrene	mg/kg	620	10	0.85	N/A	3	No Further Action
Benzo(a)Anthracene	mg/kg	7.2	10	0.62	N/A	3	No Further Action
Chrysene	mg/kg	15	10	0.42	N/A	3	No Further Action
Benzo(b)Fluoranthene	mg/kg	2.6	10	0.62	N/A	3	No Further Action
Benzo(k)Fluoranthene	mg/kg	77	10	0.24	N/A		No Further Action
Benzo(a)Pyrene**	mg/kg	2.2	10	0.45	N/A	3	No Further Action
Indeno(123-cd)Pyrene	mg/kg	27	10	0.22	N/A	3	No Further Action
Dibenzo(a,h)Anthracene	mg/kg	0.24	10	0.62	TP104 0.20m	3	Further Action
Benzo(ghi)Perylene	mg/kg	320	10	0.22	N/A	3	No Further Action
TPH C5-C6 (aliphatic)*	mg/kg	42	10	< 1.0	N/A	2	No Further Action
TPH C6-C8 (aliphatic)*	mg/kg	100	10	< 0.1	N/A	2	No Further Action
TPH C8-C10 (aliphatic)*	mg/kg	27	10	< 0.1	N/A	2	No Further Action
TPH C10-C12 (aromatic)*	mg/kg	74	10	14	N/A	2	No Further Action
TPH C12-C16 (aromatic)*	mg/kg	140	10	30	N/A	2	No Further Action
TPH C16-C21 (aromatic)*	mg/kg	260	10	34	N/A	1	No Further Action
TPH C21-C35 (aromatic)*	mg/kg	1100	10	48	N/A	1	No Further Action

Notes

Main Exposure Pathways: 1 = Soil Ingestion, 2 = Vapour Inhalation (indoor), 3 = Dermal Contact & Ingestion, 4 = Dust Inhalation. Abbreviations: GAC = General Assessment Criteria, n = number of samples, MC = Maximum Concentration; Loc of Ex = Location of Exceedance; NFD = No Fibres Detected * The Tier 1 GAC for the hydrocarbon fraction is derived from the CIEH assessment for petroleum hydrocarbons Criteria Working

* The Tier 1 GAC for the hydrocarbon fraction is derived from the CIEH assessment for petroleum hydrocarbons Criteria Working Group (CWG) for both aliphatic and aromatic compounds. E3P has utilised the Tier 1 values for aliphatic compounds for the volatile and semi volatile fractions (C_{5} - C_{12}) and the Tier 1 values for aromatic compound for the non-volatile fractions (C_{12} - C_{35}). The comparison of a total (aliphatic/aromatic) compounds to an individual fraction is considered to be a conservative approach and satisfactory for the protection of human health.

Referring to Table 10.1, the results of this direct comparison indicates that the data exceeds the screening criteria for a residential end use for the following contaminants:

Dibenzo(a,h)Anthracene

No significant concentrations of Chlorinated solvents were identified in the soils submitted for chemical analysis. Chlorinated solvents pose a particular risk due to their potential for dissolution into groundwater. In this case the identified contaminant has low mobility and therefore can be considered to be an isolated hotspot.

The laboratory analysis confirms the assessment within the initial conceptual site model that the main constituents of concern were likely to be PAHs.

In relation to these exceedances, the following can be determined:

- The main exposure pathways based on the Tier I exceedances are:
 - 1. Soil Ingestion
 - 2. Vapour Inhalation (Indoor)
 - 3. Dermal Contact and Ingestion
 - 4. Consumption of Homegrown Vegetables
 - 5. Fibre / Dust Inhalation
- The exceedances for all determinands are associated with shallow Made Ground deposits (<0.40m).</p>

Risk Assessment and Mitigation

The identified elevated concentration has a primary exposure pathway related to dermal contact and ingestion of soils and consumption of home-grown vegetables. The chronic risk to human health associated with the elevated concentrations of non-volatile PAH compounds can be mitigated through the installation of a suitable cover system in all proposed private gardens, landscaping and Public Open Space to remove any potential for direct exposure to impacted soils.

With regards to the elevated Dibenzo(a,h)Anthracene, this presents a potential risk if a person ingests or comes into dermal contact with the substances. These elevated concentrations have only been identified within one area of the site and are therefore considered to be a localised contamination. However, the 600mm will be sufficient cover to remediate the elevated concentrations. Soils will be chemically validated to assess chemical suitability for retention on site in an area of no future sensitivity.

However, in this instance there are no Made Ground soils and the contaminant is found to be an isolated occurrence. Provided this is treated as a hotspot during preparatory works and the materials are delineated, removed and validated to confirm suitability for re-use, a cover system will not be required and the remaining topsoil across the site can be re-used within the future development as growing medium. The removal of the source to an area of low future sensitivity is considered sufficient to break the source-pathway-receptor model to ensure a low risk to future end users.

Chemical analysis of the natural clay drift deposits have identified these soils to be acceptable for use as subsoil within the proposed garden areas, however further chemical validation samples will be required to confirm this.

4.2 Controlled Waters Risk Assessment

The site sensitivity with respect to controlled waters is summarised within Table 4.2

Table 4.2 Controlled Waters Sensitiv	ity Profile
--------------------------------------	-------------

RISK PROFILE	DISCUSSION	SENSITIVITY RATING
Groundwater Source Protection Zone or Drinking Water Safeguard Zone	The site is not within a Groundwater Source Protection Zone or Drinking Water Safeguard Zone	Low
Distance to the closest groundwater abstraction point.	None within 2000m	Low
Aquifer Classification in Superficial Drift Deposits.	The superficial drift deposit is classified as a unproductive aquifer. These are layers of drift deposits with low permeability that have negligible significance for water supply or river base flow	Low
Aquifer classification in Bedrock.	The bedrock is classified as a Secondary A aquifer - Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.	Low
Viability for Anthropogenic soil in direct contact with aquifer (drift or bedrock).	The made ground (topsoil) on the surface of the site overlies the unproductive aquifer in the drift.	Low
Is the site located within 50m of a surface watercourse?	Yes – Chipping Brook runs to the north of the site.	Moderate

Summary

The ICSM developed within the context of the site setting has only identified a single viable pollutant risk which would be the horizontal migration of potentially mobile phase soluble contaminants towards the adjacent Chipping Brook. However, the overall sensitivity of this receptor is reduced given the absence of any significant pollutant source and thus the potential for the creation of a complete pollutant linkage.

To further refine the ICSM, E3P has undertaken an initial qualitative assessment of the soil data analysis to assess the potential for a source of separate phase or dissolved phase contamination originating from either a defined on-site source or from impacted soils. This assessment is summarised in Table 4.3.

Table 4.3 Qualitative Ris	able 4.3 Qualitative Risk to Controlled Waters from Soil Analytical Results				
BTEX - >1mg/kg	All concentrations are below the laboratory LOD.				
Total VOC - > 1mg/kg					
Total SVOC - > 1 mg/kg	Maximum SVOC concentration was detected at 0.97mg/kg.				
C5-C10 - > 5mg/kg	All concentrations are below the laboratory LOD.				
C10-C12 - > 10mg/kg	All concentrations are below the laboratory LOD.				
C12-C16 - > 50mg/kg	All concentrations are below the laboratory LOD.				
Phenols – > 2mg/kg	All concentrations are below the laboratory LOD.				
Naphthalene - > 2mg/kg	All concentrations are below the laboratory LOD.				
Total PAH - > 10mg/kg	All concentrations are below the laboratory LOD.				
PCB - > 1mg/kg	All concentrations are below the laboratory LOD.				
Heavy metals - > 500mg/kg	Maximum heavy metal concentration across the site is 160mg/kg.				

. . . . - 1 0 -- -...

In due consideration of the ICSM which has identified a potential pollutant linkage associated with the migration towards the adjacent Chipping Brook, E3P has undertaken a Tier I controlled waters risk assessment. The Tier I assessment has included a comparison of leachate analysis and groundwater samples to Environmental Quality Standards (EQS) in the first instance and where absent Drinking Water Standards.

These are presented in Table 4.4 overleaf.

					-			
DETERMINAND	UNITS	EQ SCREE VALUE	NING 1, 2, 3	DWS 3,4,5	N (L-Leachate, GW –Groundwater)	МС	LOC OF EX	ASSESSMENT
		AA	MAC		,			
Arsenic	µg/l	50	-	10	2 Leachate	1.7	N/A	No Further Action
Cadmium	µg/l	0.08	0.45	5	2 Leachate	0.56	TP102-2.80	Further Action
Chromium (VI)	µg/l	3.4	-	-	2 Leachate	<5.0	N/A	No Further Action
Chromium (III)	µg/l	4.7	-	50	2 Leachate	<0.4	N/A	No Further Action
Copper (hardness)	µg/l	1-28		2000	2 Leachate	16	N/A	No Further Action
Total Cyanide	µg/l	1	-	50	2 Leachate	<1.0	N/A	No Further Action
Lead	µg/l	1.2	14	10	2 Leachate	2.2	N/A	No Further Action
Mercury	µg/l	-	0.07	1.0	2 Leachate	<0.5	N/A	No Further Action
Nickel	µg/l	4	34	20	2 Leachate	4.7	N/A	No Further Action
Selenium	µg/l		-	10	2 Leachate	150	N/A	No Further Action
		8-125	-	10	2 Leachate	11	N/A	No Further Action
Zinc(hardness)	µg/l			-	2 Leachate	7.1-7.4	N/A	No Further Action
рН РАН		6-9	,		2 Leachate	7.1-7.4	IN/75	
Naphthalene	ug/l	2	130		2 Leachate	<0.01	N/A	No Further Action
	µg/l				2 Leachate		N/A N/A	
Anthracene	µg/l	0.1 1.7 ⁻⁴	0.1			<0.01	N/A N/A	No Further Action
Benzo[b]fluoranthene	µg/l	1.7	0.017		2 Leachate	<0.01 <0.01		No Further Action
Benzo[k]fluoranthene	µg/l		0.017	10*	2 Leachate		N/A	No Further Action
Benzo(a)pyrene	µg/l	1.7 ⁻⁴	0.27		2 Leachate	<0.01	N/A	No Further Action
Fluoranthene	µg/l	0.0063			2 Leachate	<0.01	N/A	No Further Action
Benzo(ghi)perylene	µg/l	1.7 ⁻⁴	8.2 ⁻³		2 Leachate	<0.01	N/A	No Further Action
TPH-Aromatic								
TPH C5-C6 (benzene)	µg/l	10	50	1	2 Leachate	<1.0	N/A	No Further Action
TPH C6-C8 (toluene)	µg/l	50	-	700	2 Leachate	<1.0	N/A	No Further Action
TPH C8-C10 (ethyl Benzene)	µg/l	20	-	300	2 Leachate	<1.0	N/A	No Further Action
TPH C10-C12 (xylene)	µg/l	30	-	500	2 Leachate	<10	N/A	No Further Action
TPH C12-C16	µg/l	2	130	90 ⁵	2 Leachate	<10	N/A	No Further Action
TPH C16-C35	µg/l	50#	50#	90 ⁵	2 Leachate	<10	N/A	No Further Action
TPH Aliphatic ⁵								
TPH C5-C6	µg/l	-	-	15000	2 Leachate	<1.0	N/A	No Further Action
TPH C6-C8	µg/l	-	-	15000	2 Leachate	<1.0	N/A	No Further Action
TPH C8-C10	µg/l	-	-	300	2 Leachate	<1.0	N/A	No Further Action
TPH C10-C12	µg/l	-	-	300	2 Leachate	<1.0	N/A	No Further Action
TPH C12-C16	µg/l	-	-	300	2 Leachate	<1.0	N/A	No Further Action
TPH C16 – C21	µg/l	-	-	300**	2 Leachate	<1.0	N/A	No Further Action
TPH C21-C35	µg/l	-	-	300**	2 Leachate	<1.0	N/A	No Further Action
	1.9.1		1					

Table 4.4 Comparison of Groundwater Analysis with Tier 1 Screening Levels

Notes

Solubility <0.01µg/l</p>

AA – Annual Average

MAC- Maximum Admissible Concentration

* Sum of The specified compounds are benzo[b]fluoranthene (CAS 205-99-2), benzo[k]fluoranthene (CAS 207-08-9), benzo[g,h,i]perylene (CAS 191-24-2) and indeno[1,2,3-c,d]pyrene (CAS 193-39-5)

1. The Water Environment (Water Framework Directive) (England and Wales) (Amendment) Regulations (2015)

Directive establishing a framework for Community action in the field of water policy (Water Framework Directive)
 Council Directive on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community

(Dangerous Substances Directive) - List II substances

4. Council Directive on the quality of water intended for human consumption (Drinking Water Directive)

5. WHO Guidelines for Drinking Water Quality. Third edition (2004)

For the purposes of the Tier 1 assessment E3P has compared the laboratory test data directly to the EQS values, which are for the protection of surface water quality. This assessment is considered to be conservative due to the fact there are not likely to be significant contaminants across the site.

This comparison indicates that the data exceeds for the following inorganic compounds:

Cadmium

It should be noted that the Tier I assessment criteria provides a conservative view, which may over-state the risk. Inorganic determinants identified above are of a general low solubility and therefore mobility, suggesting that these will not migrate to controlled water receptors. Furthermore, they may be representative of suspended solids within the water samples obtained rather than the true dissolved phase.

Given the site is underlain by granular material with a large quantity of low permeability cohesive Deposits within the matrix which will afford protection to the underlying Secondary A Aquifer; there is considered to be a low risk to controlled waters and the wider environ as no complete pollutant linkage can be determined. Furthermore, the nearest surface watercourse is the adjacent brook which, given the lack of mobile source contaminants is at a low risk.

Based on the above, there is considered to be no unacceptable level of risk to the controlled water receptors.

4.3 Ground Gas

The potential impact on the development from ground gases has been assessed with reference to standards and guidelines published in CIEH Research Bulletin 17 *A Pragmatic Approach to Ground Gas Risk Assessment* (RB17).

This approach is considered appropriate given the age and limited thickness of Made Ground identified.

The desk-based analysis and subsequent ground investigation has identified the following potential sources of ground gas:

- No areas of discernible Made Ground present within on or immediately adjacent to the proposed development.
- No infilled ponds or features with potential decaying organic matter are identified;
- The site is not located within an area that is considered to be at risk from natural emission of Radon Gas.

Given the low sensitivity of the site with respect to hazardous ground gas, it was considered that a ground gas assessment undertaken in accordance with the latest guidance provided by CL:AIRE in their research bulletin RB17 would be suitable.

CL:AIRE Research Bulletin RB17 provides an alternative framework for the investigation and assessment of ground gas that takes into account other factors such as such as site history and the nature of the ground conditions beneath a site. It has been prepared to allow gas well installation and monitoring to be avoided where appropriate and may also be used in conjunction with gas monitoring to reduce the monitoring period or to avoid extra gas monitoring where anomalous results are recorded. The assessment is summarised in Table 4.5:

E3P CL:AIRE RB 17 Ground Gas Risk Assessment				
ltem	Outcome	Action	Risk Score	
 Have any credible OFF SITE ground gas sources been identified within the Desk Study & ICSM that would include: Registered landfill within 250m; Historical landfill; Infilled pond within 50m; Infilled ground 100m. 	No	None	1	
Is the site located within close proximity to a variable groundwater regime (river or tidal) that could potentially influence the ground gas regime.	Yes	Chipping Brook along Northern boundary. But no gas source.	1	
Has a credible pathway for the migration of gas from historical mine workings been identified.	No	None	1	
Average depth of Made Ground >5.0m	No	None	1	
Average depth Made Ground >3.0m	No	None	1	
Average Depth Made Ground >1.0m	No	None	1	
TOC <1	Yes	Natural (1 Sample)	1	
TOC 1-3	Yes	Natural (2 Samples)	1	
TOC >3	No	None	1	
Made Ground In-situ >20 Years	No	None	1	
Made Ground In-situ <20 Years	No	None	1	
Only natural soils with no potential to generate CH4	Yes	None	1	
Recorded coal gas emission	No	None	1	
Radon Protection Measures Required	No	None	1	
Risk	Score		14	

Notes for E3P RB17 Gas Risk Assessment

This risk assessment is an internal tool kit developed by E3P in due consideration of the guidance published within CL:AIRE RB17. The minimum score attributed is 1 with the assessment to be completed by a suitably qualified person deemed capable of making a reasoned and informed assessment.

Risk Score – 1 = Low / 2 = Moderate / 3 = High

Risk Profile

Cumulative risk score is <15 the site is deemed to be very low risk and thus conforms to Characteristic Situation 1. Cumulative risk score is >15 but <20 the site is deemed to be low to medium risk and thus conforms to Characteristic Situation 2.

Cumulative risk score is >20 the site is deemed to be medium to high risk and thus conforms to Characteristic Situation 3.

The RB17 assessment indicates a cumulative score of 15 and that suggests Characteristic Situation 1 of Green. It is considered that gas protection measures will not be required.

4.4 Conceptual Site Model

Following the completion of the intrusive site investigation, chemical analysis and risk assessment the conceptual model shown in Table 4.6 has been prepared for the site.

SOURCE	PATHWAY	RECEPTOR			
Human Health					
Heavy Metals and Non- Volatile PAHs	Dermal Contact and Ingestion Consumption of Homegrown Produce Soil Ingestion	Construction Workers Residential End Users			
Discussion: Heavy metals and PAH's may pose a short term risk to construction workers who may come into contact with impacted soils during any future earthworks and future end used through direct contact and consumption of home grown produce. It is expected that during a phase of enabling works that this isolated occurrence is delineated, removed and validated to determine its future use within the development within an area of future low sensitivity or removal from site, thus breaking the pathway to the proposed end users.					
Controlled Waters					
Mobile Contaminants	Vertical / Lateral Migration	Chipping Brook			
<i>Discussion:</i> The site is considered to be	at no unacceptable level of risk to control	led water receptors.			
Ground Gas					
Methane and Carbon Dioxide	Inhalation & Accumulation Construction Worke Site End Users				
	Discussion: The site can be classified as CS1/Green and no specialist mitigation measures will be required in the construction of the new development.				
Buildings and Infrastruct	ıre				
pH & Sulphate	Corrosion of Concrete Foundations / Cor				
Discussion: Presence of pH and sulphate within deposits may result in corrosion of buried concrete within the proposed development. Assessment has been completed to confirm the levels of pH and sulphate meet the concrete classification of DS-1 AC-1s.					
Ecology					
None Identified	N/A N/A				
<i>Discussion:</i> In the absence of any potential receptors, no unacceptable risk to ecology has been identified.					

