

RE-DEVELOPMENT OF EXISTING BUILDINGS AND LAND AT THE DOG & PARTRIDGE, CHIPPING, LANCS.

FRA & DRAINAGE STRATEGY

ISSUE 2 6/27/2023 C-1050

Document Control Sheet

Re-development of Existing Buildings and land at the Dog & Partridge, Chipping, Preston, Lancs.

Flood Risk Assessment and Drainage Strategy Report

Job C1050	Date 20th April 2023	lssue 1	Сору
C1050	27 th June 2023	2	
Originator	·		
Checker			
Approver.			
	. All rights rese	rved.	
		uced by any means without prior writh ror, please destroy all copies in your p	
This report h	has been prepared for the exclusiv	e use of the commissioning party and	d unless otherwise agreed in writing by
provided.		•	nts of the report. No liability is accepted by for which it was originally prepared and
diligence in t	ated that no independent verification		using due skill, care and neir accuracy. It should be noted that and it is ation supplied to

Contents

- 1.0 Introduction
- 2.0 Description of existing site
- 3.0 Proposals for Development
- 4.0 Assessment of Flood risks
- 5.0 Drainage Strategy
- 6.0 Maintenance

Figures, Plans and Calculations

1. Introduction

- 1.1. have been commissioned by prepare a Flood Risk Assessment and Drainage Strategy Report, in support of a redevelopment scheme, located on land at the former Dog & Partridge Inn, Hesketh Lane, Chipping, Preston.
- 1.2. The redevelopment is to convert the existing buildings to residential apartments and construct four new detached dwellings, along with access, parking and landscaping.
- 1.3. The site comprises an existing public house with residential facilities, car parking and additional out-buildings. The location of the site is illustrated in **Figure 1** appended to this report.
- *1.4.* It is understood that permission is being sought to reconfigure the existing buildings, reconfigure the existing parking areas and construct four detached single storey dwellings, with associated access, driveways, landscaping and parking facilities.

2. Description of the existing site.

- 2.1. The site lies on the north side of Hesketh Lane, Chipping, opposite the junction with Judd Holmes Lane. The site is bounded to the west and east by a mix of commercial and residential properties.
- 2.2. To the north the site is bounded by agricultural land. To the south the boundary is to Hesketh Lane, Judd Holmes Lane and further agricultural properties. To the east and west the property is bounded by a mix of residential and agricultural properties.
- 2.3. The site is a former public house and was employed as such for many years. More recently the property has been partially used as a residence. The principal buildings are situated close to Hesketh Lane and the site is accessed at its southeast corner, from Hesketh Lane. The existing access is onto the car park area and leads to the garden areas to the rear of the main buildings. There are some small outbuildings and workshops adjacent to the eastern site boundary.
- 2.4. Presently the site is serviced by systems of foul and surface water drains. These systems are primarily separate with the foul effluent running to an existing sewage treatment facility located in the northwest corner of the site. Surface water run-off is directed to an existing surface water drain which passes through the northern portion of the site. This drain runs from west to east through the site and towards Back Lane. The route of the surface water drain is indicated in Blue on the location plan attached as **Figure 1** of this report.
- 2.5. After passing partially through the adjacent property to the east the drain turns to run northeast, roughly parallel with Back Lane. This drain is 300mm diameter and has good falls and capacity and is maintained in good condition by the property owners who make use of the drain. The treated effluent discharged from the treatment plant is discharged to this surface water drain. The existing site layout and drainage is shown on **Figure 2** of this report.
- 2.6. Consultation of the British Geological Society maps shows the site to have a superficial Geology of "Till Devensian, Diamicton clays" that overly bedrock of "Hodder Mudstone Formation Mudstone". Further consultation of the, Cranfield Institute, Soilscapes maps show the soils across the site to be "Slowly permeable, seasonally wet, acid, loamy and clayey soils" with impeded drainage.

- 2.7. These details are corroborated by site investigation works by others and confirm that infiltration methods will not be suitable for disposal of surface water run-off from the development. The redeveloped site will continue to drain to the existing surface water drain as has been the case for several decades.
- 2.8. A series of storm flow calculations has been completed to determine the present rates of discharge from the site into the surface water drain. These calculations are contained in Appendix 1 of this report. The rates of discharge are as follows; 17.4 l/s during a 1 Yr event; 22.5 l/s during a 2 Yr event; 47.7 l/s during a 30 Yr event and 61.5 l/s during a 100 Yr event. A plan showing the existing catchment zones is attached as Figure 3 of this report.
- 2.9. The site is presently developed and occupied and can be classed as Brownfield. It is a requirement of redevelopment that surface water discharge rates from the site be reduced substantially, by approximately 50% and as close to Greenfield rates as is practical. The proposed re-developed site layout is illustrated on **Figure 4** of this report.

3. Proposals for Development

- 3.1. The development of the site will consist of the clearance of the existing out-buildings, rough grass, debris and some existing hardstanding areas. Followed by the diversion of the existing surface water drain to allow the construction of the new detached dwellings. The conversion of the existing pub buildings to residential use along with associated access road, driveways and gardens.
- 3.2. In order to create space for the new detached dwellings it will be necessary to construct a short diversion of part of the existing surface water drain. It will also be necessary to remove the existing wastewater treatment facility as this is not of sufficient capacity or effectiveness to serve the re-developed site. The facility is also below the footprint of the proposed dwellings. Eventually, the majority of the existing foul drainage will be removed and replaced by new systems and a new treatment plant. A plan showing the extent of the diversion and removal of existing drainage is attached as **Figure 5** of this report.
- 3.3. As illustrated, the existing surface water drain crossing the site will be diverted around the new dwellings by means of two new manhole chambers. A slow 45° bend will also be introduced between the new chambers to further relax the line of the new drain. Details of the internal layouts of the new chambers are included in **Figure 6** of this report.
- 3.4. The foul drainage for the re-development will be provided by a new system of drains that will outfall to a new waste water treatment plant. Treated clean run-off from this new plant will discharge into the new surface water drainage system, downstream of the new flow control chamber, before all flows discharge into the existing surface water drain and leave the site to eventually discharge to the local watercourse. A plan showing the proposed drainage layout is attached as **Figure 6** of this report.
- 3.5. The surface water run-off from the new and refurbished buildings, car park, access road, parking and driveway areas will be collected in a fully separate system of drains and will pass through a Hydro-brake control system before final discharge to the surface water drain. The new Hydro-brake unit will be set up to control flows from the site to much reduced rates compared to present day values. The Hydro-brake used in the flow simulation calculations will have a design head of 1.0m, a design flow of 20.0 l/s and an orifice diameter of 198mm.

- 3.6. As flow rates will be restricted, a surface water attenuation tank is included in the new drainage system, set just upstream of the Hydro-brake chamber. This tank will have a storage capacity of 18.24 CuM. A series of storm simulation calculations has been completed to illustrate the operation of the proposed system during storm events from 1 in 1 Yr up to 1 in 100 Yr events. These calculations are inclusive of a climate change allowance of 40% rainfall increase. As virtually the whole of the site will be occupied by the new buildings, access and car parking there has been only a small allowance of 5% required for urban creep.
- 3.7. The series of simulation calculations cover storms up to the 1 in 100 Yr event of 600 minutes duration. The calculations show that no surface flooding or exceedance flows will be generated thus avoiding the occurrence of flooding on the site or to surrounding property. A plan showing the new surface water catchment zones is attached as **Figure** 7 of this report. Copies of a selection of the calculations are contained in **Appendix 2** of this report.
- 3.8. The calculations show that the maximum rate of discharge of surface water will be 8.8 l/s in a 1 in 1 Yr event; 11.5 l/s in a 1 in 2 Yr event; 19.8 l/s in a 1 in 30 Yr event and 19.8 l/s in a 1 in 100 Yr event. No surface flooding or exceedance flows will occur during the simulated storms.
- 3.9. These figures show that flows will be reduced in all storm events, with flows reduced from 17.4 to 8.8 l/s during a 1 Yr event (50% reduced); from 22.5 to 11.5 l/s during a 2 Yr event (49% reduced); from 47.7 to 19.8 l/s during a 30 Yr event (58% reduced) and from 61.5 to 19.8 l/s during a 100 Yr event (68% reduced). These substantial reductions in discharge will provide relief against flooding to the downstream drainage system and watercourse network.

4. Assessment of Flooding Risks

- 4.1. The Flood Map for Planning. The site, as illustrated in Figure 8 of this report, an extract from the Gov.uk "Flood map for Planning", falls wholly within Flood Zone 1.
- 4.2. Flooding from Overland Flows. The site falls gently from west to east. The development of the site will include the collection and conveyance of the rainfall off the new hard surfaces, through a flow control and attenuation system, to the existing outfall drainage system. The remainder of the site will be laid to grass and landscaped areas that will generate minimal overland flows. All new dwellings will be constructed at a minimum of 150mm above the surrounding ground to stop any possible inundation of the properties. The risk of flooding from this source can be considered to be low.
- 4.3. **Flooding from Ground Water.** Groundwater flooding occurs when water levels in the ground rise above the surface elevation. The land ls not in an n area indicated to be at risk of ground water emergence or flooding. The risk of flooding from this source can be considered to be low.
- 4.4. **Flooding from Sewers.** There are no foul or surface water sewers crossing through the site or near the vicinity of the site. The risk of flooding from this source can be considered to be very low.
- 4.5. Flooding from Reservoirs, Canals or other Infrastructure. Consultation of the Environment Agency flood mapping systems show that there are no reservoirs, canals or infrastructure close to the site and the risk of flooding from such sources can be considered to be very low. A copy of the relevant map extract is attached as Figure 9 of this report.
- 4.6. **Flooding from Rivers or the Sea.** The site, as noted in 4.1 above, is located in Flood Zone 1 as shown on an extract taken from the plans provided on the Gov.UK website flooding information pages and attached as **Figure 8** of this report.
- 4.7. Flooding from Surface Water. Further consultation of the Gov.uk flood information mapping shows that the site is not considered to be in an area at risk of flooding due to surface water. A copy of the map extract is attached as Figure 10 of this report. This plan shows a slight possibility that highway run-off may pass along Hesketh Lane from west to east and a small amount of these flows could run onto the site through the access way. To counteract this risk, a new channel drain will be introduced at the site entrance to cut off such flows and avoid water entering the site. The risk of flooding from this source can be considered to be very low.

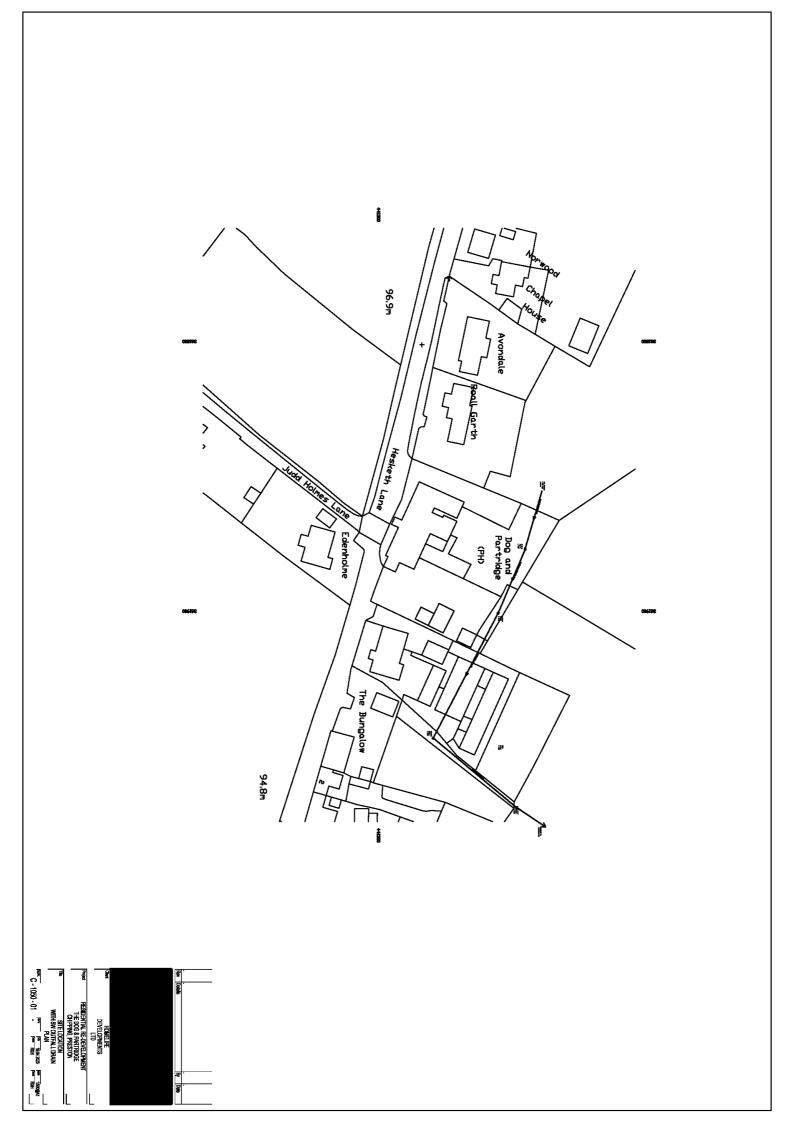
4.8. **Flood Mitigation Measures.** Taking into account the lack of any residual risk of flooding occurring during a major storm event, mitigation measures will not be necessary on this development.