5. GEOTECHNICAL ASSESSMENT

5.1 Proposed Development

At this time, E3P has not been provided with a plot specific proposed development plan however, it is expected that the development will feature a number of low-rise residential properties comprising residential dwellings of mixed type with associated gardens, estate roads and infrastructure.

5.2 Summary of Ground Conditions

Made Ground

Made Ground has not been encountered within any exploratory hole locations during the investigation. Due to the lack of historic development across the site this is also not expected.

Drift

Drift deposits were encountered within all exploratory locations to depths of between 0.20m and in excess of 4.0m bgl. The drift deposits are generally consistent and comprise a dark brown sandy silty clayey GRAVEL of sandstone, mudstone and limestone. Generally, with depth the size and content of the granular components increases with boulders becoming more frequent.

There is also localised yellowish brown sandy gravelly CLAY to depths between 0.2 and in excess of 1.0m in window samples and trial pits in the west and south of the site. This is also locally interbedded with the dark brown clayey GRAVEL and Gravelly CLAY.

Solid

The solid bedrock geology has not been encountered due to obstructions in the form of oversize boulders at depths in excess of 6m bgl stopping the penetration of drilling and testing equipment. The use of a Super Heavy Dynamic Probe test advanced the investigation to a depth of 13.0m bgl however, again refusal in dense gravels and obstructions ceased progress. The solid geology is indicated to comprise limestone bedrock from BSG information, however, boreholes scans in the area show Millstone Grit (Carboniferous Sandstone) from 15.00m bgl.

5.3 Site Preparation

The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the Specification for Highway Works. This should include:

- Roots present below the footprint of proposed structures and infrastructure should be grubbed out and the resulting void infiled with suitable compacted engineered fill;
- Any redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill; and,
- Buried structures and old foundations have not been encountered on site. However, given the glacial deposits in the area oversize boulders can be potentially present. These should be excavated from below the proposed development foot print with the resulting void backfilled.

5.4 Foundation Conditions & Assessment of Potential Bearing Capacities

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, E3P has undertaken an assessment of the net safe Allowable Bearing Pressure (ABP) within the underlying natural stratum to assist in the detailed design of foundations and infrastructure and determine the target founding stratum. The assessment of ABP is summarised in Table 5.1.

Table V.T. Guillina	able 5.1 Summary of ABP Assessment					
GRANULAR SOILS						
Description	Depth (range bgl)	Relative Density	Allowable Bearing Pressure (kN/m ²)			
	1.00-1.45	Medium – Very Dense	131 - 504			
	2.00-2.45	Medium Dense - Dense	191 - 456			
Clayey GRAVEL	3.00-3.45	Medium Dense	269 - 278			
	4.00-4.45	Dense	422			

Table 5.1Summary of ABP Assessment

Based on the assessment of the relative undrained shear strength, relative in-situ densities and corresponding safe net Allowable Bearing Potential, the suitable target founding stratum has been identified as the underlying medium dense Gravel.

However, given the significant topographical variances on the site, prior to the detailed design of suitable foundations solutions, a programme of site enabling works will be required to provide suitable development platform levels.

Therefore, upon completion of these enabling works, it is likely that the most cost effective option for the majority of the site would be to support a traditional strip footing in the medium dense gravel at shallow depth.

The option to this would be a pier and beam system utilising concrete rings to form the foundation.

Given the nature of the site and proposed detached bespoke dwellings it will be necessary for the project Structural Engineer to design specific foundations for each dwelling considering the proposed floor levels, sub-structure design and post enabling works ground conditions.

Table 5.2	Fable 5.2 Anticipated Foundations						
LOCATION	ANTICIPATED FOUNDING STRATA DEPTH	GROUND WATER	FOUNDATION TYPE	TYPE OF CONCRETE	REMARKS		
WS101A	1.15	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS101B	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS101C	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS102	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS103A	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS103B	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS103C	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS104A	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
WS104B	0.85	N/A	Strip/Pier and Beam	DS-1 AC-1s	VSC to		
TP101	0.85	N/A	Strip/Pier and Beam	DS-1 AC-1s	Competent		
TP102	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s	strata		
TP103	1.35	N/A	Strip/Pier and Beam	DS-1 AC-1s			
TP104	0.75	N/A	Strip/Pier and Beam	DS-1 AC-1s			
TP105	0.85	N/A	Strip/Pier and Beam	DS-1 AC-1s			
TP106	1.15	N/A	TF/Pier and Beam	DS-1 AC-1s			
TP107	1.55	1.30	TF/Pier and Beam	DS-1 AC-1s			
TP108	2.15	0.90 1.40 2.00	TF/Pier and Beam	DS-1 AC-1s			

Foundation depths should take account of the presence of existing and proposed trees with foundations deepened locally, to mitigate the potential for volumetric instability attributed to fluctuations in moisture content, in accordance with the requirements of NHBC standards.

At this time, it is not possible to accurately define the foundation types due to the absence of a detailed tree survey and final development levels and slope stability assessment, however based on our extensive experience of similar sites we would anticipate that the final foundation solution would be a combination of the following:

- Shallow strip and trench fill foundations bearing on medium dense gravel at c 1.0-2.50m bgl; and,
- Pier and beam to support re-enforced strip foundations in areas of variable ground.

A conjectured depth to founding strata from current ground level Plan is included as Drawing 12-424-008 in Appendix III.

5.5 **Ground Floor Slabs**

Current building control regulations require that where infilled ground is present to depths in excess of 600mm or where the sub-stratum is variable in terms of the structure and settlement potential or where clay soils are present within the influence of existing or proposed trees, a suspended floor slab is required.

In this instance it is considered that for the majority of substructures, the underlying stratum would have a variable sub-stratum due to the high clay content within the granular stratum and as such a suspended floor slab will be required.

Where a cast in-situ suspended slab is utilised with no sub-floor void, appropriate compressible material (heave precautions) will be required in the construction of the sub-structure.

5.6 Heave Precautions

The site has been proven to be underlain by predominantly granular soils with clay matrix. Given their classification these soils are not susceptible to volumetric instability due to fluctuations in moisture content as per the NHBC / LABC conjectured zones of influence.

5.7 Pavement Construction

A programme of remediation and enabling works will be required to remediate the proposed road sub-grade in accordance with the requirements of the highways design manual (series 600) for a Method Compaction.

It is considered that the material can be re-engineered to a method to achieve a CBR in excess of 5% if works are completed in favourable climatic conditions.

5.8 Drainage

The presence of substantial depths of clay bound gravel across the site may result in settlement. It is therefore recommended that drain runs are designed using steeper gradients and flexible joints to allow for some differential settlement.

Furthermore, the use of soak-away drainage will be limited, and as the lateral continuity of the clay component cannot be assured it is not recommended that soakaways utilised for disposal of surface water runoff.

If soak-away drainage is to be considered, full BRE365 Testing must be completed to inform the detailed design.

5.9 Concrete Durability

Based upon the results of the chemical analyses summarised in it is considered that subsurface concrete can be designed in accordance with Design Sulphate Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with the recommendations provided in BRE Special Digest 1 (2005).

5.10 Excavations

Trial Pits were generally stable in natural strata, as such it is considered that near surface excavations will be feasible. Areas where excavation exceeded 2.00m, excavations were generally less stable.

Site observations indicated that excavations should be feasible in the near surface with normal plant. It is anticipated that any obstructions will be grubbed out during the reduced level dig for the sub structure works.

However, due to the depth and variability of the natural deposits and likelihood of trench collapse it is considered that all excavations are supported or battered back in accordance with guidance contained in CIRIA R97.

If local pumping of groundwater is required during the advancement of excavations for the proposed foundations. Consideration should be given for the potential for dewatering gravels in the surrounding areas to the subject site that may cause structural damage to buildings substructures in close proximity to the site.

Risk Item	Present	Comment
Running Sands	No	N/A
Minor Water ingress	No	Minor water ingress will require localised dewatering / sump pumping during the construction of site drainage infrastructure. Ingress of water into foundation excavation will potentially flood foundation excavations limiting the viability of spread foundations to be constructed.
Shallow Bedrock	No	N/A

 Table 5.3 Civil Engineering Excavation Risk Matrix

5.11 Slope Stability

A significant embankment is present at the northern and southern boundary leading to Chipping Brook (north) and Church Raike (Road – south) at the lower elevation of these slopes.

As and when detailed topographic information is available and in due consideration of the proposed development design, structural and infrastructure loading, a detailed slope stability model will be required. This model will seek to determine the potential for newly imposed loadings to generate a risk of instability or failure within the off-site embankment and the need for any mitigation measures such as piled foundation to transfer loadings below the base of the slope.

5.12 Further Works

Based on the findings of the intrusive site investigation, the following additional works are recommended to be completed in due course:

- Plot Specific Foundation Schedule (upon receipt of the final development levels);
- Arboricultural Survey;
- Slope stability assessment;
- Geotechnical Earthworks Strategy (Infrastructure);
- Remediation & Enabling Works strategy

5.13 Construction Activity and Inspection

The following activities and inspections should be incorporated in to the site works:

- Due to the variability of the soils at the site it is recommended that sufficient allowance is made for the inspection of formation and sub formations to foundations and pavement construction;
- Excavations where access is required should be subject to a risk assessment from a competent person and where appropriate mitigation measures such as benching back the sides or use of support systems in accordance with CIRIA R97 utilised;
- It is considered that de-watering may be required, especially following periods of heavy rainfall. Removal of surface water and water within trenches should be possible with conventional sump pumping. Discharge of any water should be agreed with the relevant regulatory body and be undertaken under a trade effluent discharge, where required. Measures to remove silt and suspended solids may be required and consideration should be given to provision of space for settling tanks or an attenuation pond;
- The presence of potential contamination and mitigation measures should be addressed as part of the Construction Stage Health and Safety Plan and should include measures to design out the risks, reduce their impact and finally the use of Personnel Protective Equipment (PPE).

6. CONCLUSIONS AND RECOMMENDATIONS

Contaminated Land	
Human Health	The Tier 1 Human Health Risk Assessment identified an isolated concentration of non-volatile organic compounds that would present unacceptable degree of theoretical risk to the identified receptors associated with direct exposure pathways.
	Given the identified depth of this exceedance (0.2m bgl) it is likely the material will be processed in a hotspot removal during initial enabling works. In this circumstance as it is an isolated occurrence the materials should be delineated, removed and validated to ensure removal from site or placement in an area of low future risk and therefore breaking the pathway to future end users.
	This method would negate the use of a cover system and ensure the re-use of other topsoil across site that has been confirmed to be suitable within the proposed development.
	Natural granular drift strata has been confirmed as suitable for reuse within the future development.
Controlled Waters	Low risk to controlled waters.
Ground Gas	Characteristic Situation 1 / Green
Potable Water	Poly-Ethylene Pipe

Geotechnical Issues

No anthropogenic obstructions have been identified within the intrusive investigation however, given the increasing granular nature of the soils and increase size and volume with depth is it expected that some larger boulders will require removal during the excavation for foundations the road box and any sub surface utility construction.

The underlying natural granular drift deposits have been assessed as being medium dense to dense with a net ABP in the order of 150kN/m2 at circa 1.00m bgl increasing to in excess of 150-200kN/m2 with depth.

Due to the existing large variances in the site topography, a phase of cut and fill enabling works will be required in order to create a proposed development platform suitable for a residential development. This will generally comprise increasing levels on the road side to the south and east.

Given that competent strata has been identified in the near surface it is expected that traditional shallow strip foundations will be suitable for the construction of most plots.

Where target strata is found at greater depth it may be suitable to facilitate the use of pier and beam foundations to support a reinforced strip footing.

Given the nature of the site and proposed detached bespoke dwellings it will be necessary for the project Structural Engineer to design specific foundations for each dwelling considering the proposed floor levels, sub-structure design and post enabling works ground conditions.

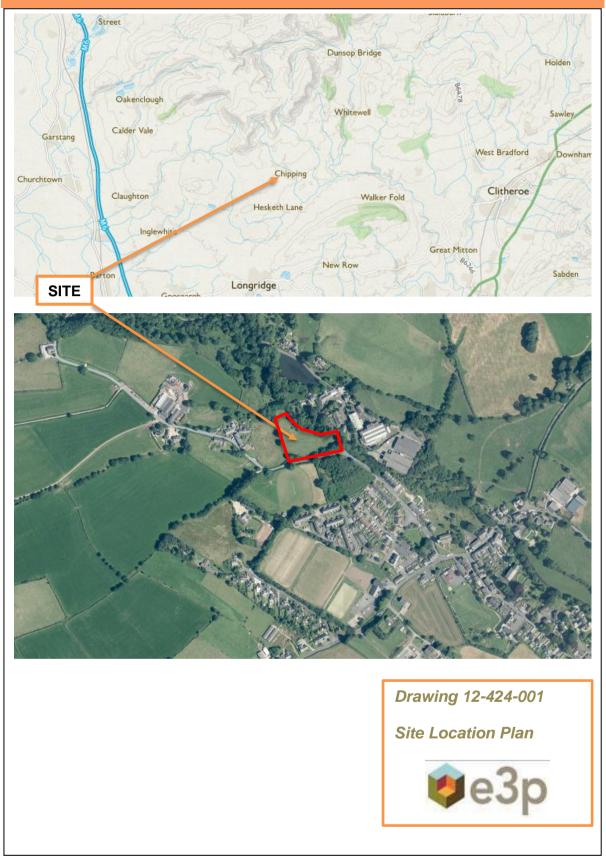
END OF REPORT

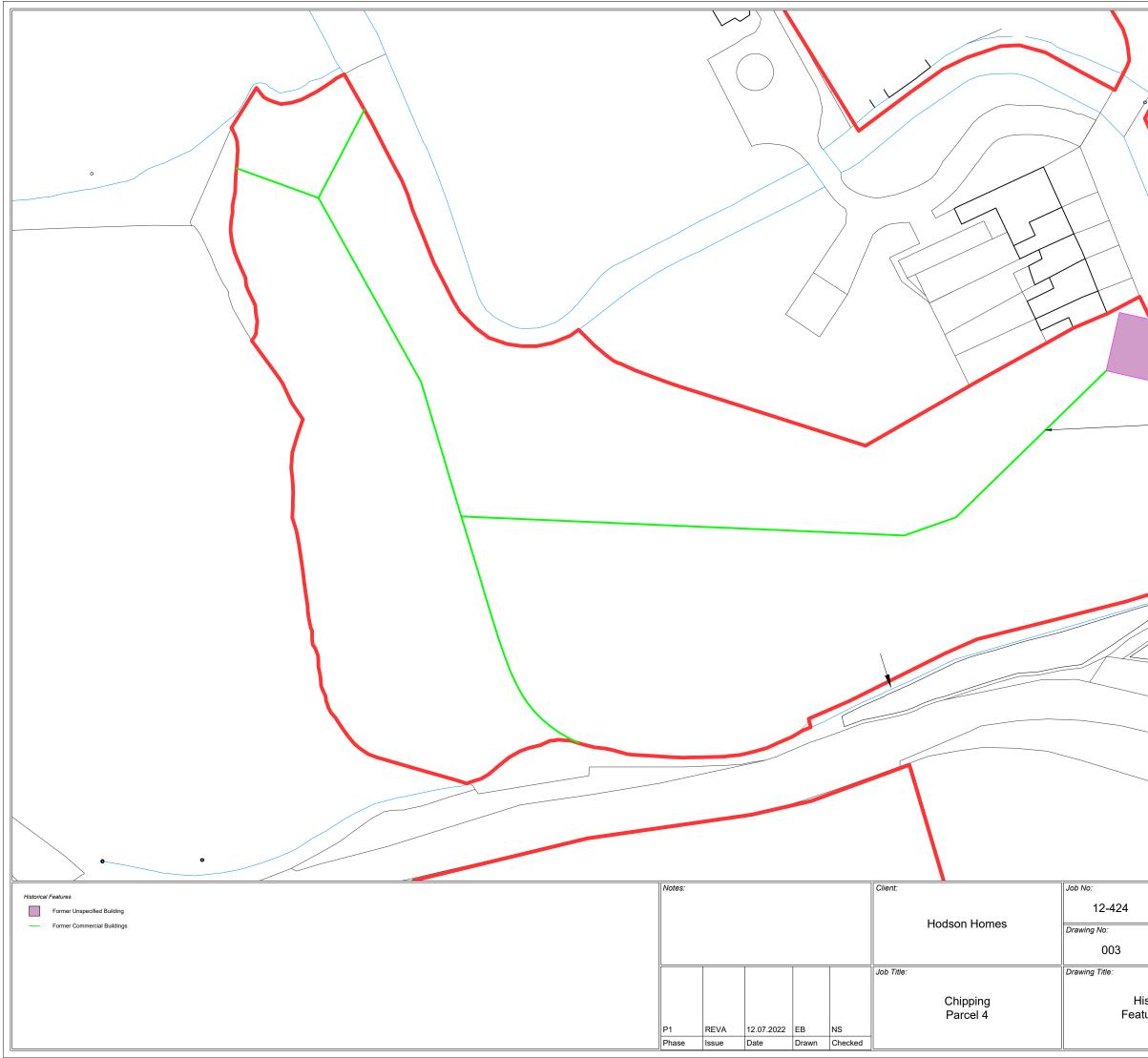
APPENDIX I LIMITATIONS

- 1. This report and its findings should be considered in relation to the terms of reference and objectives agreed between E3P and the Client as indicated in Section 1.2.
- 2. For the work, reliance has been placed on publicly available data obtained from the sources identified. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information.
- 3. This report has been produced in accordance with current UK policy and legislative requirements for land and groundwater contamination which are enforced by the local authority and the Environment Agency. Liabilities associated with land contamination are complex and requires advice from legal professionals.
- 4. During the site walkover reasonable effort has been made to obtain an overview of the site conditions. However, during the site walkover no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown, or the location of the area has not be made known or accessible.
- 5. Access considerations, the presence of services and the activities being carried out on the site limited the locations where sampling locations could be installed and the techniques that could be used.
- 6. Site sensitivity assessments have been made based on available information at the time of writing and are ultimately for the decision of the regulatory authorities.
- 7. Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials this is for indicative purposes only and do not constitute or replace full and proper surveys.
- 8. The executive summary, conclusions and recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon without considering the context of the report in full.
- 9. E3P cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The copyright in this report and other plans and documents prepared by E3P is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of this may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by E3P in this connection without their explicit written agreement there to by E3P.
- 10. New information, revised practices or changes in legislation may necessitate the re-interpretation of the report, in whole or in part.