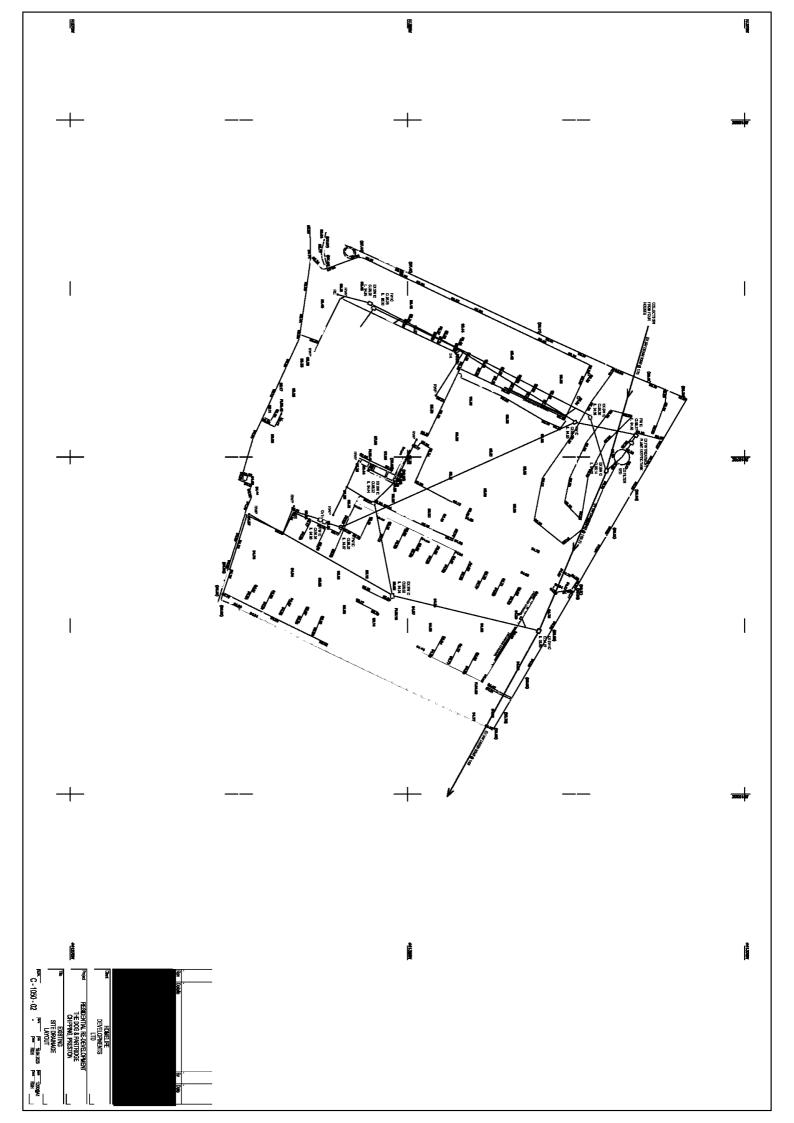
5. Maintenance

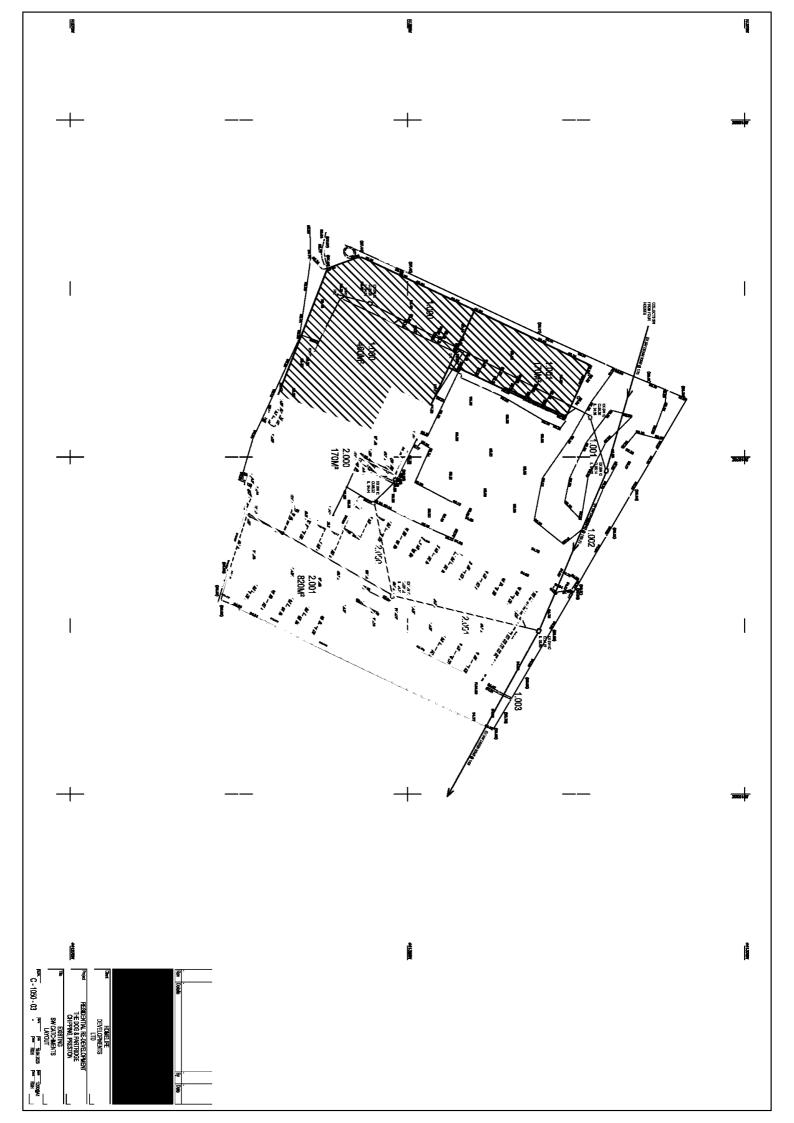
The developed site will remain in private ownership and will be the responsibility of the owners/occupiers of the new buildings. On completion of the development a suitably qualified Management Company will be contracted to carry out all necessary inspections, repairs and maintenance of the communal areas and facilities on the development.

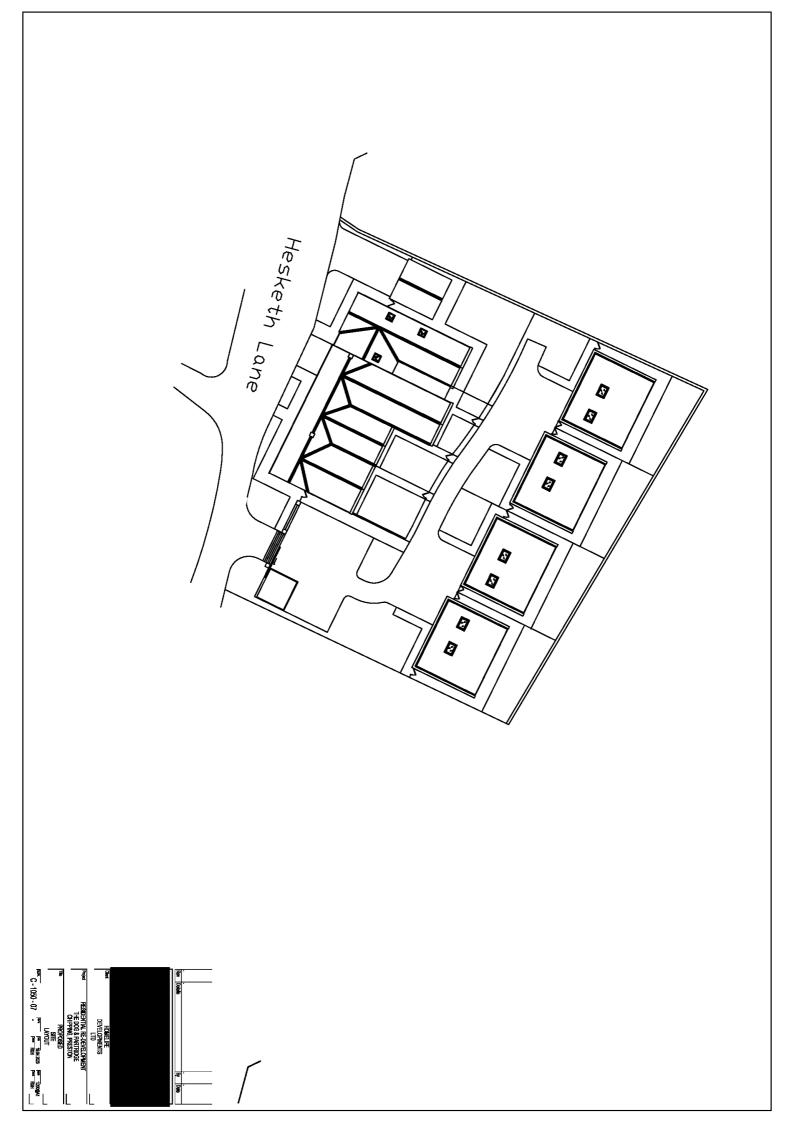
All new owners and tenants will be required to enter into a legal agreement with the Management Company. Annual fees charged to the owners and occupants will fund the works carried out by the Management Company.

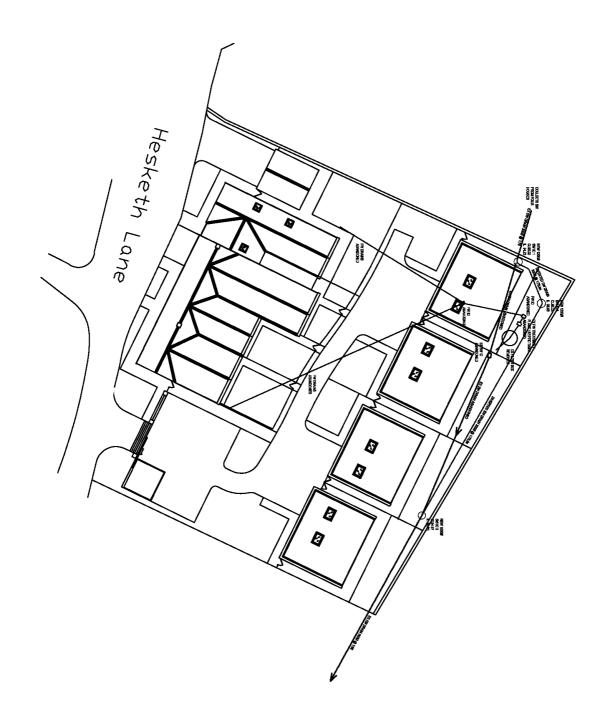
The drains, channels, attenuation tank, Hydro-brake and chambers will be inspected at six monthly intervals and will be cleaned and repaired as necessary to maintain a fully operational system of drainage and roadways.

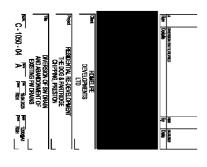

The sewage treatment plant will be inspected, cleaned and desludged at regular intervals as dictated by the manufacturer's guidance. Work will be carried out through the Management Company by the manufacturer or suitably qualified maintenance engineers.