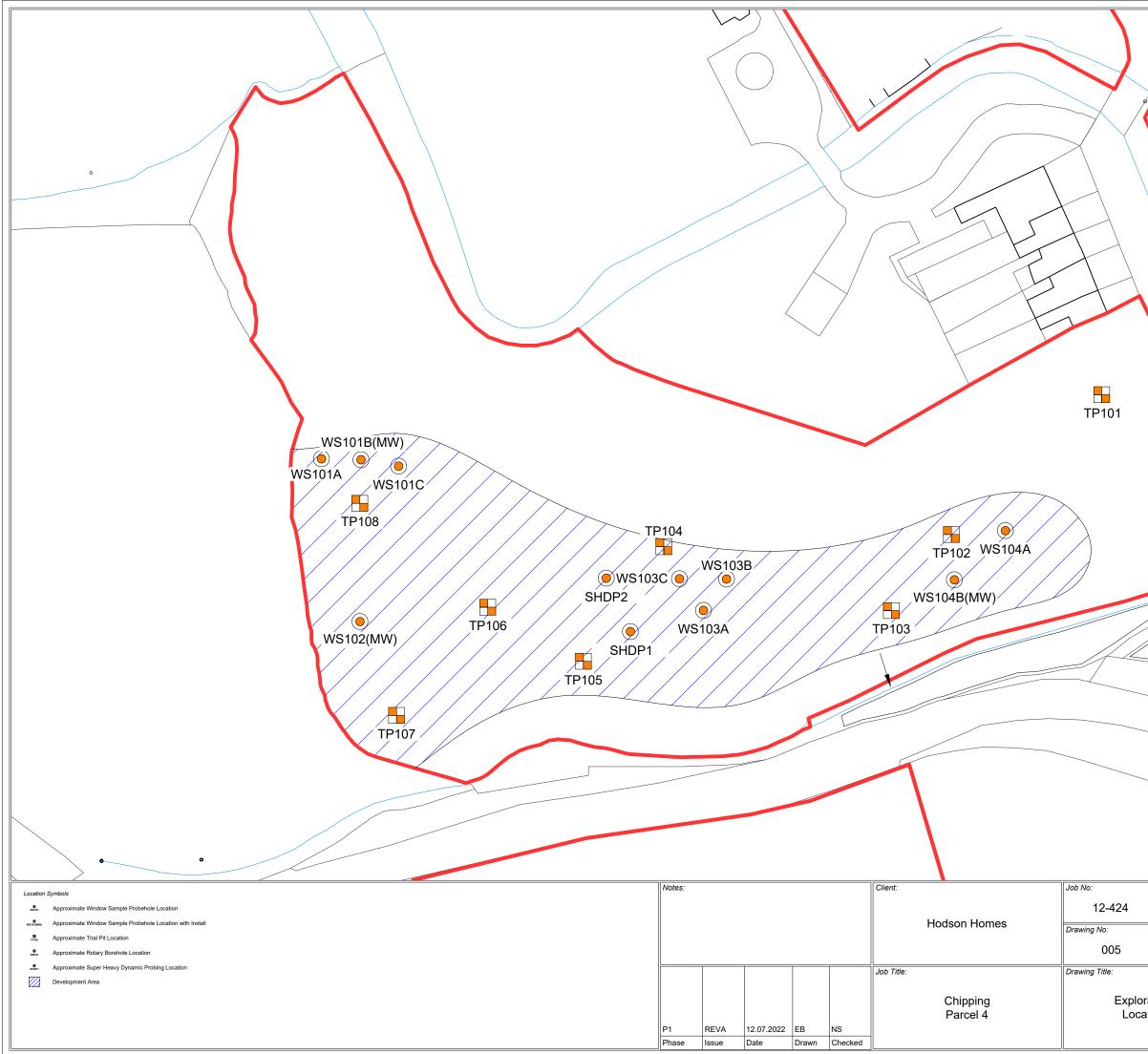
APPENDIX II GLOSSARY

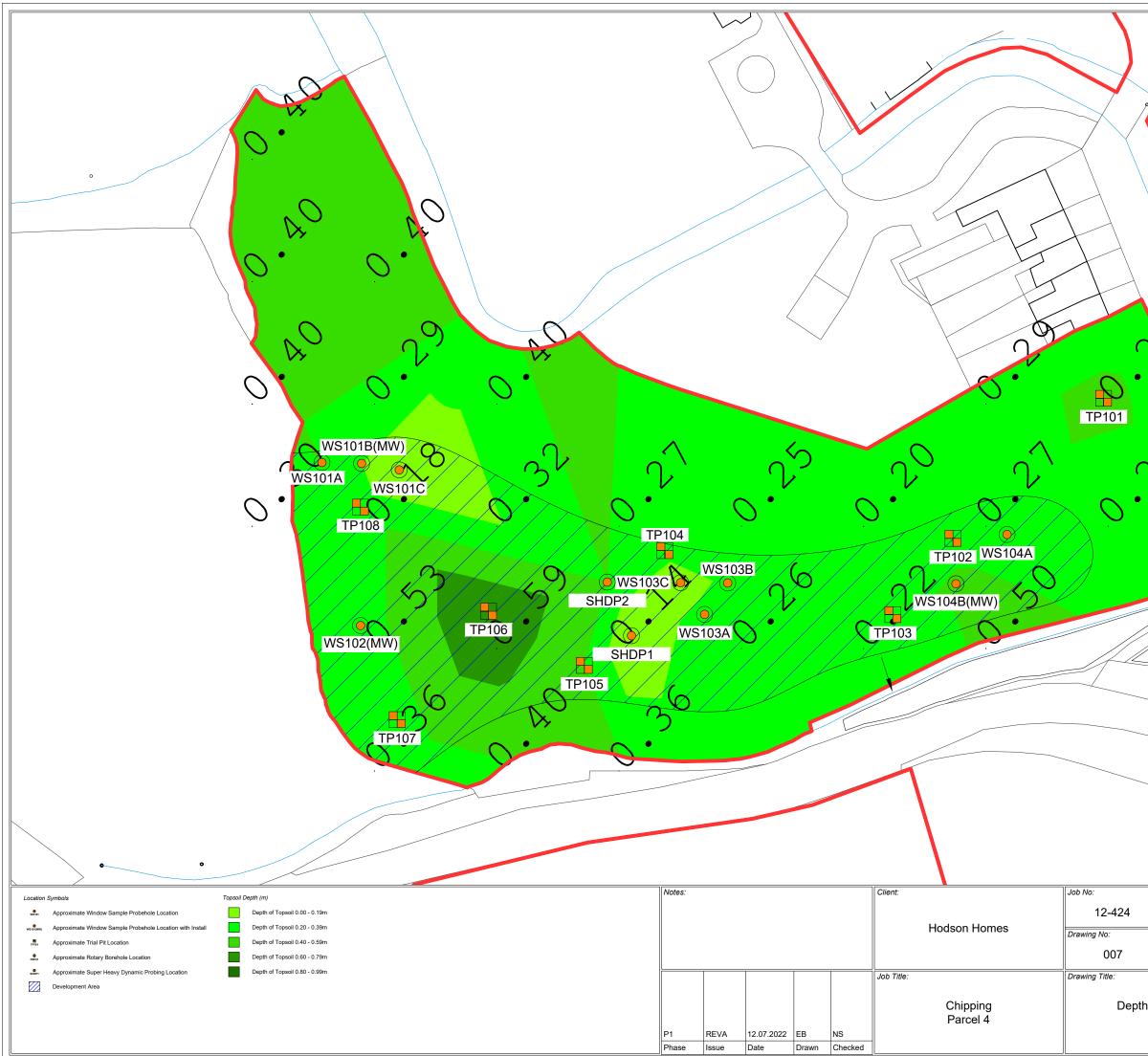
TERMS

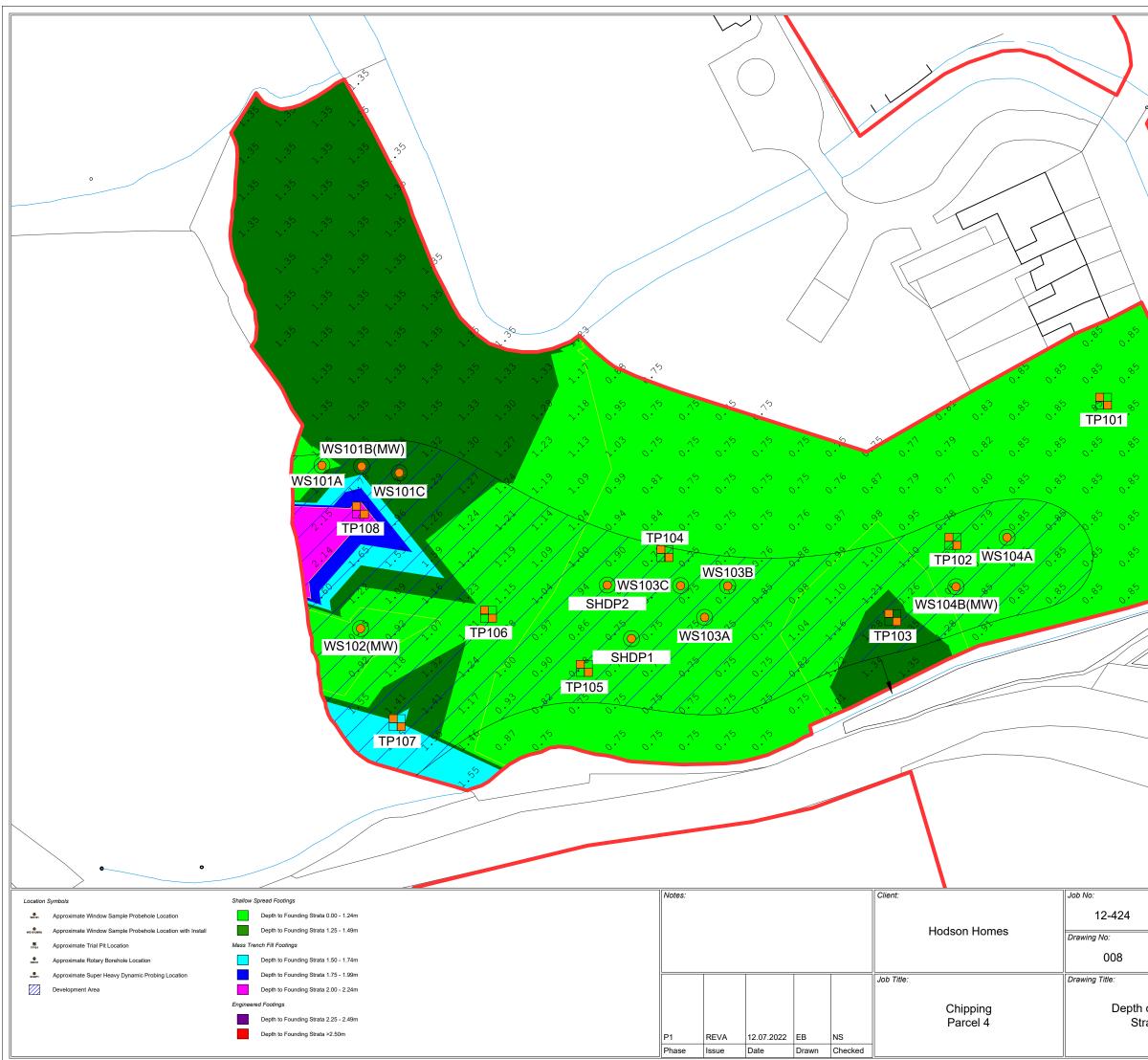

AST	Above Ground Storage Tank	SGV	Soil Guideline Value
BGS	British Geological Survey	SPH	Separate Phase Hydrocarbon
BSI	British Standards Institute	TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group)
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes	SPT	Standard Penetration Test
CIEH	Chartered Institute of Environmental Health	SVOC	Semi Volatile Organic Compound
CIRIA	Construction Industry Research Association	UST	Underground Storage Tank
CLEA	Contaminated Land Exposure Assessment	VCCs	Vibro Concrete Columns
CSM	Conceptual Site Model	VOC	Volatile Organic Compound
DNAPL	Dense Non-Aqueous Phase Liquid (chlorinated solvents, PCB)	WTE	Water Table Elevation
DWS	Drinking Water Standard	m	Metres
EA	Environment Agency	km	Kilometres
EQS	Environmental Quality Standard	%	Percent
GAC	General Assessment Criteria	%v/v	Percent volume in air
GL	Ground Level	mb	Milli Bars (atmospheric pressure)
GSV	Gas Screening Value	l/hr	Litres per hour
HCV	Health Criteria Value	µg/l	Micrograms per Litre (parts per billion)
ICSM	Initial Conceptual Site Model	ppb	Parts Per Billion
LNAPL	Light Non-Aqueous Phase Liquid (petrol, diesel, kerosene)	mg/kg	Milligrams per kilogram (parts per million)
ND	Not Detected	ppm	Parts Per Million
LMRL	Lower Method Reporting Limit	mg/m³	Milligram per metre cubed
NR	Not Recorded	m bgl	Metres Below Ground Level
PAH	Polycyclic Aromatic Hydrocarbon	m bcl	Metre Below Cover Level
РСВ	Poly-Chlorinated Biphenyl	mAOD	Metres Above Ordnance Datum (sea level)
PID	Photo Ionisation Detector	kN/m ²	Kilo Newtons per metre squared
QA	Quality Assurance	μm	Micro metre
SGV	Soil Guideline Value		

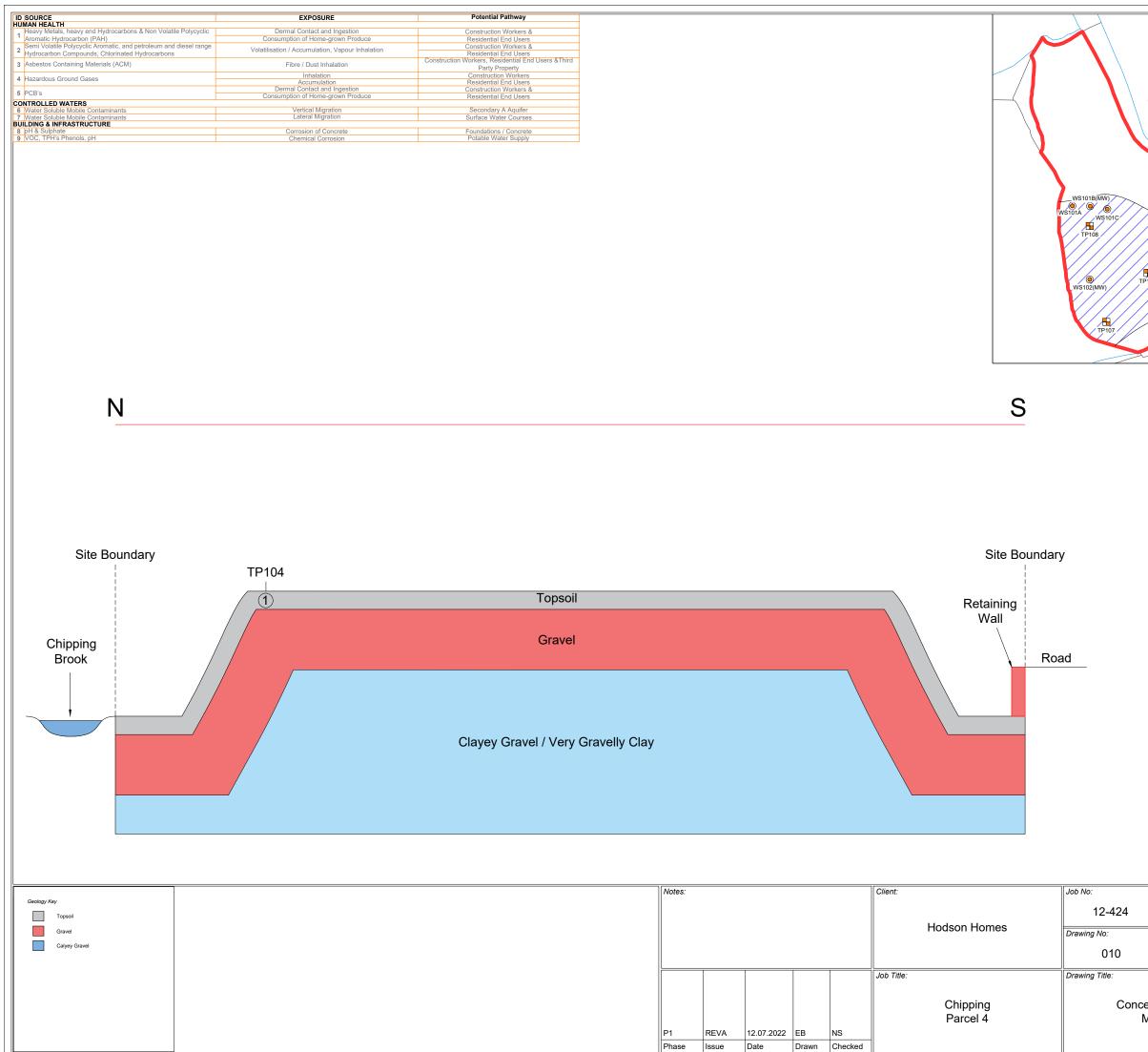

APPENDIX III DRAWINGS

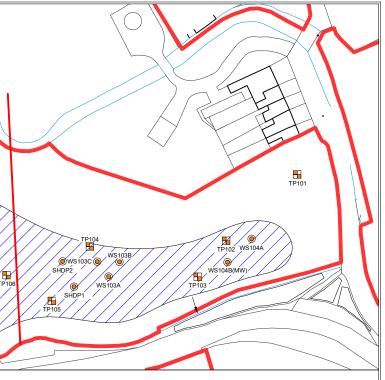
Chipping (Phase 4) Phase II Geo-Environmental Assessment July 2022