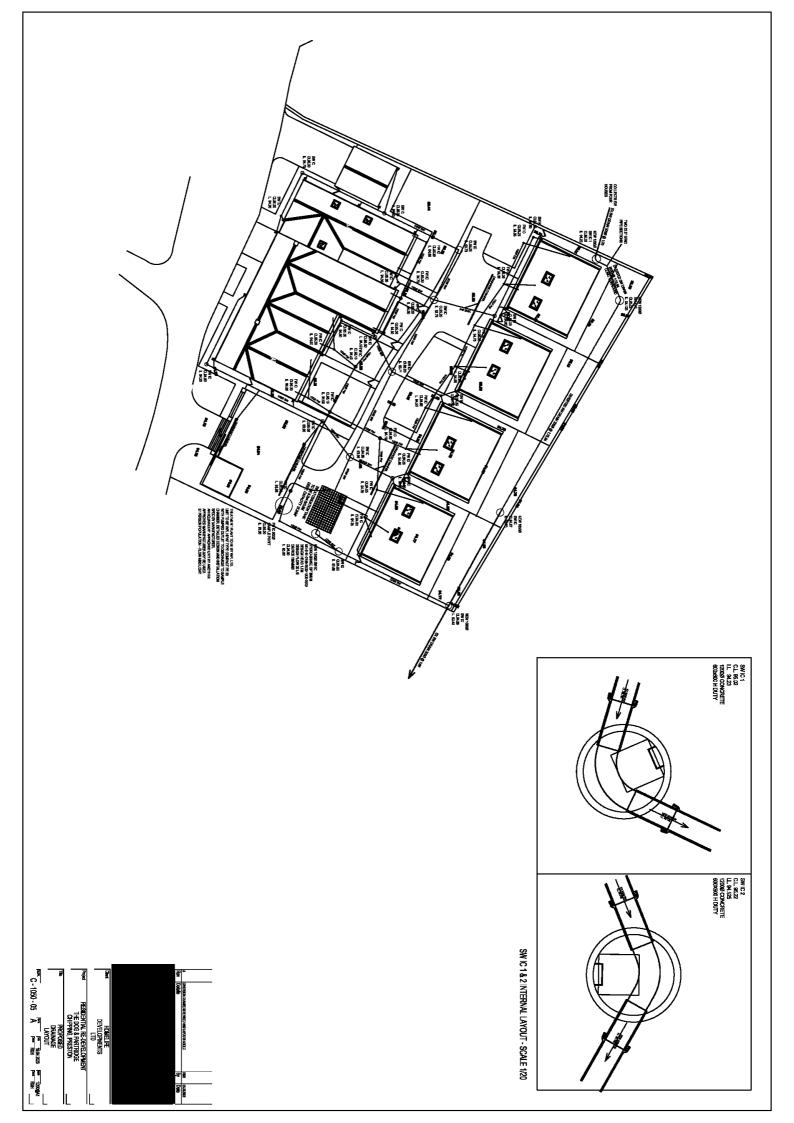

All maintenance and repair costs will be borne by the owners.

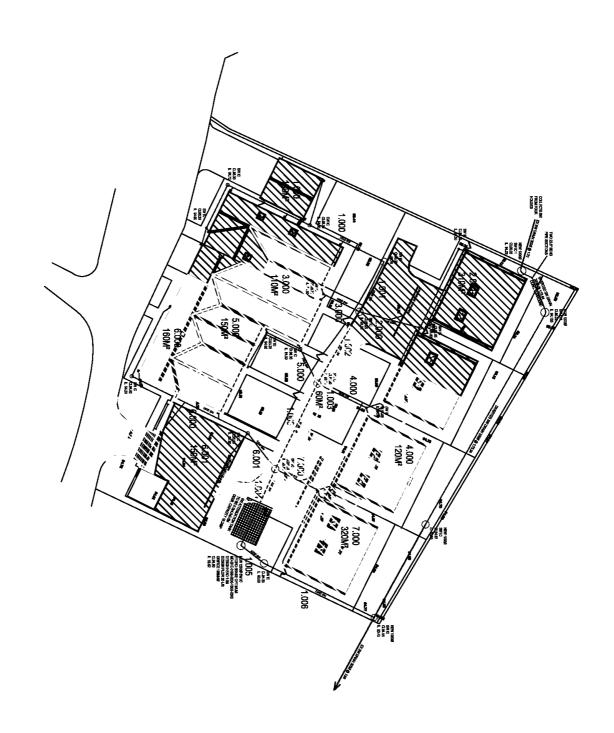

Figures;

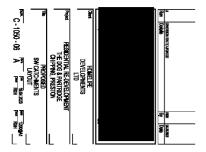

- Figure 1 Site Location Plan Figure 2 – Existing Site and Drainage Plan Figure 3 – Existing Catchment Layout Figure 4 – Proposed Development Layout Figure 5 – SW Diversion and Drain Removal Plan Figure 6 – Proposed drainage Layout Figure 7 – Proposed SW Catchment Plan Figure 8 – Extract from Flood Map for Planning Figure 9 – Extract of Flood Map for Reservoir Failure
- Figure 10 Extract of Flood Map for Surface Water


Appendix 1 – Existing SW Run-off Simulation Calcs Appendix 2 – Proposed Surface Water Run-off Calculations









Flood map for planning

Your reference <Unspecified>

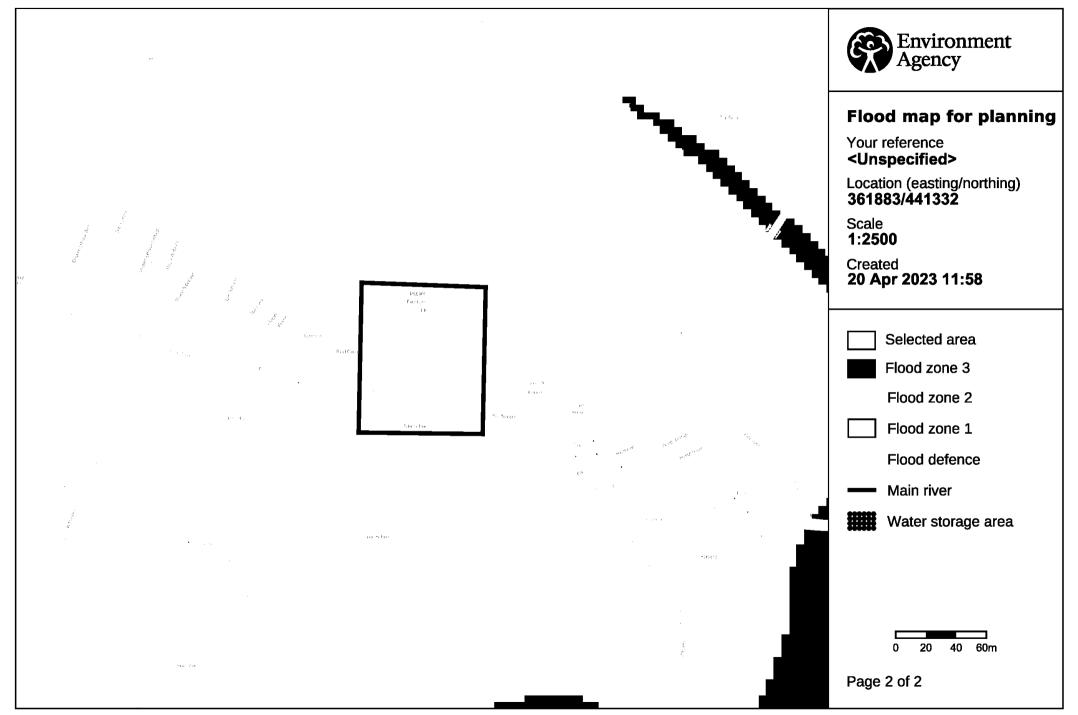
Location (easting/northing) 361883/441332

Created **20 Apr 2023 11:58**

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Cookies on Check your long term flood risk

We use analytics cookies to help understand how users use our service.

View cookie preferences (/cookies)

Learn more about this area's flood risk

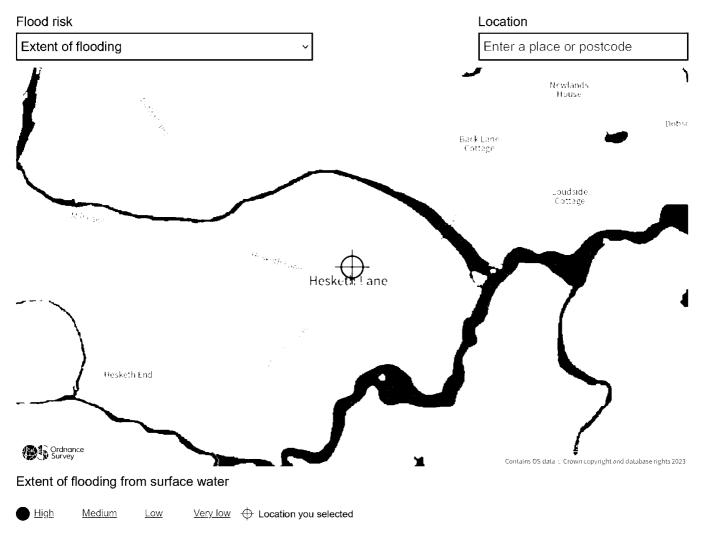
Select the type of flood risk information you're interested in. The map will then update.

Flood risk		Location	l	
Extent of flooding	~	Enter a	place or postcode	
t.			Newlands House	
		Back Lane Cottage		Dobsr
$M(h)_{1,AB}$,	Loudside Cottage	
	Hesketh Lane			
	e e e e e e e e e e e e e e e e e e e			
Hesketh End				
Crdnance Survey		Contair	is OS data 1. Crown copyright and datab	ase rights 2023

Maximum extent of flooding from reservoirs:

when river levels are normal i when there is also flooding from rivers i Location you selected

View the flood risk information for another location (/postcode)


Cookies on Check your long term flood risk

We use analytics cookies to help understand how users use our service.

View cookie preferences (/cookies)

Learn more about this area's flood risk

Select the type of flood risk information you're interested in. The map will then update.

View the flood risk information for another location (/postcode)

Land at former Dog & Partridge, Hesketh Lane, Chipping, Preston. Appendix 1

Existing SW Run-off Simulation Calculations

											· -	
								<u> </u>	· •		Pa	ge 1
						& Partr			pping	Γ		
						₩ Run-c		ns			٦	<u> </u>
						1 Yr 5						\mathcal{O}
ate 19.0	4.2023				Desig	gned by	7					
ile D&P	EX SW.	MDX			Checl	ced by						
icro Dra	inage				Netwo	ork 201	4.1				•	
	ST	ORM SE			by the Design					<u>letho</u>	d	
	PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1		k (mm)	HYD SECT	DIA (mm)	
	1 000	36.800	0 500	62.4	0.046	5.00		0 0	0.600	0	150	
		8.200							0.600	0	150	
		25.810				0.00			0.600	0	300	
											<u> </u>	
		14.080 22.340			0.017	5.00			0.600	0	150	
	2.001	22.340	0.310	12.1	0.082	0.00		0.0	0.600	0	225	
	1.003	20.000	0.294	68.0	0.000	0.00		0.0	0.600	o	300	
				Netv	work Re	sults	Table					
PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	ΣI. (h		Σ Base ow (l/s)			Flow L/s)		Cap (1/s)	Flow (l/s)
1.000	0.00		94.95		.046	0.0				1.28		0.0
1.001	0.00		94.360		.063	0.0				1.54		0.0
1.002	0.00	5.80	94.020) ()	0.063	0.0	0.0		0.0	1.89	133.2	0.0
2.000	0.00	5.15	94.44	0 0	.017	0.0	0.0		0.0	1.52	26.9	0.0
2.001	0.00	5.40	94.040	0 0	.099	0.0	0.0		0.0	1.54	61.3	0.0
1.003	0.00	5.97	93.65	0 0	.162	0.0	0.0		0.0	1.91	135.0	0.0
		F٣	ee Flo	owina	Outfa	11 Deta	ails fo	or s	Storm			
		Outfall		:fall		el I. L		Min	D,1	L W		
		pe Numb		ame	(m)	(m			el (mm)	
		1.0	03 EXS	VDRAIN	94.8	00 93	.356	93.3	56 100	0 (0	
			Sim	ulati	ion Cri	teria	for St	orm				
Manh		Hot Hot Star	uction Start rt Leve	Factor (mins) 1 (mm)	r 1.000) 0	Additic	D Facto	w - r *	% of ⊺	otal l la Stor .me (mi	Flow 0 rage 2 ins) 1	.000
	N	lumber o	f Onli	ne Con	raphs 0 trols 0 trols 0	Number		-				
			S	ynthe	tic Ra	infall	Detai.	ls				
		R	ainfal	l Mode	l FSR R	eturn Po	eriod (y	year	s) 1			

		Page 2
	Dog & Partridge, Chipping	
	EX SW Run-off Sims	Mr.
	1 in 1 Yr Storms	
Date 19.04.2023	Designed by	
File D&P EX SW.MDX	Checked by	رز
Micro Drainage	Network 2014.1	
Synt	hetic Rainfall Details	
Region Engla	nd and Wales Cv (Summer) 0.750	
M5-60 (mm)	19.000 Cv (Winter) 0.840 0.300 Storm Duration (mins) 15	
M5-60 (mm) Ratio R Profile Type	Winter	
	nd and Wales Cv (Summer) 0.750 19.000 Cv (Winter) 0.840 0.300 Storm Duration (mins) 15 Winter	
	982-2014 XP Solutions	

					_	-	, Chippi	ng	Page 3
				EX	SW Run	-off Sa	ims		L'un
				1 :	in 1 Yr	Storm	S		
Date 19.	04.2023	3		De	signed	by			
'ile D&P	EX SW	.MDX		Che	ecked b	У			
licro Dr	ainage			Ne	twork 2	014.1			
	Sumr	nary d	of Resu	lts for 1	5 minut	e 1 ye	ar Winte	er (S	torm)
	Ma	argin 1	or Floo	d Risk Warn Analysis DT		Fine :			
			Water	Surcharged	Flooded			Pipe	
		US/MH	Level	Depth			Overflow		
	PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
	1.000	1	95.001	-0.099	0.000	0.25	0.0	5.4	OK
	1.001	2	94.416	-0.094	0.000		0.0		
	1.002		94.067		0.000		0.0		
	2.000		94.469		0.000		0.0		
	2.001		94.106		0.000		0.0		
	1.003	6	93.727	-0.223	0.000	0.15	0.0	17.4	OK

		Page 1
	Dog & Partridge, Chipping	
	EX SW Run-off Sims	Mr.
	1 in 2 Yr to 100 Yr Storms	
Date 19.04.2023	Designed by	
File D&P EX SW.MDX	Checked by	
Micro Drainage	Network 2014.1	

Time Area Diagram for Storm

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.128	4-8	0.034

Total Area Contributing (ha) = 0.162

Total Pipe Volume (m³) = 5.170

											Pa	ge 2	
					Dog 8	Partr	idge,	Chi	pping	ſ			_
					-	∛ Run-o	-		-		14		
					1 in	2 Yr t	o 100	Yr	Storm	s		-7	٦
ate 19.0	04.2023	;			Desid	ned by							
ile D&P	EX SW.	MDX				ced by							رلي .
icro Dra	ainage					ork 201	4.1						
	ST	ORM SE	WER DE	ESIGN	by th	e Modif	ied R	atio	onal N	letho	d		
			Netw	work 1	Design	Table	for S	torr	n				
	PN	Length (m)		Slope (1:X)	I.Area (ha)		Base Flow (]	-	k (mm)	HYD SECT	DIA (mm)		
	1.000	36.800	0.590	62.4	0.046	5.00		0.0	0.600	0	150		
		8.200							0.600	-	150		
	1.002	25.810	0.370	69.8	0.000	0.00		0.0	0.600	0	300		
	2 000	14.080	0.320	44 O	0.017	5.00		0 0	0.600	o	150		
		22.340			0.082	0.00			0.600	0			
	1 000	20 000	0 004	<u> </u>	0 000	0.00		0 0	0 600	-	200		
	1.003	20.000	0.294	68.U	0.000	0.00		0.0	0.600	0	300		
				Netw	ork Re	sults	Table						
PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	ΣΙ (h		Σ Base ow (l/s)			Flow L/s)		Cap (1/s)	Flow (l/s)	
1.000	0.00		94.950		.046	0.0				1.28		0.0	
1.001	0.00		94.360		.063	0.0				1.54			
1.002	0.00	5.80	94.02(J U	.063	0.0	0.0		0.0	1.89	133.2	0.0	
2.000	0.00	5.15	94.440	0 0	.017	0.0	0.0		0.0	1.52	26.9	0.0	
2.001	0.00	5.40	94.040	0 0	.099	0.0	0.0		0.0	1.54	61.3	0.0	
1.003	0.00	5.97	93.650	0 0	.162	0.0	0.0		0.0	1.91	135.0	0.0	
		Fr	ee Flo	owing	Outfa	ll Deta	ils f	or S	Storm				
		Outfall		fall		el I. Le	_	Min	D,I el (mm				
	FI	pe Numb	er n	ame	(m)	(m)	, 1.	Lev (m)	ет (шш	.) (mm)			
		1.0	03 EXSW	VDRAIN	94.8	00 93.	356	93.3	56 100	0 ()		
			Sim	ulati	on Cri	teria	for St	orm					
	.					-	1 6					000	
		umetric eal Redu				Fou Additio	l Sewaç nal Flo	-					
			Start				D Facto						
		Hot Star		• •			- ·		Run Ti			1440	
Manl	nole Hea	a⊥oss Co	beii (G	⊥obal)	0.500		Out	put	Interv	ra⊥ (m.	ins)	1	
	ľ		f Onlir	ne Con	trols 0	Number Number		-					
	ЫЦ				CIUIS U								
			.St	vnthe	tic Ra	infall	Detai	ls					
			<u>S</u> 3	ynthe	tic Ra	infall	Detai	ls					

		Page 3
	Dog & Partridge, Chipping	
	EX SW Run-off Sims	4
	1 in 2 Yr to 100 Yr Storms	
Date 19.04.2023	Designed by	
File D&P EX SW.MDX	Checked by	
Micro Drainage	Network 2014.1	

Synthetic Rainfall Details

Region	England and Wales	Cv (Summer)	0.750
M5-60 (mm)	19.000	Cv (Winter)	0.840
Ratio R	0.300	Storm Duration (mins)	15
Profile Type	Winter		