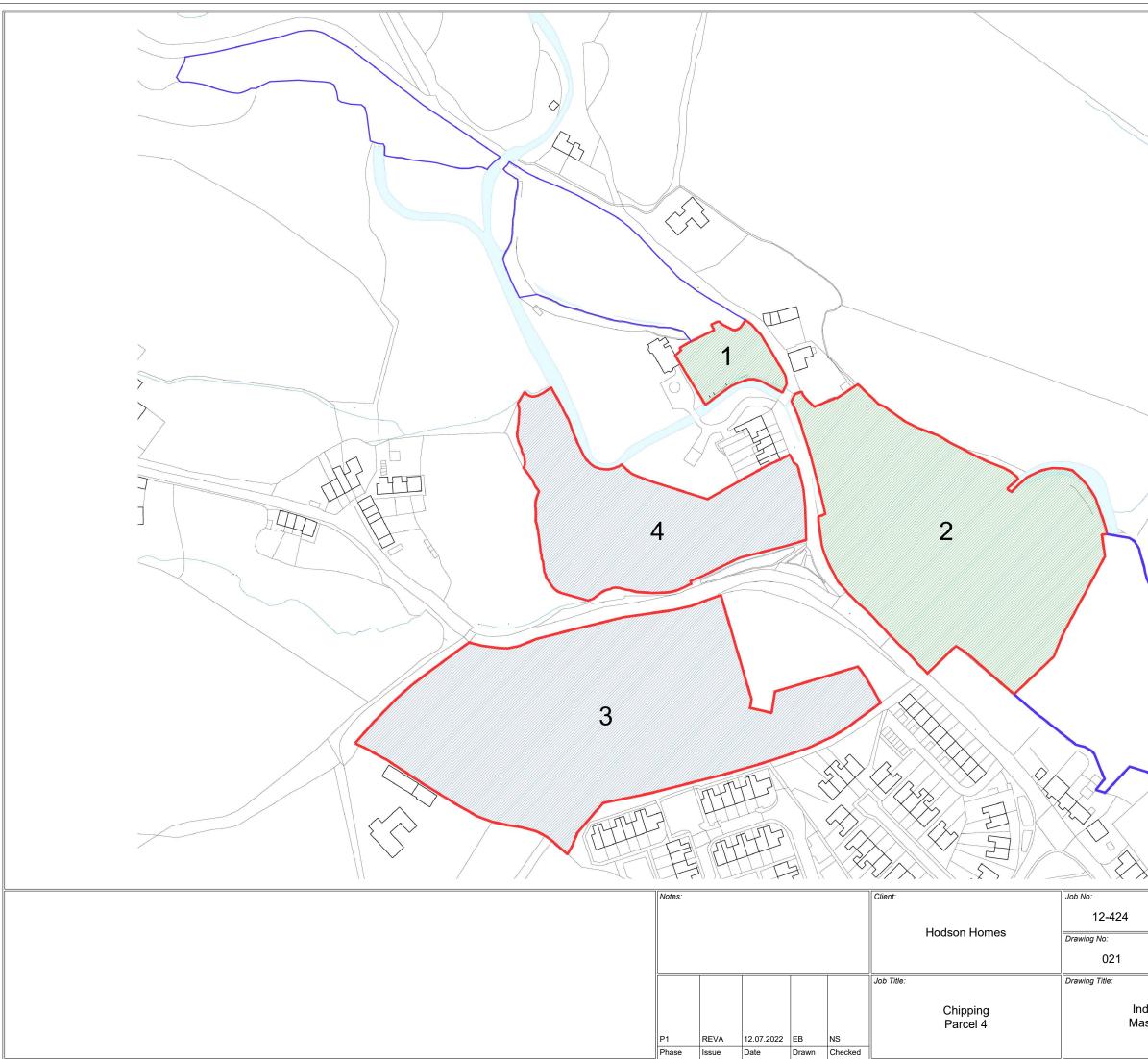

8	
	e 1891 - Pre 2018 specified Building Pre 1891 - Pre 2018 Field Boundary
Date: 12.07.2022 Scale: NTS@ A3	Environmental Engineering Partnership Ltd Taylor Road, Trafford Park Urmston, Manchester, M41 7JQ Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk
istorical tures Plan	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.


2	
0	
t,	
	. 1
Date: 12.07.2022	Environmental Engineering Partnership Ltd Taylor Road, Trafford Park Urmston, Manchester, M41 7JQ Tel: 0161 707 9612 E-mail: info@e3.00.04
Scale: NTS@ A3	Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk
Features	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained
Plan	in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.


Date: 12.07.2022 Scale: NTS@ A3	Environmental Engineering Partnership Ltd Taylor Road, Trafford Park Urmston, Manchester, M41 7JQ Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk
ratory Hole ation Plan	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.



3	
°	
Date: 12.07.2022 Scale: NTS@ A3	Environmental Engineering Partnership Ltd Taylor Road, Trafford Park Urmston, Manchester, M41 7JQ Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk
n of Topsoil Plan	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.



e/	
o	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
0.85 .85 0.85 .95	
Date:	
12.07.2022 <i>Scale:</i> NTS@ A3	Environmental Engineering Partnership Ltd Taylor Road, Trafford Park Urmston, Manchester, M41 7JQ Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk
of Founding ata Plan	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.

	Date: 12.07.2022	Environmental Engineering Partnership Ltd Taylor Road, Trafford Park Urmston, Manchester, M41 7JQ
	^{Scale:} NTS@ A3	Tei: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk
cep Mo	tual Site del	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.

}	
$\mathbf{\hat{x}}$	
Date: 12.07.2022 Scale:	Environmental Engineering Partnership Ltd Taylor Road, Trafford Park Urmston, Manchester, M41 7JQ Tel: 0161 707 9612
NTS@ A3	E-mail: info@e3p.co.uk Website: www.e3p.co.uk
dicative sterplan	The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.

APPENDIX IV E3P EXPLORATORY HOLE LOGS

roject hmo: Chipping-			Projec			ial Pit Log	TrialPit N TP101 Sheet 1 of Date	1 of <i>*</i>
ocation: Preston			12424	4		Level:	19/04/201 Scale	
lient: Hodson H						(m): 0 Depth 0	1:24 Logged	1
	ples & In Situ	Testing				3.20	S. Murray	ıy
Sam Sam Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
2.00	ES		0.50			Brown slightly sandy clayey GRAVEL (Topso rootlets and pockets of orange fine to mediur Gravel is fine to coarse angular to rounded o sandstone and mudstone. Dark brown black slightly sandy clayey silty O Gravel is fine to coarse angular to rounded o mudstone, sandstone and limestone.	GRAVEL.	1
emarks: Complete								4

	e	<u>3p</u>					ial Pit Log	TrialPit No TP102 Sheet 1 of	2
Project Name:	Chipping- F	Parcel 4		Proje 12424			Co-ords: - Level:	Date 19/04/201	18
	n: Preston			1212	•		Dimensions 2.00	Scale	
Client:	Hodson Ho	mes					(m): Depth o	1:24 Logged	
r		oles & In Situ	I Testing	Depth	Level		3.40	S. Murray	у
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.20	B		0.20 0.40			Brown slightly sandy clayey GRAVEL (Topsoi rootlets and pockets of orange fine to medium Gravel is fine to coarse angular to rounded of sandstone and mudstone. Brown slightly sandy clayey GRAVEL. Gravel coarse angular to rounded of mudstone, sand and limestone. Dark brown clayey GRAVEL. Gravel is fine to angular to rounded of sandstone, mudstone a limestone. Dark brown clayey GRAVEL. Gravel is fine to angular to rounded of sandstone, mudstone a limestone. Dark brown clayey GRAVEL. Gravel is fine to angular to rounded of sandstone, mudstone a limestone. Dark brown clayey GRAVEL. Gravel is fine to angular to rounded of sandstone, mudstone a limestone. Dark brown clayey GRAVEL. Gravel is fine to angular to rounded of sandstone, mudstone a limestone.	is fine to stone coarse nd	1 · · · · · · · · · · · · · · · · · · ·
Remark	ks: Complete							≎ e3	5

	ea	<u>3</u> p				Tr	ial Pit Log	TrialPit No TP103 Sheet 1 of
Project Name:	Chipping- F	arcel 4			ct No.		Co-ords: -	Date
	: Preston			12424	4		Level:	19/04/2018 Scale
	Hodson Ho						(m): 00 Depth 0	1:24 Logged
Client:		les & In Situ	Testing				2.90	S. Murray
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.30 0.40	PP ES	PP=39.24	0.20			Brown slightly sandy clayey GRAVEL (Topso rootlets and pockets of orange fine to mediu Gravel is fine to coarse angular to rounded o sandstone and mudstone. Soft low strength yellow brown sandy gravel Gravel is fine to coarse angular to rounded o sandstone and mudstone.	m sand. of Iv CLAY.
	0.80	PP	PP=29.43	1.00			Dark brown black slightly sandy silty clayey Gravel is fine to coarse sub-angular to sub-r mudstone, sandstone and limestone.	GRAVEL. 1 ounded of
	1.50	ES						2
				2.90		<u> </u>	End of Pit at 2.90m	3
Remark	s: Complete.							₅ ©e3

	e	3p			-4.81		ial Pit Log	TrialPi TP1 Sheet	04 1 of 1
Project Name:	Chipping- F	Parcel 4		Proje 12424			Co-ords: - Level:	Dat 19/04/2	
Locatior	n: Preston				·		Dimensions 2.00	Sca	le
Client:	Hodson Ho						(m): 00 Depth 0	1:2 Logg	
		olles & In Sit	u Testing				3.00	S. Mu	rray
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20	ES					Brown slightly sandy clayey GRAVEL (To rootlets and pockets of orange fine to me Gravel is fine to coarse angular to rounde sandstone and mudstone.	dium sand.	
				0.30			Dark brown black sandy clayey silty GRA is fine to coarse angular to rounded of mu sandstone and limestone.	VEL. Gravel idstone,	1 -
	2.00 2.00	ES PP	PP=206.01	1.60			Stiff high strength dark brown black very g Gravel is fine to coarse angular to rounde mudstone, sandstone and mudstone.	gravelly CLAY. d of	2 -
	2.50	PP	PP=215.82	3.00			End of Pit at 3.00m		- 3 -
									4 -
Remark	s: Complete.								5 -
Stability	: Stable.							?	3

	ea	3p					ial Pit Log	TrialPit No TP105 Sheet 1 of	,
Project Name:	Chipping- P	arcel 4		Projec 12424			Co-ords: - Level:	Date 19/04/2018	8
Location	: Preston				-		Dimensions 2.00	Scale	
Client:	Hodson Ho	mes					(m): Depth o	1:24 Logged	
		les & In Sit	u Testing				2.80	S. Murray	/
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50 0.60	ES PP	PP=98.1	0.40			Brown slightly sandy clayey GRAVEL (Topsoil) rootlets and pockets of orange fine to medium s Gravel is fine to coarse angular to rounded of sandstone and mudstone. Yellow brown silty sandy clayey GRAVEL Grave to coarse angular to rounded of sandstone and limestone.	I is fine	1
	2.00	ES		1.20			Dark brown very sandy clayey GRAVEL with po orange fine to medium sand. Gravel is fine to co angular to rounded of mudstone, sandstone and limestone.	barse	2
				2.80			End of Pit at 2.80m		4
Remarks	s: Complete.								5
Stability:	Stable.							©e3	3

¢	ea	3p					ial Pit Log	TrialPit No TP106 Sheet 1 of 1
Project Name:	Chipping- F	Parcel 4		Proje 12424			Co-ords: - Level:	Date 19/04/2018
	n: Preston			1272	т		Dimensions 2.00	Scale
Client:	Hodson Ho	mes					(m): Depth o	1:24 Logged
		les & In Situ	Testing	Death	Laval		3.10	S. Murray
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	
	0.30	ES		0.80			Brown slightly sandy clayey GRAVEL (Topsoil rootlets and pockets of orange fine to medium Gravel is fine to coarse angular to rounded of sandstone and mudstone. Dark brown black slightly sandy silty clayey G with pockets of gravelly sand. Gravel is fine to angular to rounded of sandstone and limestor	RAVEL
	2.50	ES		3.10			End of Pit at 3.10m	3
	s: Complete. : Stable.							₅ ©e3

Project	e			Projec	ct No.		ial Pit Log	TrialPit N TP10 Sheet 1 c Date	7
Name:	Chipping- I	Parcel 4		12424			Level:	19/04/20	
ocation	n: Preston						Dimensions 2.00 (m): 0	Scale 1:24	
Client:	Hodson Ho	omes					(m): 6 Depth 6 3.50	Logged S. Murra	
Water Strike	Sam	ples & In Sit	tu Testing	Depth	Level	Legend	Stratum Description		<u> </u>
st %	Depth	Туре	Results	(m)	(m)		Brown slightly sandy clayey GRAVEL (Topsoil) with	
	0.20	ES					rootlets and pockets of orange fine to medium Gravel is fine to coarse angular to rounded of sandstone and mudstone.	sand.	
	0.60	PP	PP=41.6925	0.60			Soft to firm low to medium strength brown slig sandy silty gravelly CLAY with pockets of yello orange sand. Gravel is fine to coarse angular rounded of mudstone, sandstone and limestor	ow to	
	1.00	PP	PP=29.43						1
1.30	1.50	ES		1.20			Dark brown black sandy silty clayey GRAVEL pockets of orange yellow fine to medium sand is fine to coarse angular to rounded of mudsto sandstone and limestone.	. Gravel	
	2.20	ES	PP=201.105	2.00			Dark black brown silty clayey GRAVEL. Grave to coarse angular to rounded of sandstone, m and limestone.	I is fine udstone	2
	3.00	РР	PP=206.01						
				3.50			End of Pit at 3.50m		
									2
									Ę
emark tability		ະເ ບ . 2. VV2	ater strike encou	mered at	1.30M b	ıyı- slow	ъсераде.	⇔ e(3

roject	e	- 1-		Proje	ct No.		ial Pit Log	TrialPit N TP108 Sheet 1 of Date
ame:	Chipping- I	Parcel 4		12424			Level:	19/04/201
ocatior	n: Preston						Dimensions 2.00 (m): O	Scale 1:24
lient:	Hodson Ho	omes					(m): 6 Depth 6 3.50	Logged S. Murray
vvater Strike	Sam	ples & In Sit	tu Testing	Depth	Level	Legend		
st.	Depth	Туре	Results	(m)	(m)		Brown slightly sandy clayey GRAVEL (Topsoil) with
	0.20	ES PP	PP=80.9325	0.30			Stiff high strength yellow fine to medium with pockets of yellow brown sandy gravell with pockets of yellow fine to medium sand. G fine to coarse angular to rounded of sandston limestone.	y CLAY gravel is
.90				0.90			Soft low strength dark brown black sandy silty CLAY. Gravel is fine to coarse angular to roun sandstone and mudstone.	
.40	1.50	PP	PP=26.9775	1.80			Dark brown black sandy silty clayey GRAVEL	with
.00	2.00	ES					pockets of gravelly clay. Gravel is fine to coars angular to rounded of limestone. and sandsto	se
				3.50			End of Pit at 3.50m	
					0.00			
emark tability		ના લ. ∠. ₩2	ater strike encou	mered at	0.90M, 7	1.40m ar	ים 2.סטווו טקו.	©e3

	-						Borehole No.			
	e 3	3p				Bo	reho	ole Log	WS101	la
								0	Sheet 1 of	f 1
Projec	ct Name:	Chipping-	Parcel	4	Project No. 2424		Co-ords:	-	Hole Type WS	е
Locat	ion:	Preston		I			Level:		Scale 1:50	
Client	:	Hodson H	omes				Dates:	18/04/2018 -	Logged B S. Murray	
		Sample	b ne	In Situ Testing					0. Marra	y
Well	Water Strikes	Depth (m)	Туре	-	Depth (m)	Level (m)	Legend	Stratum Descriptior	ı	
		0.10 0.50 1.00 1.50 2.00	ES	N=14 (3,4/4,3,4,3) 50 (0 for 0mm/50 fc 20mm)				Brown slightly sandy clayey GRAVE with rootlets and pockets of orange medium sand. Gravel is fine to coar rounded of sandstone and mudstor Medium dense yellow brown sandy CLAY. Gravel is fine to medium ang rounded of mudstone and sandstor Dense dark grey mottled brown slig silty very clayey GRAVEL. Gravel is medium angular to rounded of mud sandstone and rare limestone. End of borehole at 2.00 m	fine to se angular to de. // gravelly ular to he. // htly sandy s fine to stone,	2 - 2 - 3 - 4 - 5 - 6 - 7 -
										8
Rema Refus		ssumed cobbl	es at 2	2.00m bgl.	-	1		,	≎ e3	3р

	€e3p										
V	63	3p				Bo	reho	ole Log	WS101		
								-	Sheet 1 of		
Proje	ct Name:	Chipping-	Parcel	4	Project No. 12424		Co-ords:	-	Hole Type WS	е	
Locat	ioni	Preston					Level:		Scale		
LUCAL		Fleston					Level.		1:50		
Client	:	Hodson H	omes				Dates:	18/04/2018 -	Logged B S. Murray		
Well	Water Strikes		1	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	า		
	Strikes	Depth (m)	Type ES ES	Results	(m) 0.20			Stratum Description Brown slightly sandy clayey GRAVI with rootlets and pockets of orange medium sand. Gravel is fine to coa rounded of sandstone and mudstone Brown sandy clayey GRAVEL. Gra medium angular to rounded of sand mudstone. Very dense dark brown slightly san GRAVEL. Gravel is fine to medium rounded of mudstone, sandstone a limestone. End of borehole at 2.00 m	EL (Topsoil) fine to rse angular to ne. vel is fine to dstone and dy silty clayey angular to nd rare	3 - 2 - 3 - 5 - 6 - 7 - 8 -	
										9 -	
Daire										10 -	
Rema 1. Ret		2.00m bgl. 2.	Monito	oring well installe	d.				©e3	3p	