				D -	~ []	+	<u>Chi</u>	n <i>c</i>	Pa	ge 4
					g & Par SW Run		, Chippi	ng		
							ums O Yr Sto	~~~ 0		L.
ate 19.04	2023	2			signed		U II SUU	1 III S		
lle D&P E					ecked b	_				
cro Drai		. FIDA			twork 2					
	Summ	nary c	of Resu	lts for 1	5 minut	е 2 уе	ar Winte	er (St	torm)	
	Ma	rgin f	or Floo	d Risk Warn Analysis DT		Fine				
			Water	Surcharged	Flooded			Pipe		
		US/MH	Level	Depth			Overflow	Flow		
	PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	
	1.000	1	95.009	-0.091	0.000	0.32	0.0	7.0	ок	
	1.001		94.425		0.000		0.0	9.2		
	1.002	3	94.075		0.000			9.2	OK	
	2.000		94.473		0.000					
	2.001		94.115		0.000					
	1.003	6	93.739	-0.211	0.000	0.19	0.0	22.5	OK	

		Page 1
	Dog & Partridge, Chipping	
	EX SW Run-off Sims	14 L
	1 in 2 Yr to 100 Yr Storms	
Date 19.04.2023	Designed by	1
File D&P EX SW.MDX	Checked by	
Micro Drainage	Network 2014.1	•

Time Area Diagram for Storm

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.128	4-8	0.034

Total Area Contributing (ha) = 0.162

Total Pipe Volume (m³) = 5.170

										Pa	ge 2
					-		idge, Ch	ipping	3	<u> </u>	
					_		off Sims			٦	\sim m
Date 19.04	1 0000						to 100 Yr	Stor	ns		\smile
File D&P E						gned by ked by				· · ·	
Micro Drai		MDX				ork 201	4 1			L	. خانم
	mage				neew	01R 201					
	ST	ORM SE	WER DI	ESIGN	by th	e Modi:	fied Rati	onal 1	Metho	d	
			Net	work	Design	Table	for Stor	m			
	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	
		(m)	(m)	(1:X)	(ha)		Flow (1/s)		SECT	(mm)	
	1.000	36.800	0.590	62.4	0.046	5.00	0.0	0.600	0	150	
		8.200						0.600		150	
	1.002	25.810	0.370	69.8	0.000	0.00	0.0	0.600	0	300	
	2,000	14.080	0.320	44.0	0.017	5.00	0.0	0.600	0	150	
		22.340		72.1				0.600		225	
	1.003	20.000	0.294	68.0	0.000	0.00	0.0	0.600	0	300	
				Netu	vork Be	esults	Table				
	_								_		_
PN (:	Rain mm/hr)	T.C. (mins)	US/II (m)	.ΣΙ. (h		Σ Base .ow (1/s)	Foul Ad) (1/s) (d Flow (1/s)		Cap (1/s)	Flow (l/s)
1.000	0.00		94.95		.046	0.0			1.28		0.0
1.001	0.00 0.00		94.36		.063 .063	0.0		0.0 0.0		27.1 133.2	0.0 0.0
1.002	0.00	5.00	J4.02	0 0	.005	0.	0.0	0.0	1.05	100.2	0.0
2.000	0.00		94.44		.017	0.0		0.0			
2.001	0.00	5.40	94.04	0 0	.099	0.0	0.0	0.0	1.54	61.3	0.0
1.003	0.00	5.97	93.65	0 0	.162	0.0	0.0	0.0	1.91	135.0	0.0
		Fr	ee Flo	owing	Outfa	ll Deta	ails for	Storm			
		Outfall	Out	tfall	C. Lev	el I. L	evel Min	. D ,:	L W		
	Pi	pe Numb	er N	lame	(m)	(11	i) I.Le [.] (m)	vel (mm	n) (mm)	
		1.0	03 EXS	WDRAIN	94.8	00 93	.356 93.3	356 100	0	0	
			Sim	ulati	ion Cri	iteria	for Stor	n			
						_	1 0			1 /	
		umetric eal Redu					ıl Sewage p onal Flow -				
			Start				DD Factor *				
Manha		Hot Star					0+ +	Run T:			1440 1
Manno	те неа	lloss Co	berr (G	-topat,) 0.500		Output	Interv	var (m	ins)	T
	N	umber o	f Onli	ne Con	-	Number	of Storage of Time/An				
			S	ynthe	tic Ra	infall	Details				
		Ra	ainfall	Mode:	l FSR R	eturn Pe	eriod (year	s) 30			

		Page 3
	Dog & Partridge, Chipping	
	EX SW Run-off Sims	<u>Γ</u> Υ.
	1 in 2 Yr to 100 Yr Storms	
Date 19.04.2023		
	Designed by	
File D&P EX SW.MDX	Checked by	
Micro Drainage	Network 2014.1	
Svnt	hetic Rainfall Details	
	nd and Wales Cv (Summer) 0.750	
M5-60 (mm) Ratio R	19.000 Cv (Winter) 0.840 0.300 Storm Duration (mins) 15	
Profile Type		
PIOLITE TYPE	WINCEL	
	982-2014 XP Solutions	

							<u> </u>		Page 4
					log & Par	-		ng	1
					EX SW Run			~~~~	$\ \mathbf{v} \ $
ato 10	.04.2023	3			l in 2 Yr Designed		U IL STO)T IIIS	
	P EX SW				Checked b	_			
	rainage				Network 2				
	Summ	arv o	f Resu	lts for	15 minut	e 30 v	ear Wint	er (S	Storm)
					rning (mm)				
		2		Analysi	s Timestep DTS Status	Fine		tatus	OFF
					d Flooded			Pipe	
	PN	US/MH Name	Level (m)	Depth (m)	Volume (m³)	Flow / Cap.	Overflow (1/s)		Status
	1.000	1	95.036	-0.06	54 0.000	0.61	0.0	13.3	OK
	1.001	2	94.461	-0.04	19 0.000	0.77	0.0	18.1	OK
	1.002		94.099					18.2	
	2.000		94.486			0.20		5.0	
	2.001 1.003		94.159 93.785		0.000 0.000			30.7 47.7	
	1.005	0	55.705	0.10	0.000	0.41	0.0	· · · · ·	ÖK

		Page 1
	Dog & Partridge, Chipping	
	EX SW Run-off Sims	14~ I
	1 in 2 Yr to 100 Yr Storms	
Date 19.04.2023	Designed by	
File D&P EX SW.MDX	Checked by	
Micro Drainage	Network 2014.1	

Time Area Diagram for Storm

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.128	4-8	0.034

Total Area Contributing (ha) = 0.162

Total Pipe Volume (m³) = 5.170

										Pa	.ge 2
							idge, (g	6	
							off Sims			٦	Y m
							to 100 Y	(r Stor	ms		\bigcirc
Date 19.0						gned by	/				
File D&P		MDX				ked by					
Micro Dra	ainage				Netw	ork 201	.4.1				
	ST	ORM SE	WER DI	ESTGN	bv th	e Modi	fied Rat	tional	Metho	d	
	<u>.</u>	0101 01					for St			<u> </u>	
		•	m _11	<u> </u>	.		D				
	PN	Length (m)	fall (m)	(1:X)	I.Area (ha)		Base Flow (1/	k s) (mm)	HYD SECT	DIA (mm)	
	1,000	36.800	0.590	62.4	0.046	5.00	0	.0 0.600	0	150	
		8.200						.0 0.600			
	1.002	25.810	0.370	69.8	0.000	0.00	0	.0 0.600	0	300	
	2 000	14.080	0 320	44 0	0.017	5.00	0	.0 0.600	0	150	
		22.340						.0 0.600			
		~~ ~~~		~ ~ ~						• • • •	
	1.003	20.000	0.294	68.0	0.000	0.00	0	.0 0.600	0	300	
				Net	work Re	esults	Table				
PN	Rain (mm/hr)	T.C. (mins)	•	. ΣΙ. (1		Σ Base .ow (1/s)		Add Flow (1/s)		Cap (1/s)	Flow (1/s)
1.000	0.00	5 48	94.95	0 0	0.046	0.0	0.0	0.0	1.28	22.5	0.0
1.000	0.00		94.36		0.063	0.0			1.54		
1.002	0.00	5.80	94.02	0 0	0.063	0.0	0.0	0.0	1.89	133.2	0.0
2.000	0.00	5 1 5	94.44	0 0	0.017	0.0	0.0	0.0	1.52	26.9	0.0
2.000	0.00		94.04).099	0.0		0.0			
4			00.65							405 0	
1.003	0.00	5.97	93.65	υι	0.162	0.0	0.0	0.0	1.91	135.0	0.0
		Fr	ee Fl	owing	Outfa	ll Deta	ails fo	r Storm			
		Outfall	Ou	tfall	C. Lev	el I. Le	avel M	in D,	L W		
	Pi	pe Numb	er N	lame	(m)	(m	•	Level (m)	
							(ш)			
		1.0	03 EXS	WDRAIN	94.8	00 93	.356 93	3.356 100	00	0	
			Sim	nulat:	ion Cr	iteria	for Sto	orm			
	Vol	umetric	Runoff	Coef	f 0,840	Fou	ıl Sewaqe	per hec	tare (1/s) 0	.000
							nal Flow	-			
			Start		-	MAD	D Factor	-		2	
Manh	ole Hea	Hot Star dloss Co		•			Outp	Run T ut Inter	ime (m val (m		1440 1
110111	iore neu	41000 0		LODUT	, 0.000		oucp	ut incoi	VGAT (111	,	-
	N		f Onli	ne Cor	trols (Number	of Stora of Time/				
			S	ynthe	tic Ra	infall	Detail	S			
		Ra	infall	Model	. FSR Re	eturn Pe	riod (yea	ars) 100			

		Page 3
	Dog & Partridge, Chipping	
	EX SW Run-off Sims	<u> </u> [4
	1 in 2 Yr to 100 Yr Storms	
Date 19.04.2023	Designed by	\dashv
Tile D&P EX SW.MDX		···· · · · · · · · · ·
	Checked by Network 2014.1	
licro Drainage	Network 2014.1	
Synth	netic Rainfall Details	
Region Englan	d and Wales Cv (Summer) 0.750	
	19.000 Cv (Winter) 0.840	
Ratio R	0.300 Storm Duration (mins) 15	
Profile Type	Winter	

									Page 4
					Dog & Par			.ng	<u>ــــــــــــــــــــــــــــــــــــ</u>
					EX SW Run				$\ \mathcal{V}_{\mathcal{V}}\ $
					l in 2 Yr		0 Yr Sto	rms	
	9.04.202				Designed				
	&P EX SW				Checked b	_			·····
licro	Drainage			1	Network 2	014.1			
	Summa	ary of	Resul	ts for 2	15 minute	100 y	year Wint	er (Storm)
	Ma	argin f	or Floo	Analysi	rning (mm) s Timestep DTS Status				
		us/Mh	Water Level	Surcharge Depth	ad Flooded Volume	Flow /	Overflow	Pipe Flow	
	PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
	1.000	1	95.053	-0.04	17 0.000	0.79	0.0	17.1	ок
	1.001	2	94.484	-0.02	26 0.000	0.99	0.0	23.4	OK
	1.002		94.110			0.20			
	2.000		94.492					6.4	
	2.001		94.181		34 0.000				
	1.003	6	93.807	-0.14	13 0.000	0.52	0.0	61.5	OK
							ns		

Land at former Dog & Partridge, Hesketh Lane, Chipping, Preston.

Appendix 2

Proposed SW Run-off Simulation Calculations

											Pa	ge 1
					-	& Partr	-				<u> </u>	
					-	osed SW		lati	ons		٦	~ m
D 10.04	0000					1 Yr S						\bigcirc
Date 19.04.						gned by					· ·	سی بناڈ
File D&P NE Micro Drain		.MDX				ked by ork 201	1 1				<u> </u>	يلاليم.
MICIO DIAIN	aye				NECW	JIK 201	4.1					
	STO	ORM SE	WER DI	ESIGN	bv th	e Modif	fied Ra	atio	nal N	letho	d	
											_	
			Net	vork D	esign	Table	for St	torm	:			
	PN	Length (m)	Fall (m)	Slope : (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1		k (mm)	HYD SECT	DIA (mm)	
1	000	12,290	0 570	21.6	0.018	5.00			0.600	0	150	
		8.270			0.0010	0.00			0.600	0		
				10.0		5 00					4 5 0	
2	.000	9.280	0.700	13.3	0.031	5.00		0.0	0.600	0	150	
3	.000	5.960	0.600	9.9	0.011	5.00		0.0	0.600	0	150	
1	.002	12.350	0.040	308.8	0.000	0.00		0.0	0.600	o	300	
4	.000	8.090	0.540	15.0	0.012	5.00		0.0	0.600	o	150	
5	.000	5.720	0.640	8.9	0.015	5.00		0.0	0.600	o	150	
1	.003	14.120	0.050	282.4	0.006	0.00		0.0	0.600	0	300	
		19.160			0.016	5.00			0.600			
6	.001	6.700	0.090	74.4	0.015	0.00		0.0	0.600	0	150	
7	.000	7.040	0.190	37.1	0.032	5.00		0.0	0.600	0	150	
1	.004	12.420	0.040	310.5	0.000	0.00		0.0	0.600	0	300	
				Netwo	ork Re	esults	Table					
	ain	T.C.		ΣI.A		Σ Base	Foul			Vel	Cap	Flow
(111	m/hr)	(mins)	(m)	(ha	.) Fl	ow (1/s)	(l/s)	(1	/s)	(m/s)	(l/s)	(l/s)
1.000	0.00	5.09	94.500	0.	018	0.0	0.0		0.0	2.18	38.5	0.0
1.001	0.00	5.24	93.780	0.	018	0.0	0.0		0.0	0.94	66.6	0.0
2.000	0.00	5.06	94.600	0.	031	0.0	0.0		0.0	2.78	49.2	0.0
3.000	0.00	5.03	94.500	0.	011	0.0	0.0		0.0	3.22	56.8	0.0
1.002	0.00	5.47	93.75(0.	060	0.0	0.0		0.0	0.89	62.9	0.0
4.000	0.00	5.05	94.400	0.	012	0.0	0.0		0.0	2.62	46.2	0.0
5.000	0.00	5.03	94.500) 0.	015	0.0	0.0		0.0	3.39	59.9	0.0
1.003	0.00	5.72	93.71(093	0.0			0.0	0.93	65.8	0.0
6.000 6.001	0.00 0.00		94.200 93.900		016 031	0.0			0.0 0.0	1.26 1.17		0.0 0.0
7.000	0.00	5.07	94.000	0.	032	0.0	0.0		0.0	1.66	29.3	0.0
1.004	0.00	5.96	93.660	0.	156	0.0	0.0		0.0	0.89	62.7	0.0
				©1982-	-2014	XP Sol	utions					

										-	<i>~~</i> ^
							dae 0	hipping			ge 2
					-		_	ations		- IL	
					in 1					`	\sim
ate 19.0	14.2023				esigne						-
ile D&P					hecked	_					· · · · · · · · · · · · · · · · · · ·
icro Dra					etwork	-	1.1				c./
	_										
	ST	ORM SE						ational	Metho	d	
	PN	Length		ork Des lope I.1			bor St Base		HYD	DIA	
		(m)	(m) ((1:X) (1	ha) (mi		low (1				
				16.5 0 81.8 0		0.00		0.0 0.60 0.0 0.60			
				Networ	k Resu	lts T	able				
PN	Rain (mm/hr)	T.C. (mins)	•	Σ I.Are (ha)		ase (1/s)		Add Flow (1/s)	-	Cap (1/s)	Flow (l/s)
1.005 1.006	0.00		93.620 93.600			0.0 0.0	0.0		0.88 0.97		0.0
	Pi	Outfall		fall C. me	Level] (m)	I. Lev (m)		fin D, Level (m			
		-					((m)			
		1.0		RAIN S				3.500 12	00 0)	
			Simi	lation	Crite	rıa ı	or St	orm			
Manh	Ard J nole Head	eal Red Hot Hot Sta dloss C	uction H Start (rt Level oeff (G]	mins) (mm) obal) 0	.000 Add 0 0 .500	dition MADD	Sewago al Flor Facto: Out	put Inter	Total /ha Sto lime (m rval (m	Flow 0. rage 2. ins) 1 ins)	.000
Manh	Ard Jole Head Num Num	eal Red Hot Hot Sta dloss C ber of Tumber of	uction H Start (rt Level oeff (G] Input H of Onlin	actor 1 mins) (mm) obal) 0 ydrograp	.000 Add 0 .500 hs 0 Nu ls 1 Nu	dition MADD mber c	Sewago al Floo Facto: Outj of Stor	w - % of r * 10m³, Run 1	Total 'ha Sto Time (m cval (m ctures	Flow 0. rage 2. ins) 1 ins) 1	.000 .000 1440
Manh	Ard Jole Head Num Num	eal Red Hot Hot Sta dloss C ber of Tumber of	uction H Start (rt Level oeff (G] Input H of Onlin Offlin	'actor 1 mins) . (mm) .obal) 0 ydrograp e Contro	.000 Add 0 .500 hs 0 Nu ls 1 Nu ls 0	dition MADD mber c mber c	Sewago al Flor Facto: Outj of Stor of Time	w - % of r * 10m ³ , Run 7 put Inter rage Stru c/Area Di	Total 'ha Sto Time (m cval (m ctures	Flow 0. rage 2. ins) 1 ins) 1	.000 .000 1440
Manh	Aro nole Head Num N Nu	eal Red Hot Hot Sta: dloss C uber of Jumber of Rainfal Period M5-	uction H Start (rt Level coeff (G] Input H of Onlin Offlin <u>Sy</u> I Model (years)	actor 1 mins) . (mm) .obal) 0 ydrograp e Contro e Contro nthetic England	.000 Add 0 .500 hs 0 Nu ls 1 Nu ls 0 c Rainf	MADD MADD mber c fall I FSR 1 les 000 St	Sewagg al Flow Facto: Out] of Stor of Time Detail	w - % of r * 10m ³ , Run 7 put Inter rage Stru c/Area Di	Total (ha Sto Time (m rval (m ctures agrams Type T mmer) nter)	Flow 0. rage 2. ins) 1 ins) 1 0 Winter 0.750 0.840	.000 .000 1440
Manh	Aro nole Head Num N Nu	eal Red Hot Hot Sta: dloss C uber of Jumber of Rainfal Period M5-	uction H Start (rt Level oeff (G] Input H of Onlin Offlin <u>Sy</u> I Model (years) Region 60 (mm)	actor 1 mins) . (mm) .obal) 0 ydrograp e Contro e Contro nthetic England	.000 Add 0 .500 hs 0 Nu ls 1 Nu ls 0 c Rainf 1 and Wa 19.	MADD MADD mber c fall I FSR 1 les 000 St	Sewagg al Flow Facto: Out] of Stor of Time Detail	w - % of r * 10m ³ , Run ⁷ put Inter rage Stru e/Area Di L <u>S</u> Profile Cv (Su Cv (Wi	Total (ha Sto Time (m rval (m ctures agrams Type T mmer) nter)	Flow 0. rage 2. ins) 1 ins) 1 0 Winter 0.750 0.840	.000 .000 1440