							Borehole No.			
V	e 3	3p				Bo	reho	ole Log	WS101	
								-	Sheet 1 of	
Projec	t Name:	Chipping-	Parcel	4	Project No. 12424		Co-ords:	-	Hole Type WS	е
Locati	on.	Preston					Level:		Scale	
	011.	Treston							1:50	
Client	:	Hodson H	omes				Dates:	18/04/2018 -	Logged B S. Murray	
\A/~II	Water	Sample	s and l	n Situ Testing	Depth	Level				
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
					0.20			Brown slightly sandy clayey GRAVE with rootlets and pockets of orange medium sand. Gravel is fine to coar rounded of sandstone and mudston Brown sandy clayey GRAVEL. Grav	fine to se angular to e.	
								medium angular to rounded of sand	Istone and	
					1.00			mudstone. Dark brown slightly sandy silty claye Gravel is fine to medium angular to mudstone, sandstone and rare lime	rounded of	1-
					2.00					2 -
Rema	rks							End of borehole at 2.00 m		3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -
	rks ed at 2.(00m bgl.							©e3	3p

	e3p					B∩	rehr	ole Log	Borehole N WS10	
		Ϋ́						Die Log	Sheet 1 of	
Projec	t Name:	Chipping-	Parcel	Λ	Project No. 12424		Co-ords:	-	Hole Type WS	е
4		Durates			12424				Scale	
Locati	on:	Preston					Level:		1:50	
Client		Hodson H	omes				Dates:	18/04/2018 -	Logged B S. Murray	-
Well	Water			In Situ Testing	Depth	Level	Legend	Stratum Descriptio	n	
Well	Strikes	Depth (m) 0.20 0.80 1.00 2.00 3.00 3.50 4.00	Type ES ES	Results N=13 (2,3/3,4,3,3) N=21 (6,3/3,4,7,7) N=32 (7,7/8,7,9,8) 50 (10,14/50 for 35mm)	(m) 0.30 (i) 1.40 (i) 2.30 (i) 3.20			Stratum Descriptio	EL (Topsoil) a fine to irse angular to hayey angular to and limestone. ilty clayey angular to angular to	
Rema	rks									10 -
		00m bgl on as	sumed	d cobbles.					©e3	3p

									Borehole N	٩o.
V	e 3	3p				Bo	reho	ole Log	WS103	
		-			Project No.				Sheet 1 of Hole Type	
Projec	t Name:	Chipping-	Parcel	4	12424		Co-ords:	-	WS	6
Locati	on:	Preston					Level:		Scale	
									1:50 Logged B	3v
Client:		Hodson Ho	omes				Dates:	18/04/2018 -	S. Murray	
Well	Water			In Situ Testing	Depth	Level	Legend	Stratum Description	I	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Brown slightly sandy clayey GRAVE		
		0.20	ES		0.30			with rootlets and pockets of orange medium sand. Gravel is fine to coar	fine to	
								rounded of sandstone and mudston	ie.	/ -
		0.80	ES					Brown slightly sandy clayey silty GF Gravel is fine to medium angular to	sub-angular	
		1.00		N=24 (5,4/4,4,7,9))		· · · · · · · ·	of mudstone, sandstone and limest	one.	1 -
										-
					2.00		· ·			2 -
					2.00			End of borehole at 2.00 m		
										-
										-
										3 -
										-
										-
										-
										4 -
										-
										-
										5 -
										-
										-
										6 -
										-
										-
										-
										7 -
										-
										-
										8 -
										-
										-
										-
										9 -
										-
										-
										10 -
Rema	 rks									
)0m bgl on as	sumed	d cobbles.					©e3	3p

	6						Borehole N	۱o.		
	e 3	3p				Bo	reho	ole Log	WS103	
								-	Sheet 1 of	
Projec	t Name:	Chipping-	Parcel	4	Project No. 12424		Co-ords:	-	Hole Type WS	е
Locati	on.	Preston					Level:		Scale	
	•								1:50	
Client	:	Hodson H	omes			1	Dates:	18/04/2018 -	Logged B S. Murray	-
Well	Water	Samples	s and I	In Situ Testing	Depth	Level	Legend	Stratum Description		
vven	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		Depth (m) 0.50 1.00 1.80	ES	Results	0.30			Brown slightly sandy clayey GRAVE with rootlets and pockets of orange medium sand. Gravel is fine to coar rounded of sandstone and mudstom Very dense brown slightly sandy cla Gravel is fine to medium angular to sandstone, mudstone and limestone Dark brown black silty clayey GRAV fine to medium sub-angular to round sandstone and mudstone. End of borehole at 2.00 m	fine to se angular to e. yyey GRAVEL rounded of e. /EL. Gravel is	
_										9 -
Rema Refus		sumed cobbl	e at 2.0	00m bgl.					©e3	3p

					Borehole No.				
©e(3p				Bo	reho	ole Log	WS103	
								Sheet 1 of	
Project Nam	e: Chipping-	Parcel 4	4	Project No. 12424		Co-ords:	-	Hole Type WS	е
Location:	Preston					Lovel		Scale	
	Presion					Level:		1:50	
Client:	Hodson H	omes				Dates:	18/04/2018 -	Logged B S. Murray	
Well Wate Strike		s and Ir Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
	0.20 0.80	ES		0.40			Brown slightly sandy clayey GRAVE with rootlets and pockets of orange medium sand. Gravel is fine to coar rounded of sandstone and mudstor Brown slightly sandy silty clayey GF Gravel is fine to medium angular to mudstone, sandstone and limeston End of borehole at 1.00 m	fine to se angular to le. / RAVEL. rounded of	
									8 -
									9
Remarks Refused at 1	.00m bgl on as	sumed	cobbles.		1			©e3	3p

	6						Borehole No.			
V	e 3	3p				Bo	reho	ole Log	WS104	
									Sheet 1 of	
Projec	t Name:	Chipping-	Parce	4	Project No. 12424		Co-ords:	-	Hole Type WS	e
				'					Scale	
Locati	on:	Preston					Level:		1:50	
Client	:	Hodson H	omes				Dates:	18/04/2018 -	Logged By S. Murray	
Well	Water		1	In Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m) 0.20	(m)		Brown slightly sandy clayey GRAVE with rootlets and pockets of orange medium sand. Gravel is fine to coar	EL (Topsoil) fine to	
		0.60	ES					rounded of sandstone and mudston Medium dense to dense yellow brow	e. wn slightly	-
		1.00		N=23 (4,5/6,6,5,6)				sandy clayey GRAVEL. Gravel is fir angular to rounded of mudstone, sa mudstone.	ne to medium Indstone and	1 -
		1.50		54 (25 for 95mm/54 for 10mm)	4					
					2.00					2 -
								End of borehole at 2.00 m		
										10 -
Rema Refus)0m bgl on as	sume	d cobbles.			<u> </u>		©e3	3p

									Borehole N	lo.
	e 3	3p				Bo	reho	ole Log	WS104	
					Project No.				Sheet 1 of Hole Type	
Projec	ct Name:	Chipping-	Parcel		12424		Co-ords:	-	WS	
Locati	on:	Preston					Level:		Scale 1:50	
Client	:	Hodson H	omes				Dates:	18/04/2018 -	Logged B S. Murray	
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Logond	Stratum Depariation		
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.60 1.00	ES	N=22 (6,5/5,5,5,7	0.50 ′) 1.10			Brown slightly sandy clayey GRAVE with rootlets and pockets of orange medium sand. Gravel is fine to coar rounded of sandstone and mudston Medium dense yellow brown slightly clayey GRAVEL. Gravel is fine to m angular to rounded of mudstone and Medium dense sandy clayey GRAV fine to medium angular to rounded sandstone and mudstone.	fine to se angular to e. / sandy edium d sandstone. EL. Gravel is	1-
		2.00		N=29 (5,6/6,8,7,8	3) 2.00			Medium dense dark brown black sli clayey GRAVEL. Gravel is fine to m angular to rounded of mudstone, sa rare mudstone.	edium	2 -
		2.80 3.00	ES	N=31 (6,6/6,8,9,8	3) 3.00					3 -
Rema	rks							End of borehole at 3.00 m		4
		00m bgl on as	sume	d cobbles.					©e3	3p

APPENDIX V CHEMICAL TESTING RESULTS

Roy Walker e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: rwalker@e3p.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 18-82954

Project / Site name:	Chipping	Samples received on:	20/04/2018
Your job number:	12-424	Samples instructed on:	20/04/2018
Your order number:	12424-8538-SM	Analysis completed by:	27/04/2018
Report Issue Number:	1	Report issued on:	27/04/2018
Samples Analysed:	11 soil samples		

fat Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Page 1 of 16

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number				947389	947390	947391	947392	947393
Sample Reference				TP101	TP101	TP103	TP104	TP104
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	2.00	0.40	0.20	2.50
Date Sampled				18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			~					Hone Supplied
		8 -	Accreditation Status					
Analytical Parameter	Units	ited imi	creditat Status					
(Soil Analysis)	ts	Limit of detection	:us					
			Î.					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	11	16	20	10
Total mass of sample received	kg	0.001	NONE	0.48	0.45	0.40	0.42	0.44
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected	-
			·			-		-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	8.0	7.4	6.9	8.0
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	610	1300	370	960	1300
Water Soluble Sulphate as SO₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	39	230	12	25	580
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00105		0.010	0.12	0.0001	0.012	0.20
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.019	0.12	0.0061	0.013	0.29
Equivalent)	mg/l	1.25	MCERTS	19.3	116	6.1	12.6	289
Sulphide	mg/kg	1	MCERTS	< 1.0	1.6	< 1.0	< 1.0	66
Total Sulphur	mg/kg	50	MCERTS	890	2900	160	470	11000
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	1.3	-	-	-
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs	-				Ĩ.		Ā	
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.32	< 0.05
Anthracene Fluoranthene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05		< 0.05 0.97	< 0.05 < 0.05
Pyrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.97	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		0.62	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.82	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.63	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.24	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.45	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.22	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	0.21	< 0.05
	2. 2							
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	-	4.93	< 0.80

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number				947389	947390	947391	947392	947393
Sample Reference				TP101	TP101	TP103	TP104	TP104
Sample Number				None Supplied				
Depth (m)		0.30	2.00	0.40	0.20	2.50		
Date Sampled		18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	21	22	19	17	23
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	3.3	2.8	2.9	2.3	3.0
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	12	12	16	18	12
Copper (aqua regia extractable)	mg/kg	1	MCERTS	36	39	27	34	47
Lead (aqua regia extractable)	mg/kg	1	MCERTS	34	34	36	60	37
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	50	49	41	29	50
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	13	9.1	2.3	2.8	12
Zinc (agua regia extractable)	mg/kg	1	MCERTS	160	150	130	150	150

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	12	14	< 2.0	< 2.0	2.9
TPH (C12 - C16)	mg/kg	4	MCERTS	16	30	< 4.0	< 4.0	19
TPH (C16 - C21)	mg/kg	1	MCERTS	15	34	< 1.0	4.0	29
TPH (C21 - C35)	mg/kg	1	MCERTS	24	48	< 1.0	21	48

Project / Site name: Chipping Your Order No: 12424-8538-SM

Lab Cample Number				047200	047200	047201	047202	047202
Lab Sample Number				947389	947390	947391	947392	947393
Sample Reference				TP101	TP101	TP103	TP104	TP104
Sample Number				None Supplied				
Depth (m)				0.30	2.00	0.40	0.20	2.50
Date Sampled				18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018
Time Taken		-	-	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs	I							
Chloromethane	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
Chloroethane	µg/kg	1	NONE	-	-	< 1.0	-	-
Bromomethane	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
Vinyl Chloride	µg/kg	1	NONE	-	-	< 1.0	-	-
Trichlorofluoromethane	µg/kg	1	NONE	-	-	< 1.0	-	-
1,1-Dichloroethene	µg/kg	1	NONE	-	-	< 1.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,1-Dichloroethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
2,2-Dichloropropane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Trichloromethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2-Dichloroethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,1-Dichloropropene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	-	< 1.0	-	-
Benzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Tetrachloromethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2-Dichloropropane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Trichloroethene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Dibromomethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Bromodichloromethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
Toluene 1,1,2-Trichloroethane	µg/kg	1	MCERTS MCERTS	-	-	< 1.0	-	-
1,3-Dichloropropane	μg/kg μg/kg	1	ISO 17025	-	-	< 1.0	-	-
Dibromochloromethane	μg/kg μg/kg	1	ISO 17025	-	-	< 1.0 < 1.0		-
Tetrachloroethene	μg/kg	1	NONE			< 1.0		-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	< 1.0	-	-
Chlorobenzene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	_	< 1.0	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
p & m-Xylene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Styrene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Tribromomethane	µg/kg	1	NONE	-	-	< 1.0	-	-
o-Xylene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Isopropylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Bromobenzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
n-Propylbenzene	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
2-Chlorotoluene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025 MCERTS	-	-	< 1.0	-	-
sec-Butylbenzene 1,3-Dichlorobenzene	µg/kg	1 1	ISO 17025			< 1.0		-
p-Isopropyltoluene	µg/kg	1	ISO 17025 ISO 17025	-		< 1.0	-	-
1,2-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	< 1.0	-	-
Butylbenzene	µg/kg µg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	-	< 1.0	-	-
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	-	< 1.0	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	< 1.0	-	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-	< 1.0	-	-

Project / Site name: Chipping Your Order No: 12424-8538-SM

				-				
Lab Sample Number				947389	947390	947391	947392	947393
Sample Reference				TP101	TP101	TP103	TP104	TP104
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	2.00	0.40	0.20	2.50
Date Sampled				18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018
Time Taken	-		r	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	< 0.1	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	< 0.2	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Hexachloroethane Nitrobenzene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-	< 0.05 < 0.3	-	-
4-Methylphenol	mg/kg mg/kg	0.3	NONE	-	-	< 0.2	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
2-Nitrophenol	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	< 0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	< 0.1	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	< 0.1	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS MCERTS	-	-	< 0.05 < 0.05	-	-
2,4-Dinitrotoluene	mg/kg mg/kg	0.03	MCERTS	-	-	< 0.2	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	_	< 0.3	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Fluoranthene	mg/kg	0.05	MCERTS		-	< 0.05	-	-
Pyrene Butyl benzyl phthalate	mg/kg	0.05	MCERTS ISO 17025	-	-	< 0.05	-	-
Benzo(a)anthracene	mg/kg mg/kg	0.3	MCERTS	-	-	< 0.05	-	-
Chrysene	mg/kg mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number				947394	947395	947396	947397	947398
Sample Reference				TP107	TP108	WS101B	WS101B	WS103A
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	0.40	1.20	0.80
Date Sampled				18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
								Hone Supplied
		8 -	Accreditation Status					
Analytical Parameter	Units	itec ini	reditat Status					
(Soil Analysis)	ts	Limit of detection	us					
			Î.					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	12	19	12	14
Total mass of sample received	kg	0.001	NONE	0.40	0.53	0.48	0.54	0.46
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-	Not-detected
	<u> </u>							•
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.6	-	7.1	8.2	7.1
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	690	-	180	450	260
Water Soluble Sulphate as SO_4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	18	-	30	50	40
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00105		0.0000	-	0.015	0.025	0.020
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.0092	-	0.015	0.025	0.020
Equivalent)	mg/l	1.25	MCERTS	9.2	-	15.0	25.0	19.8
Sulphide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Total Sulphur	mg/kg	50	MCERTS	300	-	110	530	130
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	0.9	-	-	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Speciated PAHs					T		T	n
Naphthalene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05 < 0.05
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	-		< 0.05	< 0.05 < 0.05	< 0.05
Chrysene	mg/kg mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	_	-	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	< 0.80	< 0.80	< 0.80

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number				947394	947395	947396	947397	947398
Sample Reference				TP107	TP108	WS101B	WS101B	WS103A
Sample Number				None Supplied				
Depth (m)	Depth (m)						1.20	0.80
Date Sampled		18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	-	20	22	20
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.1	-	0.5	2.9	2.5
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	16	-	17	15	14
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	-	24	42	35
Lead (aqua regia extractable)	mg/kg	1	MCERTS	56	-	30	36	38
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	-	21	52	50
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.8	-	1.9	5.8	2.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	88	-	60	140	140

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	-	< 2.0	2.8	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	7.5	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	9.4	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	19	< 1.0

Project / Site name: Chipping Your Order No: 12424-8538-SM

Lab Sample Number				947394	947395	947396	947397	947398
Sample Reference				TP107	TP108	WS101B	WS101B	WS103A
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	0.40	1.20	0.80
Date Sampled				18/04/2018	18/04/2018	18/04/2018	18/04/2018	18/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chloroethane	µg/kg	1	NONE	< 1.0	-	-	-	-
Bromomethane	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
Vinyl Chloride	µg/kg	1	NONE	< 1.0	-	-	-	-
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	-	-	-	-
1,1-Dichloroethene	µg/kg	1	NONE	< 1.0	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
Cis-1,2-dichloroethene	µg/kg	1	MCERTS MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0		-	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	-
Trichloromethane	µg/kg µg/kg	1	MCERTS	< 1.0		-	-	-
1,1,1-Trichloroethane	µg/kg µg/kg	1	MCERTS	< 1.0	-	-	-	_
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1-Dichloropropene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	-	-	-	-
Benzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Trichloroethene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Dibromomethane	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
Toluene 1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	-	-
1,3-Dichloropropane	µg/kg µg/kg	1	ISO 17025	< 1.0			-	-
Dibromochloromethane	µg/kg µg/kg	1	ISO 17025	< 1.0			-	-
Tetrachloroethene	µg/kg	1	NONE	< 1.0	-	-	-	_
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Styrene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Tribromomethane	µg/kg	1	NONE	< 1.0	-	-	-	-
o-Xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Isopropylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Bromobenzene n-Propylbenzene	µg/kg	1	MCERTS ISO 17025	< 1.0 < 1.0			-	-
2-Chlorotoluene	μg/kg μg/kg	1 1	MCERTS	< 1.0		-	-	-
4-Chlorotoluene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
sec-Butylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
Butylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2,4-Trichlorobenzene	µg/kg	1 1	MCERTS	< 1.0	-		-	-
Hexachlorobutadiene 1,2,3-Trichlorobenzene	μg/kg μg/kg	1	MCERTS ISO 17025	< 1.0 < 1.0			-	
	µу/ку	1	130 17025	< 1.U	-	-	-	3

Project / Site name: Chipping Your Order No: 12424-8538-SM

Lab Sample Number				947394	947395	947396	947397	947398
Sample Reference				TP107	TP108	WS101B	WS101B	WS103A
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	2.00	0.40	1.20	0.80
Date Sampled Time Taken				18/04/2018 None Supplied	18/04/2018 None Supplied	18/04/2018 None Supplied	18/04/2018	18/04/2018 None Supplied
				None Supplieu	None Supplied	None Supplieu	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	< 0.1	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Bis(2-chloroisopropyl)ether 2-Methylphenol	mg/kg	0.1	MCERTS	< 0.1 < 0.3	-	-	-	-
Hexachloroethane	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05	-	-	-	-
Nitrobenzene	mg/kg	0.05	MCERTS	< 0.3	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	mg/kg mg/kg	0.1	NONE MCERTS	< 0.1	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-		-
2-Methylnaphthalene	mg/kg	0.2	NONE	< 0.2	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2 < 0.05	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS MCERTS	< 0.05	-	-	-	-
Azobenzene Bromophenyl phenyl ether	mg/kg ma/ka	0.3	MCERTS	< 0.2	-	-	-	-
Hexachlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Chrysene Banza/b)fluaranthana	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	-	-	-	-
Benzo(K)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
	J				-	-	-	

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number				947399		1	1	1
						l		
Sample Reference				WS103B				
Sample Number				None Supplied				
Depth (m)				1.80				
Date Sampled				18/04/2018				
Time Taken	1	1		None Supplied				
		•	Acc					
Analytical Parameter	ç	Lin	Sta					
(Soil Analysis)	Units	Limit of detection	creditat Status					
		on of	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	N/A	NONE	6.5				
Total mass of sample received	kg	0.001	NONE	0.40				
Asbestos in Soil	Туре	N/A	ISO 17025	-	l			ll
· · · ·								
General Inorganics		N1 / 2						
pH - Automated	pH Units	N/A	MCERTS	6.9		ł	ł	
Total Cyanide	mg/kg	1	MCERTS	< 1				
Total Sulphate as SO ₄	mg/kg	50	MCERTS	1300				
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	680				
Equivalent)	g/l	0.00125	MCERTS	0.34				
Water Soluble SO4 16hr extraction (2:1 Leachate	g/i	0.00125	MCER13	0.04				
Equivalent)	mg/l	1.25	MCERTS	341				
Sulphide	mg/kg	1	MCERTS	44				
Total Sulphur	mg/kg	50	MCERTS	14000				
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.6				
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0				
Speciated PAHs	_							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	< 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05		Į		
Anthracene	mg/kg	0.05	MCERTS	< 0.05		 	l	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05		Į		
Pyrene	mg/kg	0.05	MCERTS	< 0.05		 	l	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05		l		
Chrysene	mg/kg	0.05	MCERTS	< 0.05		Į		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05		l		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05		ł	ł	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05		1		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05		l		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05		l		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05				
Total PAH		0.5		c	1	r	r	1
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80		I		

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number				947399			
Sample Reference				WS103B			
Sample Number		None Supplied					
Depth (m)				1.80			
Date Sampled				18/04/2018			
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids					-		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.3			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	11			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	35			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3		 	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	43			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	9.0			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110			

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0		
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C10 - C12)	mg/kg	2	MCERTS	3.4		
TPH (C12 - C16)	mg/kg	4	MCERTS	15		
TPH (C16 - C21)	mg/kg	1	MCERTS	19		
TPH (C21 - C35)	mg/kg	1	MCERTS	34		

Project / Site name: Chipping Your Order No: 12424-8538-SM

Lab Sample Number				947399		
Sample Reference				WS103B		
Sample Number				None Supplied		
Depth (m)				1.80		
Date Sampled				18/04/2018		
Time Taken	•			None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
VOCs						
Chloromethane	µg/kg	1	ISO 17025	-		
Chloroethane	µg/kg µg/kg	1	NONE	-		
Bromomethane	µg/kg µg/kg	1	ISO 17025	-		
Vinyl Chloride	µg/kg	1	NONE	-		
Trichlorofluoromethane	µg/kg µg/kg	1	NONE	-		
1,1-Dichloroethene	µg/kg µg/kg	1	NONE	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-		
Cis-1,2-dichloroethene	µg/kg µg/kg	1	MCERTS	-		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg µg/kg	1	MCERTS	-		
1,1-Dichloroethane	µg/kg	1	MCERTS	-		
2,2-Dichloropropane	µg/kg	1	MCERTS	-		
Trichloromethane	µg/kg	1	MCERTS	-		
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-		
1,2-Dichloroethane	µg/kg	1	MCERTS	-		
1,1-Dichloropropene	µg/kg	1	MCERTS	-		
Trans-1,2-dichloroethene	µg/kg	1	NONE	-		
Benzene	µg/kg	1	MCERTS	-		
Tetrachloromethane	µg/kg	1	MCERTS	-		
1,2-Dichloropropane	µg/kg	1	MCERTS	-		
Trichloroethene	µg/kg	1	MCERTS	-		
Dibromomethane	µg/kg	1	MCERTS	-		
Bromodichloromethane	µg/kg	1	MCERTS	-		
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-		
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-		
Toluene	µg/kg	1	MCERTS	-		
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-		
1,3-Dichloropropane	µg/kg	1	ISO 17025	-		
Dibromochloromethane	µg/kg	1	ISO 17025	-	 	
Tetrachloroethene	µg/kg	1	NONE	-		
1,2-Dibromoethane	µg/kg	1	ISO 17025	-		
Chlorobenzene	µg/kg	1	MCERTS	-		
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-		
Ethylbenzene	µg/kg	1	MCERTS	-	 	
p & m-Xylene	µg/kg	1	MCERTS	-		
Styrene Tribromomethane	µg/kg	1 1	MCERTS NONE	-		
o-Xylene	µg/kg	1	MCERTS	-		
1.1.2.2-Tetrachloroethane	µg/kg µa/ka	1	MCERTS	-		
Isopropylbenzene	μg/kg μg/kg	1	MCERTS	-		
Bromobenzene	µg/kg µg/kg	1	MCERTS	-		
n-Propylbenzene	µg/kg µg/kg	1	ISO 17025	-		
2-Chlorotoluene	µg/kg µg/kg	1	MCERTS	-		
4-Chlorotoluene	µg/kg	1	MCERTS	-		
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-		
tert-Butylbenzene	µg/kg	1	MCERTS	-		
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-		
sec-Butylbenzene	µg/kg	1	MCERTS	-		
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-		
p-Isopropyltoluene	µg/kg	1	ISO 17025	-		
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-		
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-		
Butylbenzene	µg/kg	1	MCERTS	-		
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-		
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-		
Hexachlorobutadiene	µg/kg	1	MCERTS	-		
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-		

Project / Site name: Chipping Your Order No: 12424-8538-SM

Lab Sample Number				947399		
Sample Reference				WS103B		
Sample Number				None Supplied		
Depth (m)				1.80		
Date Sampled				18/04/2018		
Time Taken	-		-	None Supplied	 	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
SVOCs						
Aniline	mg/kg	0.1	NONE	-		
Phenol	mg/kg	0.2	ISO 17025	-		
2-Chlorophenol	mg/kg	0.1	MCERTS	-		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-		
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-		
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	 	
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-		
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-		
2-Methylphenol Hexachloroethane	mg/kg mg/kg	0.3	MCERTS MCERTS	-		
Nitrobenzene	mg/kg mg/kg	0.05	MCERTS	-		
4-Methylphenol	mg/kg	0.2	NONE	-		
Isophorone	mg/kg	0.2	MCERTS	-		
2-Nitrophenol	mg/kg	0.3	MCERTS	-		
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-		
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-		
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-		
Naphthalene	mg/kg	0.05	MCERTS	-		
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-		
4-Chloroaniline	mg/kg	0.1	NONE	-		
Hexachlorobutadiene 4-Chloro-3-methylphenol	mg/kg mg/kg	0.1	MCERTS NONE	-		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-		
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-		
2-Methylnaphthalene	mg/kg	0.1	NONE	-		
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-		
Dimethylphthalate	mg/kg	0.1	MCERTS	-		
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-		
Acenaphthylene	mg/kg	0.05	MCERTS	-		
Acenaphthene	mg/kg	0.05	MCERTS	-		
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-		
Dibenzofuran 4-Chlorophenyl phenyl ether	mg/kg	0.2	MCERTS ISO 17025	-		
Diethyl phthalate	mg/kg mg/kg	0.3	MCERTS	-		
4-Nitroaniline	mg/kg	0.2	MCERTS	-		
Fluorene	mg/kg	0.05	MCERTS	-		
Azobenzene	mg/kg	0.3	MCERTS	-		
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-		
Hexachlorobenzene	mg/kg	0.3	MCERTS	-		
Phenanthrene	mg/kg	0.05	MCERTS	-		
Anthracene	mg/kg	0.05	MCERTS	-		
Carbazole	mg/kg	0.3	MCERTS	-		
Dibutyl phthalate	mg/kg	0.2	MCERTS MCERTS	-		
Anthraquinone Fluoranthene	mg/kg mg/kg	0.3	MCERTS	-		
Pyrene	mg/kg mg/kg	0.05	MCERTS	-		
Butyl benzyl phthalate	mg/kg	0.03	ISO 17025	-		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-		
Chrysene	mg/kg	0.05	MCERTS	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	 	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	 	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-		

Project / Site name: Chipping

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
947389	TP101	None Supplied	0.30	Brown loam and clay with gravel.
947390	TP101	None Supplied	2.00	Brown loam and clay with gravel.
947391	TP103	None Supplied	0.40	Brown loam and clay with gravel.
947392	TP104	None Supplied	0.20	Brown loam and clay with gravel and vegetation.
947393	TP104	None Supplied	2.50	Brown clay and sand with gravel.
947394	TP107	None Supplied	0.20	Brown loam and sand with gravel and vegetation.
947395	TP108	None Supplied	2.00	Brown sandy clay.
947396	WS101B	None Supplied	0.40	Light brown clay and sand with gravel.
947397	WS101B	None Supplied	1.20	Brown clay and sand.
947398	WS103A	None Supplied	0.80	Brown clay and sand.
947399	WS103B	None Supplied	1.80	Brown clay and sand with gravel.

Project / Site name: Chipping

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L076-PL	D	NONE

Iss No 18-82954-1 Chipping 12-424

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Chipping

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Roy Walker e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: rwalker@e3p.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 18-86410

Project / Site name:	Chipping	Samples received on:	20/04/2018
Your job number:	12-424	Samples instructed on:	23/05/2018
Your order number:	12424-8538-SM	Analysis completed by:	29/05/2018
Report Issue Number:	1	Report issued on:	29/05/2018
Samples Analysed:	2 leachate samples		

that Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number Sample Reference				966132	966133			
				TP102	WC101A			
Conversion Neurophics	ple Reference ple Number h (m) Sampled Sampled Taken vytical Parameter chate Analysis) gr g				WS101A			
				None Supplied	None Supplied			
Depth (m)				2.80	0.50			
Date Sampled				18/04/2018	18/04/2018			
Time Taken	1			None Supplied	None Supplied			
			Accreditation Status					
Analytical Parameter	c	let Lin	St					
	nite	ect nit	atu					
(Ecucitate Analysis)	v 3	ġ, ď	Is atic					
			ă					
General Inorganics								
pН	pH Units	N/A	ISO 17025	7.4	7.1			
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0			
Total Phenols								
Total Phenols (monohydric)	µg/l	1	ISO 17025	3.6	3.9			
Speciated PAHs								
Naphthalene	µg/l		ISO 17025	< 0.01	< 0.01			
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01			
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01			
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01			
Benzo(ghi)perylene	µg/l	0.01	NONE	< 0.01	< 0.01			
Total PAH								
Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2	< 0.2			
Heavy Metals / Metalloids			-	-	-	-	-	
Arsenic (dissolved)	µg/l		ISO 17025	1.7	< 1.1			
Cadmium (dissolved)	µg/l	0.08	ISO 17025	0.56	< 0.08			
Chromium (hexavalent)	µg/l	5	NONE	< 5.0	< 5.0			
Chromium (dissolved)	µg/l	0.4	ISO 17025	< 0.4	< 0.4			
Copper (dissolved)		0.7	ISO 17025	16	3.1			
Lead (dissolved)	µg/l	1	ISO 17025	2.2	< 1.0			
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5			
Nickel (dissolved)	µg/l	0.3	ISO 17025	4.7	< 0.3			
Selenium (dissolved)	µg/l	4	ISO 17025	150	< 4.0			
Zinc (dissolved)	µg/l	0.4	ISO 17025		2.6			

Project / Site name: Chipping

Your Order No: 12424-8538-SM

Lab Sample Number				966132	966133		
Sample Reference				TP102	WS101A		
Sample Number		None Supplied	None Supplied				
Depth (m)		2.80	0.50				
				18/04/2018	18/04/2018		
Fime Taken				None Supplied	None Supplied		
	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0		
o & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0		
p-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	10	NONE	< 10	< 10		

TPH1 (C10 - C40)	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10		

Project / Site name: Chipping

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	NONE
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX VI ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA

Constituent	Origin of Risk Assessment Value
Arsenic	2014 LQM/CIEH S4ULs
Cadmium	2014 LQM/CIEH S4ULs
Chromium	2014 LQM/CIEH S4ULs
Lead	2014 LQM/CIEH S4ULs
Mercury	2014 LQM/CIEH S4ULs - methylmercury
Nickel	2014 LQM/CIEH S4ULs
Selenium	2014 LQM/CIEH S4ULs
Copper	2014 LQM/CIEH S4ULs
Zinc	2014 LQM/CIEH S4ULs
Cyanide - Total	2014 LQM/CIEH S4ULs
Phenols - Total.	2014 LQM/CIEH S4ULs
Naphthalene	
Acenaphthylene	
Acenaphthene	
Fluorene	
Phenanthrene	
Anthracene	
Fluoranthene	
Pyrene	
Benzo(a)Anthracene(
Chrysene	General Assessment Criteria (GAC) developed by CIEH /
Benzo(b/k)Fluoranthene (iii)	LQM Suitable 4 Use Levels with supporting data from SR3,
Benzo(a)Pyrene	SR7 and existing Tox report where applicable. 1% SOM
Indeno(123-cd)Pyrene	
Dibenzo(a,h)Anthracene	
Benzo(ghi)Perylene	
TPH C_5 - C_6 (aliphatic)	
TPH C_6 - C_8 (aliphatic)	
TPH C_8 - C_{10} (aliphatic)	
TPH C ₁₀ -C ₁₂ (aliphatic)	
TPH C_{12} - C_{16} (aromatic)	
TPH C ₁₆ -C ₂₁ (aromatic)	
TPH C ₂₁ -C ₃₅ (aromatic)	

APPENDIX VII GEOTECHNICAL TESTING RESULTS

LABORATORY REPORT

REPORT

4043

Contract Number: PSL18/2107

Report Date: 01 June 2018

Client's Reference: 12424

Client Name: E3P Heliport Business Park Liverpool Road Eccles Manchester M30 7RU

For the attention of: Roy Walker

Contract Title:	Chipping
Date Received:	3/5/2018
Date Commenced:	3/5/2018
Date Completed:	1/6/2018

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

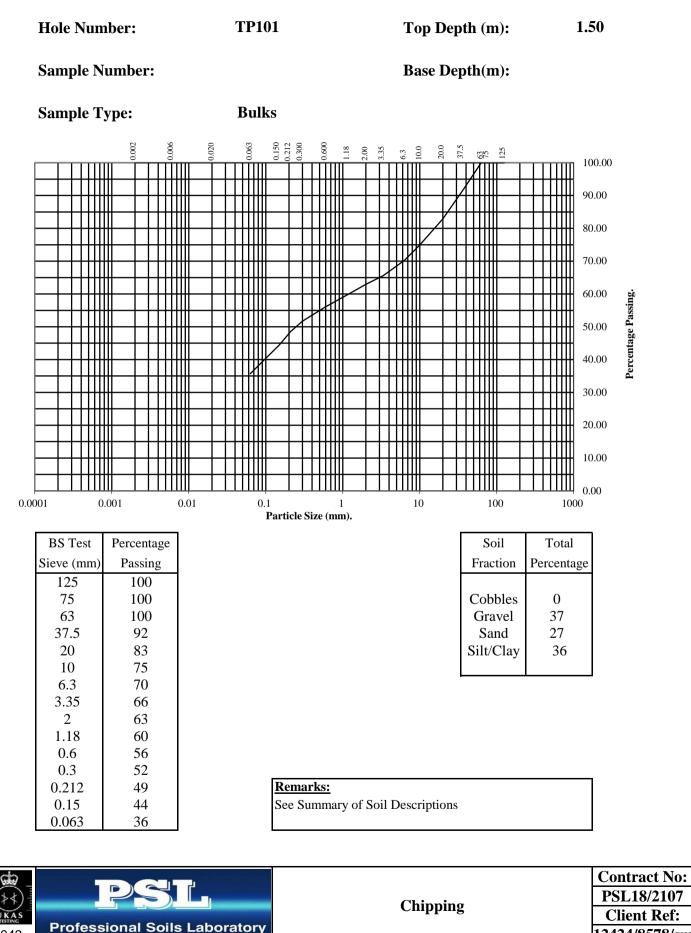
RO R Gunson

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

L Knight (Senior Technician) S Eyre (Senior Technician) A Fry (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS


Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP101		Bulks	1.50		Dark brown very gravelly very sandy CLAY.
TP108		Bulks	3.00		Dark brown very gravelly very sandy CLAY.

			Contract No:
$(\diamond \langle)$		Chipping	PSL18/2107
		•••••	Client Ref:
4043	Professional Soils Laboratory		12424/8578/sm

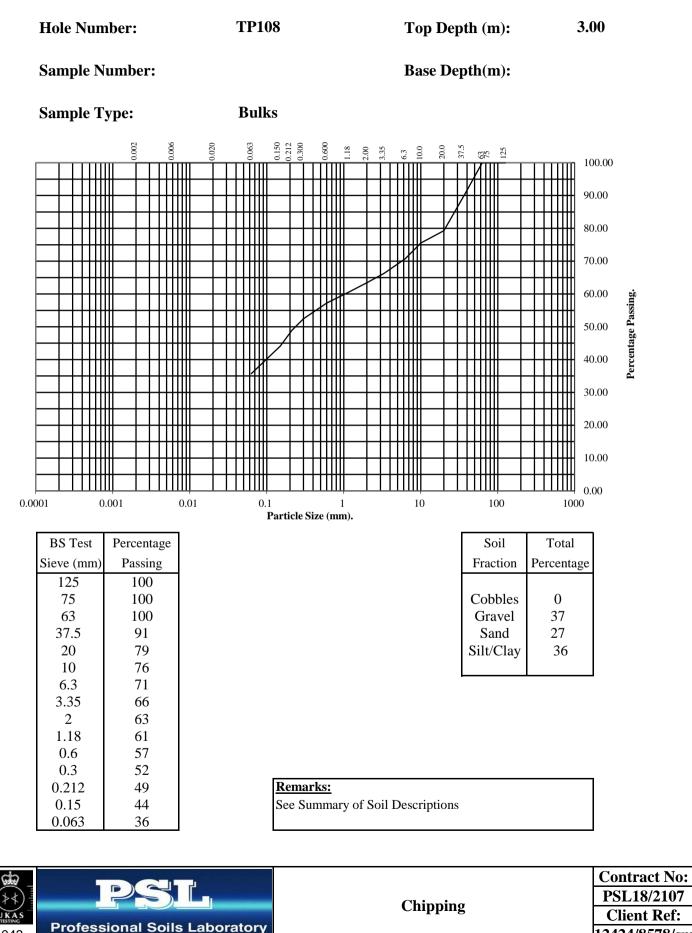
PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

PSL005

4043

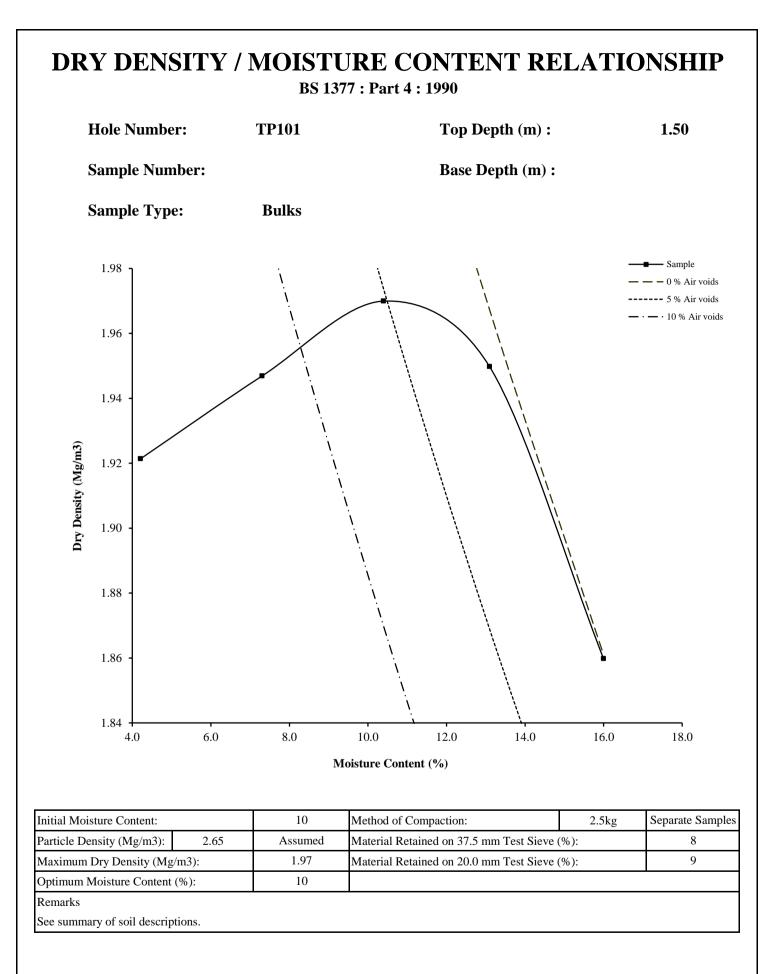

12424/8578/sm

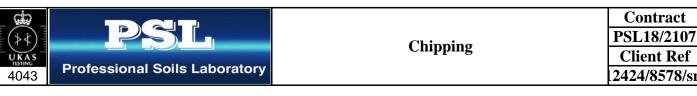
of

PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

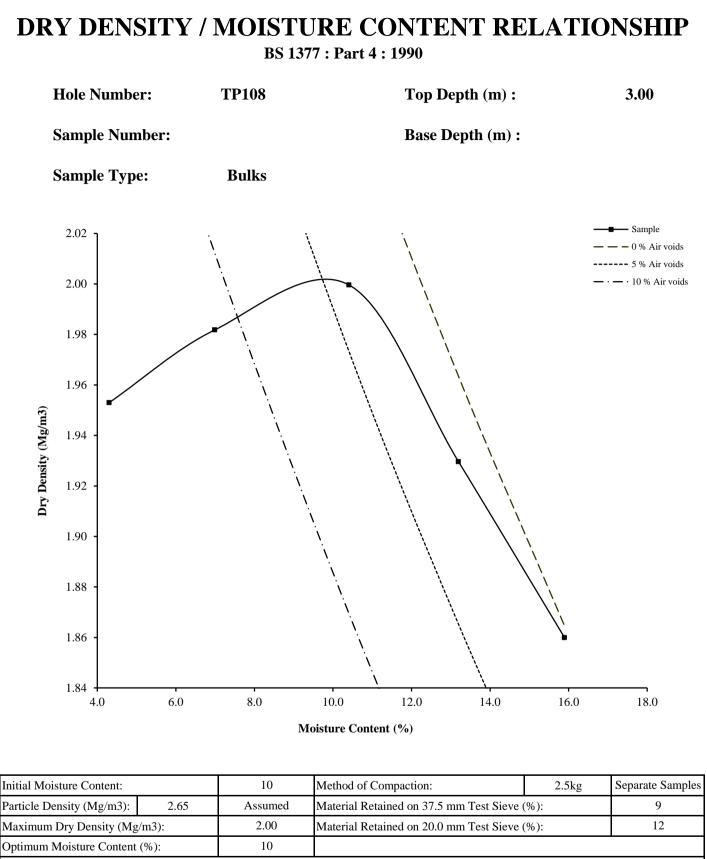



PSL005

4043

12424/8578/sm

of



Contract

Client Ref

2424/8578/sn

Remarks

See summary of soil descriptions.

	Contract
Chinning	PSL18/2107
Chipping	Client Ref
	2424/8578/sn

Contract

APPENDIX VIII DYNAMIC CONE PENETROMETER TEST CERTIFICATES

Dynamic Probe Test Results Sheet

Site:

Chipping 4

12-424

Client:

Rig Type:

Job Number: Hodson Homes DP No: SHDP101

19th April 2018 Date:

Pe	enetratior	n Test Resi	ults													
Depth (m)	DPN ₁₀₀	DPN ₃₀₀	SPT N *			0	5	10	15	20	25	30	35	40	45	50
0.00	0	0	0		0.00	+										
0.10	0	0	0		0.00	1										
0.20	0	1	1		0.20	1										
0.30	0	2	1			1										
0.40	1	3	2		0.40]=										
0.50	1	3	2			_ 										
0.60	1	4	3		0.60											
0.70	1	5	3		0.00											
0.80	2	9	6		0.80		_									
0.90	2	10	7		1.00											
1.00	5 3	20 20	13 13		1.00											
1.10 1.20	12	20	13		1.20	-			_							
1.20	5	14	9		1.20			_								
1.40	4	15	10		1.40	1	_									
1.50	5	17	10			1										
1.60	6	17	11		1.60	1	_									
1.70	6	17	11]	_									
1.80	5	18	12		1.80	_										
1.90	6	19	13				_									
2.00	7	18	12		2.00	-										
2.10	6	20	13		2.20	-			•							
2.20	5	21	14		2.20	-			_							
2.30	9	22	15		2.40	-										
2.40	7	19	13		2.10											
2.50 2.60	6	16 15	11 10		2.60		_									
2.60	4	13	9			1	-	-								
2.80	5	13	9		2.80]	-	-								
2.90	4	12	8			_	-	-								
3.00	4	13	9		3.00		-	-								
3.10	4	15	10		0.00	-										
3.20	5	17	11		3.20	-										
3.30	6	18	12	Ê	3.40	-										
3.40	6	18	12) u	5.40											
3.50	6	18	12	Depth of penetration (m)	3.60											
3.60	6	17	11	etra	0.00		_									
3.70	6	18	12	en	3.80	1	_									
3.80 3.90	5 7	18 19	12 13	of b]	_									
4.00	6	19	13	ц,	4.00		_									
4.10	6	13	9	eb		_	_	-								
4.20	6	12	8		4.20			-								
4.30	1	16	11		4.40											
4.40	5	25	17		4.40	-										
4.50	10	30	20		4.60											
4.60	10	31	21		1.00											
4.70	10	33	22		4.80	1	-	_		_						
4.80	11	31	21]		_		_						
4.90	12	30	20		5.00			-								
5.00 5.10	8 10	26 26	17 17													
5.20	8	20	15		5.20	-			_							
5.30	8	23	15		5.40	-										
5.40	6	26	17		5.40											
5.50	9	35	23		5.60						_					
5.60	11	50	33			1	-		_						_	
5.70	15	68	45		5.80]	-			_	_				_	
5.80	24	103	69		-							-				
5.90	29				6.00	-										
6.00 6.10	50				6.20	-										
6.20					6.20	-										
6.30					6.40	1										
6.40					0.10	1										
6.50					6.60	1										
6.60						1										
6.70					6.80]										
6.80]										
6.90					7.00	-										
7.00					7 00	-										
7.10					7.20	-										
7.20					7.40	-										
7.30 7.40					7.40	1										
7.40						1		1	1						1	
	· 50 kg	Cone Dia: 43	Zmm			D	PN100 V	values (s	horter b	ars) & e	quivalen	t SPT va	alues (lo	nger bar	s)	
Hammer Mass Drop Height: 5		Test by:	.7mm RJW					· -		, -				-	-	
		idal by.	1.377													
General Rema	arks:	ration register	nce for 100mm r	enetration	n											
DPN ₃₀₀ = Dyn	amic penet	ration resistar	nce for 100mm p nce for 300mm p penetration) as , equivalent SPT eld Testing in Er	enetration	n (ie: su	m of 3 c	onsecut	ive DPN ₁₀	o values)	, starting	at the dep	oth given.				
For dynamic r	probe "heav	es (for 300mm v" test (DPH).	equivalent SPT	N-values	approxi s estima	mate the	DPN ₃₀ the the	o values to eoretical re	or dynam elationshi	D DPN and	super-ne	avy test T-N. [see	(DPSH). Card.G.E	3Roche.	D.P. & H	erbert.S.M., in
Geol. Soc. Spe	ecial Public	ation No 6, Fi	eld Testing in Er	gineering	g Geolog	y (1990)]. SPT \	values are	estimate	ed and ar	e for gene	eral guida	nce only.	.,		

Dynamic Probe Test Results Sheet

Site:

Chipping 4

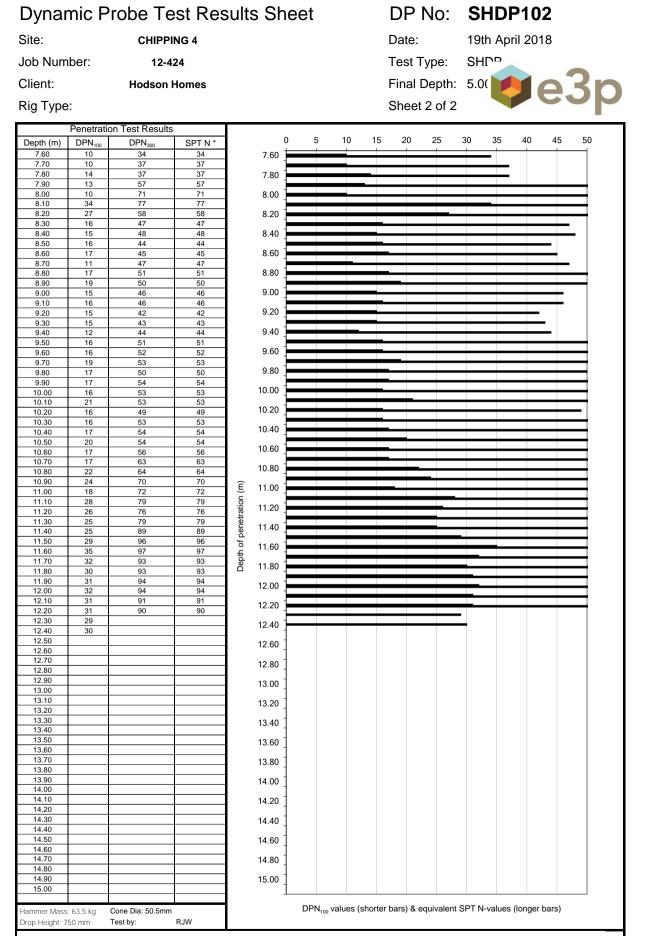
12-424

Client: Ho

Rig Type:

Job Number:

Hodson Homes


Date: 6th April 2016

Test Type:

Final Depth: 5.0 Sheet 1 of 2

Bit Mark Dr No. Dr No. Dr No. 000 00 00 00 00 00 020 0 0 0 0 0 0 020 0 0 0 0 0 0 0 020 0			Test Res		-	0	5	10	15	20	25	30	35	40	45	50
0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 100 1 10 10 10 100 1 10 10 10 100 1 10 10 10 10 100 1 10 10 10 10 10 100 1 10	epth (m)	0 DPN	DPN ₃₀₀	SPT N *	0.00		Ť									
0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0 1.0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 1.0 0					0.00	1										
add 0 0 0 add 0 0 0 add 0 0 0 add 0 0 0 0 add 0 0 0 0 add 0 0 0 0 0 add 10 4 11 11 11 11 100 4 11 120 3 10	0.20	0	0	0	0.20	1										
abs 0 0 0 0 abs 0 0 0 0 0 abs 1 1 1 1 abs 0 0 0 0 0 abs 1 1 1 1 1 abs 1					0.40	-										
action 0 0 0 action 0 4 4 action 100 4 4 110 4 111 111 120 3 100 100 100 100 120 3 100 100 100 100 100 100 120 3 100 <					0.40	-										
100 0 0 0 100 4 10 1 100 4 11 11 100 4 11 11 100 4 10 10 100 4 10 10 100 4 10 10 100 3 10 10 100 3 10 10 100 3 10 10 100 3 10 10 100 3 10 10 100 4 12 12 200 4 15 15 100 11 11 10 100 12 12 10 200 4 15 15 16 100 10 12 10					0.60	-										
000 0 4 4 100 4 11 11 100 4 11 11 100 4 10 10 120 4 0 0 0 120 4 0 0 0 120 4 0 0 0 120 4 0 0 0 0 120 4 12 12 0 0 0 120 4 12 12 0 0 0 0 120 4 12 12 0 0 0 0 0 200 4 12 12 0					0.00	1										
000 4 11 11 100 4 11 11 100 4 10 10 100 4 10 10 100 4 10 10 100 3 8 8 100 3 10 10 100 3 10 10 100 3 10 10 100 3 10 10 100 4 12 12 200 4 12 12 200 4 12 10 200 4 11 11 200 4 11 11 200 4 13 13 10 300 5 10 16 16 200 6 12 10 10 10 300 6 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1					0.80	1	_									
1:00 4 1:10 1:1 1:30 4 9 9 1:30 4 9 9 1:30 2 8 8 1:30 2 8 8 1:30 3 10 10 1:30 3 10 10 1:30 3 10 10 1:30 3 11 11 1:30 4 12 12 2:30 4 112 12 2:30 4 112 12 2:30 4 112 12 2:30 4 114 11 2:30 4 114 11 2:30 4 114 14 3:30 5 117 17 3:30 5 110 11 3:30 6 22 22 24 4:00 7 22 22 24 44 45 45 45 45 45 45 45 46		0	8	8		-	_	-								
120 3 10 10 130 4 10 10 140 5 8 8 160 3 0 0 190 4 10 10 190 4 11 11 200 3 11 11 200 3 11 11 200 4 11 11 200 3 11 11 200 4 11 11 200 4 11 11 200 7 22 22 300 12 22 22 300 12 22 22 300 10 22 22 300 10 22 22 300 10 22 22 300 10 22 22 300 10 22 22 300 10 22 22 300 10 22 22 300					1.00		_									
130 4 9 9 140 3 8 8 150 2 8 8 150 2 8 8 170 3 10 10 180 3 10 10 180 4 12 12 200 3 11 11 200 3 11 11 200 4 12 12 200 7 17 12 200 7 17 12 200 6 23 23 300 12 22 22 300 12 22 22 23 300 6 22 22 23 300 6 22 22 22 24 300 6 22 22 22 44 14 300 6 22 22 22 22 40 40 40 40 40 40 40 40 40 <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1.00	-	_									
140 3 8 8 150 2 8 8 160 3 9 9 170 3 10 10 180 3 10 10 180 3 10 10 180 4 11 11 200 4 12 12 200 4 12 12 200 4 15 15 200 4 15 15 200 4 15 15 200 4 15 15 200 4 15 15 200 7 22 22 200 14 14 130 5 16 16 140 17 30 30 30 30 300 6 28 28 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30<					1.20	-										
150 2 8 8 150 3 10 10 150 3 10 10 150 3 10 10 150 4 11 11 160 4 12 12 200 4 11 11 210 4 12 12 220 4 15 15 280 4 17 17 280 6 23 23 300 6 23 23 300 6 23 23 300 6 23 23 300 6 24 24 40 14 14 14 300 6 26 28 30 300 6 26 28 30					1 40		_									
100 3 9 9 100 3 10 10 180 4 11 11 200 3 11 11 200 4 12 12 200 4 12 12 200 4 12 12 200 4 12 12 200 4 12 12 200 4 12 20 200 4 13 13 200 4 13 13 200 5 13 13 200 6 23 23 300 6 22 22 300 6 22 22 300 6 22 22 40 7 22 22 400 7 24 24 400 7 22 22 500 15 34 34 500 7 24 24 500								_								
170 3 100 10 180 3 100 10 190 4 11 11 210 4 12 12 220 4 11 11 210 4 15 15 220 4 17 17 280 4 17 17 280 4 17 17 280 4 17 17 280 6 23 23 300 5 14 14 300 5 14 14 300 6 28 300 300 6 18 18 300 6 18 18 300 6 26 20 400 10 22 22 400 7 21 21 400 7 22 22 22 400 7 21 21 21 500 15 34 34					1.60]	-	-								
190 4 11 11 200 3 11 11 210 4 12 12 233 4 11 11 230 4 11 11 230 4 11 11 230 4 11 11 250 3 11 11 250 4 17 17 260 4 15 15 360 6 22 23 360 6 22 20 360 6 22 20 370 6 18 13 380 6 22 22 400 10 10 24 410 10 24 24 420 7 25 22 450 7 25 24 500 7 21 22 450 7 25 26 500 10 24 24 500						-	-									
200 3 11 11 210 4 12 12 230 4 12 12 230 4 11 11 240 4 15 15 250 3 11 11 260 6 23 22 30 4 15 15 280 6 23 22 30 12 2 24 300 4 13 13 300 4 14 14 300 5 16 16 300 4 14 14 400 7 22 22 300 6 12 24 400 7 22 22 400 7 22 22 400 7 28 29 500 5 17 17 24 24 400 7 28 29 20 20 500 7 <t< td=""><td></td><td></td><td></td><td></td><td>1.80</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					1.80	_										
210 4 12 12 230 4 12 12 240 4 11 11 250 3 11 11 250 4 15 16 260 4 15 16 250 4 15 16 260 4 15 16 270 4 17 17 280 6 23 23 300 12 22 22 310 5 14 14 330 5 16 16 340 4 13 13 350 5 16 16 360 6 22 22 400 7 22 22 400 7 22 22 400 7 22 22 400 7 22 22 500 7 24 24 500 7 24 24 500					2.00											
220 4 12 12 12 230 4 11 11 240 4 11 11 250 3 11 11 260 3 11 11 200 6 23 23 300 6 23 23 300 7 25 25 300 6 23 23 300 6 23 23 300 6 24 26 300 6 22 22 300 6 22 22 300 6 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 50 8 22 22 50 8 32 32 50 7 24 24 400 10 28 28					2.00	-										
230 4 11 11 240 4 11 11 250 3 11 11 250 4 17 17 280 4 16 16 280 6 23 23 300 12 22 22 310 5 114 144 330 4 13 133 330 4 13 133 330 6 22 22 310 6 18 18 380 6 22 22 400 10 22 22 400 7 22 22 400 7 22 22 400 7 22 22 500 7 21 21 500 7 22 22 500 14 33 31 500 14 32 32 32 500 14 33 31 31 <td></td> <td></td> <td></td> <td></td> <td>2.20</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					2.20		_									
240 4 11 11 250 3 11 11 260 4 15 15 280 6 23 25 300 12 22 22 300 12 22 22 300 12 22 22 300 12 22 22 300 4 13 13 300 6 13 13 300 6 16 16 300 6 22 22 4.00 10 27 27 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 5.00 15 34 34 560 6 600 5.00 16 37 77 77 77 77 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						1	_									
250 3 11 11 280 4 15 17 280 7 25 25 300 12 22 22 310 5 14 14 320 5 13 13 330 4 13 13 330 4 14 14 550 5 16 16 380 6 28 26 400 7 22 22 300 12 22 22 300 6 28 26 400 7 22 22 430 7 22 22 430 7 22 22 430 7 22 22 430 7 22 22 500 7 21 21 430 7 22 22 500 8 32 32 500 11 37 37 500					2.40	1	_									
2.80 4 15 15 2.80 7 25 25 3.00 12 22 22 3.00 12 22 22 3.00 12 22 22 3.00 12 22 22 3.00 11 13 13 3.00 5 113 13 3.00 6 12 22 3.00 6 17 17 3.00 6 18 18 3.00 6 22 22 4.00 10 27 27 4.00 7 21 21 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 22 4.00 7 22 26 5.00 7 22 26 50 5.00 15 34 34					1.	-										
2.70 4 17 17 2.80 7 25 25 3.00 12 22 22 3.00 5 14 14 3.00 5 14 14 3.00 5 13 13 3.00 4 13 13 3.00 5 16 16 5.60 5 16 16 5.80 5 7 7 3.00 12 22 3.80 6 22 22 3.80 6 22 22 3.80 6 22 22 3.80 6 22 22 3.80 6 22 22 4.00 7 22 22 4.80 7 28 28 5.90 7 21 21 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.00 <td>2.60</td> <td>4</td> <td>15</td> <td>15</td> <td>2.60</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.60	4	15	15	2.60				-							
280 1 233 23 300 12 22 22 300 5 13 13 330 4 13 13 330 4 14 144 14 144 144 330 5 16 16 340 4 14 144 330 4 13 13 340 6 17 17 370 6 18 18 380 6 22 22 400 10 27 27 410 10 27 27 430 7 22 22 440 7 22 22 450 8 22 22 480 7 28 28 500 17 21 21 500 12 36 36 50 510 7 24 24 50 52 530 8 32 33 </td <td></td> <td></td> <td></td> <td></td> <td>2 80</td> <td>-</td> <td></td>					2 80	-										
300 12 22 22 310 5 14 14 320 5 13 13 320 4 13 13 320 4 14 14 320 5 16 16 320 6 17 17 320 6 17 17 320 6 22 22 300 6 22 22 400 0 27 27 410 10 27 27 440 7 22 22 440 7 22 22 440 7 22 22 440 7 28 28 500 7 28 28 500 7 28 28 500 7 24 24 500 7 28 28 500 12 32 32 32 500 12 36 36 77					2.00											
300 12 22 22 300 12 13 13 320 5 13 13 320 4 13 13 320 4 14 144 14 144 144 320 5 16 16 320 6 18 18 320 6 18 18 320 6 17 17 320 6 22 22 400 10 27 27 410 10 27 27 430 7 22 22 440 7 22 22 440 7 22 22 450 8 22 22 500 7 21 21 500 17 22 22 500 17 24 24 500 12 36 36 50 50 500 12 36 36 60<					3.00											
320 5 13 13 13 330 4 13 13 340 340 4 14 14 367 340 350 5 16 16 16 350 5 17 17 17 370 6 18 18 18 380 6 26 26 410 10 27 27 410 10 24 24 420 7 21 21 430 7 22 22 450 8 22 22 450 7 21 21 400 14 28 28 500 7 24 24 500 7 24 24 500 7 24 24 500 15 34 34 500 7 24 24 630 9 32 32 540 9 32 36					-		_		_							
330 4 13 13 340 4 14 14 350 5 16 16 350 6 18 18 380 6 22 22 380 6 22 22 400 10 27 27 410 10 24 24 430 7 22 22 440 7 22 22 440 7 22 22 440 7 22 22 440 7 22 22 440 7 28 28 450 8 32 32 550 15 34 34 540 9 32 32 550 15 34 34 540 9 32 32 550 16 34 34 560 10 28 28 630 9 28 36 36					3.20]	_		•							
3.30 4 14 14 14 3.50 5 16 16 16 3.80 5 17 17 3.60 3.60 3.80 6 22 22 22 22 3.80 6 26 26 26 4.00 10 27 27 4.00 4.00 4.00 4.00 10 24 24 4.00 4.00 4.00 4.80 7 22 22 4.00 4.00 4.00 4.00 4.80 7 22 22 4.00					Ê	_			•							
4.20 7 21 21 4.30 7 22 22 4.40 7 22 22 4.50 8 22 22 4.60 7 21 21 4.70 7 28 28 4.80 7 28 28 5.00 7 21 21 5.00 7 21 21 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.30 9 24 24 6.20 8 27 27 6.80 18 43 43 6.80 17 36 36 6.80 18 43 43		4			⊂ 3.40 ⊆	-			-							
4.20 7 21 21 4.30 7 22 22 4.40 7 22 22 4.60 7 21 21 4.60 7 21 21 4.70 7 28 28 4.80 7 28 28 5.00 7 21 21 5.00 7 22 22 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.30 9 24 24 6.20 8 27 27 6.30 9 34 34 6.70 17 36 36 6.80 18 43 43 <					.00 10 10 10	-										
4.20 7 21 21 4.30 7 22 22 4.40 7 22 22 4.60 7 21 21 4.60 7 21 21 4.70 7 28 28 4.80 7 28 28 5.00 7 21 21 5.00 7 22 22 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.30 9 24 24 6.20 8 27 27 6.30 9 34 34 6.70 17 36 36 6.80 18 43 43 <					etra		_									
4.20 7 21 21 4.30 7 22 22 4.40 7 22 22 4.60 7 21 21 4.60 7 21 21 4.70 7 28 28 4.80 7 28 28 5.00 7 21 21 5.00 7 22 22 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.30 9 24 24 6.20 8 27 27 6.30 9 34 34 6.70 17 36 36 6.80 18 43 43 <					<u>5</u> 3.80		_									
4.20 7 21 21 4.30 7 22 22 4.40 7 22 22 4.50 8 22 22 4.60 7 21 21 4.70 7 28 28 4.80 7 28 28 5.00 7 21 21 5.00 7 21 21 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.30 9 24 24 6.20 8 27 27 6.80 18 43 43 6.80 17 36 36 6.80 18 43 43					of b]	_				_					
4.20 7 21 21 21 4.30 7 22 22 4.40 7 22 22 4.50 8 22 22 4.60 7 21 21 4.70 7 28 28 4.80 7 21 21 4.70 7 28 28 5.00 7 21 21 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.60 12 36 36 5.00 12 36 36 6.00 10 28 28 6.60 9 34 34 6.50 9 35 35 6.60 17 36 36 7.00 8 31 31 7.12 33 33 31 </td <td></td> <td></td> <td></td> <td></td> <td>ੁੱ 4.00</td> <td>]</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					ੁੱ 4.00]	-									
4.20 7 21 21 4.30 7 22 22 4.40 7 22 22 4.60 7 21 21 4.60 7 21 21 4.70 7 28 28 4.80 7 28 28 5.00 7 21 21 5.00 7 22 22 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.30 9 24 24 6.20 8 27 27 6.30 9 34 34 6.70 17 36 36 6.80 18 43 43 <					eb						-					
4.40 7 22 22 4.40 7 22 22 4.50 8 22 22 4.60 7 21 21 4.60 7 21 21 4.60 7 21 21 4.60 7 22 22 4.60 7 21 21 4.80 7 28 28 4.80 7 22 22 5.00 7 21 21 5.10 7 22 22 5.40 9 32 32 5.50 15 3.4 34 5.60 8 31 31 5.80 12 36 36 6.00 10 22 25 6.10 7 24 24 6.20 8 27 27 6.30 9 24 24 6.40 10 28 28 6.40 13 31 31					□ 4.20	-										
4.40 7 22 22 4.50 8 22 22 4.60 7 21 21 4.70 7 28 28 4.80 7 22 22 4.90 14 28 28 5.00 7 21 21 5.00 7 22 22 5.20 7 24 24 5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 5.60 8 31 31 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.60 9 44 44 6.70 17 52 52 7.20 12 33 33 7.30 12 31 31					4.40	-										
44.00 7 21 21 4.70 7 28 28 4.90 14 28 28 5.00 7 21 21 5.00 7 21 21 5.00 7 24 24 5.00 7 24 24 5.00 7 24 24 5.00 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.50 9 35 35 6.60 9 44 44 6.60 9 44 44 6.70 17 26 26 6.80 18 31 31 7.40 9 29 29					4.40											
4.60 7 21 21 4.70 7 28 28 4.80 7 28 28 4.80 7 28 28 4.90 14 28 28 5.00 7 21 21 5.10 7 22 22 5.20 7 24 24 5.30 8 32 32 5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 6.30 9 28 28 6.40 10 28 28 6.60 9 44 44 6.60 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 7.30 12 33 33 7.40 9 29 29 7.50 10 30 30					4.60	1	_									
4.80 7 28 28 4.90 14 28 28 5.00 7 21 21 5.10 7 22 22 5.20 7 24 24 5.30 8 32 32 5.40 9 32 32 5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.30 9 28 28 6.40 10 28 28 6.50 9 35 35 6.80 17 36 36 7.00 8 31 31 7.10 11 35 35 6.80 18 43 43 7.00 8 31 31 7.40 9 29 29]	_					-				
4.90 14 28 28 5.00 7 21 21 5.00 7 22 22 5.20 7 24 24 5.30 8 32 32 5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 <td></td> <td></td> <td></td> <td></td> <td>4.80</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>					4.80	-						-				
5.00 7 21 21 5.10 7 22 22 5.20 7 24 24 5.30 8 32 32 5.40 9 32 32 5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.40 10 28 28 6.40 10 28 28 6.40 18 43 43 6.90 17 36 36 7.00 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 <td></td> <td></td> <td></td> <td></td> <td>5.00</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>					5.00	_						-				
5.10 7 22 22 5.20 7 24 24 5.30 8 32 32 5.60 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.40 10 28 28 6.40 10 28 28 6.40 10 28 28 6.40 10 28 28 6.40 17 36 36 6.80 17 36 36 7.20 12 33 33 7.30 12 31 31 7.40 29 29 29 7.50 10 30 30 armmer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT					5.00	-										
5.20 7 24 24 5.30 8 32 32 5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 <td></td> <td></td> <td></td> <td></td> <td>5 20</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>					5 20	-					_					
5.40 9 32 32 5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 35 35 6.60 9 34 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 armer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW Top Height: 750 mm Test by: RJW <td></td> <td></td> <td></td> <td></td> <td>0.20</td> <td></td>					0.20											
5.50 15 34 34 5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 33 33 7.40 9 29 29 7.50 10 30 30 armere Mass: 63.5 kg Cone Dia: 50.5mm To	5.30	8	32	32	5.40	1	_									
5.60 8 31 31 5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 11 35 35 6.80 17 36 36 7.00 8 31 31 7.10 11 35 35 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 armere Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars) DPN100 values (shorter bars) & equivalent SPT values (longer bars)]	_						-			
5.70 11 37 37 5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.40 9 29 29 7.40 9 29 29 7.40 9 29 29 7.40 9 29 29 7.40 9 29 29 7.40 9 29 29 7.50 10 30 30 aammer Mass: 63.5 kg Cone Dia: 50.5mm <t< td=""><td></td><td></td><td></td><td></td><td>5.60</td><td></td><td></td><td>-</td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td></t<>					5.60			-			_	_				
5.80 12 36 36 5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.40 10 28 28 6.40 10 28 28 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.40 9 29 29 7.50 10 30 30 aammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW					F 00											
5.90 14 31 31 6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 armmer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars) Conger Demoter					5.80											
6.00 10 25 25 6.10 7 24 24 6.20 8 27 27 6.30 9 28 28 6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 armmer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars) DPN100 values (shorter bars) & equivalent SPT values (longer bars)					6.00											
6.20 8 27 27 6.30 9 28 28 6.40 10 28 28 6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 aammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars) DPN100 values (shorter bars) & equivalent SPT values (longer bars)					0.00						_					
6.30 9 28 28 6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars)					6.20	1		-			_					
6.40 10 28 28 6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars)]	_	_			_	-				
6.50 9 35 35 6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars)					6.40							-				
6.60 9 44 44 6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN ₁₀₀ values (shorter bars) & equivalent SPT values (longer bars) DPN ₁₀₀ values (shorter bars) & equivalent SPT values (longer bars)					C C0	-										
6.70 17 52 52 6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars)					0.00	-									-	
6.80 18 43 43 6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars)					6.80	-									-	
6.90 17 36 36 7.00 8 31 31 7.10 11 35 35 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars) DPN100 values (shorter bars) & equivalent SPT values (longer bars)					0.00											
7.00 8 31 31 7.00 12 31 31 7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW DPN100 values (shorter bars) & equivalent SPT values (longer bars)					7.00	1-		-								
7.20 12 33 33 7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW Zenarel Remate: DPN100 values (shorter bars) & equivalent SPT values (longer bars)	7.00		31	31]	-	-					_			
7.30 12 31 31 7.40 9 29 29 7.50 10 30 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm Test by: RJW Concert Bernarder: Concert Bernarder: DPN100 values (shorter bars) & equivalent SPT values (longer bars)					7.20	-		-					-			
7.40 9 29 7.50 10 30 ammer Mass: 63.5 kg Cone Dia: 50.5mm rop Height: 750 mm Test by: RJW					7.40							-				
7.50 10 30 30 Jammer Mass: 63.5 kg Cone Dia: 50.5mm DPN ₁₀₀ values (shorter bars) & equivalent SPT values (longer bars) rop Height: 750 mm Test by: RJW					7.40											
Iammer Mass: 63.5 kg Cone Dia: 50.5 mm DPN ₁₀₀ values (shorter bars) & equivalent SPT values (longer bars) Import Height: 750 mm Test by: RJW					1											
rop Height: 750 mm Test by: RJW					1		DPN ₁₀₀	values (s	horter b	ars) & eo	quivalen	t SPT va	alues (lor	nger bar	s)	
Conseral Demarkes		•					100	(-		,				5	,	
General Remarks:			rest by:	rjw												
PNI/00 = Dynamic penetration resistance for 100mm penetration. PNI/00 = Dynamic penetration resistance for 300mm penetration (ie: sum of 3 consecutive DPN ₁₀₀ values), starting at the depth given. Equivalent SPT N-values (for 300mm penetration) assumed to approximate the DPN ₂₀₀ values for dynamic probe "super-heavy" test (DPSH). For dynamic probe "heavy" test (DPH), equivalent SPT N-values estimated using the theoretical relationship DPN ₂₀₀ = 1.5 SPT-N. [see Card,G.B., Roche,D.P. & He eol. Soc. Special Publication No 6, <i>Field Testing in Engineering Geology</i> (1990)]. SPT values are estimated and are for general guidance only.		arks: amic penet	ration resistor	nce for 100mm r	penetration											

General Remarks:

DPN₁₀₀ = Dynamic penetration resistance for 100mm penetration. DPN₃₀₀ = Dynamic penetration resistance for 300mm penetration (ie: sum of 3 consecutive DPN₁₀₀ values), starting at the depth given. * Equivalent SPT N-values (for 300mm penetration) assumed to approximate the DPN₃₀₀ values for dynamic probe "super-heavy" test (DPSH). For dynamic probe "heavy" test (DPH), equivalent SPT N-values estimated using the theoretical relationship DPN₃₀₀ = 1.5 SPT-N. [see Card,G.B., Roche,D.P. & Herbert,S.M., in Geol. Soc. Special Publication No 6, Field Testing in Engineering Geology (1990)]. SPT values are estimated and are for general guidance only.