													Page	e 3
						Dog &	Part	rido	e Ch	ippin	q			
						-	sed S				-		14	
							1 Yr						\parallel	\sim
ate 19.0	4.2023	3					ned b						-11	
ile D&P	NEW SV	W.MDX					.ed by							· · · · · · · ·
icro Dra							rk 20							
				0 1		n +	-1- 5	0	•					
			-	Uni	ine (Jontr	ols f	or 5	torm					
Hyd	lro-Bra	ake Op	timum®) Ma	nhol	e: 13	3, DS/	PN:	1.00	5, Vo	lume	(m ³): 2.	. 9
					Unit	Refere	ence MI)-She	-0198-	-2000-	1000-:	2000		
						Head						.000		
				Des		low (]				~		20.0		
						lush-E Object	flo™ tive N	Ninim	ise	-	alcul m sto			
						eter (rae ut	Jourd	510.	198		
				In		Level	• •				93	.620		
			Outlet H	-								225		
		Suggest	ed Manl	hole	Diam	eter	(mm)					1500		
			Cor	ntro	l Poi	nts	He	ad (1	1) Flo	w (1/s	3)			
		D	esign P	oint				1.00		19.				
						lush-F Kick-F		0.33		19. 17.				
		М	ean Flo	W OV				0.72	-	16				
The hydro Hydro-Bra Hydro-Bra	ake Opt ake Opt	imum® a	as spec:	ifie	d. S	hould	anothe	er ty	pe of	contr	ol de	vice	other	than a
Hydro-Bra Hydro-Bra invalida	ake Opt ake Opt ted	imum® a imum® b	as spec: be util:	ifie ised	d. S then	hould these	anothe e stora	er ty age r	pe of outing	contr g calc	ol de ulatio	vice ons w	other ill be	than a
Hydro-Bra Hydro-Bra invalida Depth (n	ake Opt ake Opt ted m) Flow	imum® a imum® k (1/s)	ns spec: De util: Depth	ifie ised (m)	d. S then	hould these (1/s)	anothe e stora	er ty age r (m)	pe of outing	contr g calc (1/s)	ol de ulatio	vice ons w h (m)	other ill be Flow	than a (1/s)
Hydro-Br. Hydro-Br. invalida Depth (m 0.10	ake Opt ake Opt ted m) Flow	imum® a imum® k (1/s) 6.8	Depth	ifie ised (m) 200	d. S then	hould these (1/s) 21.7	anothe e stora Depth 3	er ty age r . (m)	pe of outing	contr g calc (1/s) 33.6	ol de ulatio	vice ons w h (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro-Br. Hydro-Br. invalida Depth (m 0.10 0.20	ake Opt ake Opt ted m) Flow	imum® a imum® k (1/s) 6.8 18.6	Depth 1.	ifie ised (m) 200 400	d. S then	(1/s) 21.7 23.3	anothe stora Depth 3 3	er ty age r (m) .000	pe of outing	contr g calc (1/s) 33.6 36.2	ol de ulatio	vice ons w h (m) 7.000 7.500	other ill be Flow	than a (1/s) 50.6 52.4
Hydro-Br. Hydro-Br. invalida Depth (m 0.10 0.20 0.30	ake Opt ake Opt ted m) Flow 00 00 00	imum® a imum® k (1/s) 6.8 18.6 19.8	Depth 1. 1.	ifie ised (m) 200 400 600	d. S then	<pre>chould these (1/s) 21.7 23.3 24.9</pre>	anothe stora Depth 3 3 4	er ty age r .000 .500 .000	pe of outing	contr g calc (1/s) 33.6 36.2 38.6	ol de ulatio	vice ons w h (m) 7.000 7.500 8.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40	ake Opt ake Opt ted m) Flow 00 00 00 00	imum® a imum® h (1/s) 6.8 18.6 19.8 19.8	<pre>be util: Depth 1. 1. 1. 1. 1.</pre>	ifie ised (m) 200 400 600 800	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3	anothe stora Depth 3 4 4	er ty age r .000 .500 .500	pe of outing	contr g calc (1/s) 33.6 36.2 38.6 40.9	ol de ulatio	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-Br. Hydro-Br. invalida Depth (m 0.10 0.20 0.30	ake Opt ake Opt ted m) Flow 00 00 00 00 00 00	imum® a imum® k (1/s) 6.8 18.6 19.8	Depth 1. 1. 1. 2.	ifie ised (m) 200 400 600	d. S then	<pre>chould these (1/s) 21.7 23.3 24.9</pre>	anothe stora Depth 3 4 4 5	er ty age r .000 .500 .000	pe of outing	contr g calc (1/s) 33.6 36.2 38.6	ol de ulation Dept	vice ons w h (m) 7.000 7.500 8.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200	d. S then	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .000 .500 .000	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br. Hydro-Br. invalida Depth (1 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt ake Opt ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2.	ifie ised (m) 200 400 600 800 000 200 400	d. S then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulation Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

		Page 4
	Dog & Partridge Chipping	
	Proposed SW Simulations	
	1 in 1 Yr Storms	
Date 19.04.2023	Designed by	
File D&P NEW SW.MDX	Checked by	تريد ، ، م
Micro Drainage	Network 2014.1	
Storage	Structures for Storm	
Collular Stora	ge Manhole: 13, DS/PN: 1.005	
	ige Mannole: 13, 25/1N: 1:005	
Inv	ert Level (m) 93.620 Safety Factor	
Infiltration Coefficien Infiltration Coefficien		.95
Inflitration Coefficien	t Side (m/nr) 0.00000	
Depth (m) Area (m ²) Inf. A	rea (m ²) Depth (m) Area (m ²) Inf. Are	a (m ²)
0.000 24.0	0.0 0.801 0.0	0.0
0.800 24.0	0.0	
©1982	2-2014 XP Solutions	

										Page 5
				Dog	& Par	tridge	Chippin	g		
							ulations			۲.
					n 1 Yr					ーン
ate 19.04.2023	3			Des	igned	бу				
ile D&P NEW S	MDX.			Che	cked b	Y				
icro Drainage				Net	work 2	014.1				
Sum	nary c	of Resu	lts fo:	r 15	minut	e 1 ye	ar Winte	er (St	torm)	
Ма	rgin f	or Flood			-			tatus		
			Analys		Status	ON	Inertia S	Latus	OFF	
			Surchar	-				Pipe		
-		Level	Depth				Overflow		0+-+	_
PN	Name	(m)	(m)		(m³)	Cap.	(l/s)	(1/S)	Statu	3
1.000		94.524	-0.3	126	0.000	0.06	0.0	2.2	01	ĸ
1.001		93.841	-0.2		0.000	0.04	0.0	2.1		
2.000		94.630	-0.1		0.000	0.09	0.0	3.7		
3.000		94.517	-0.		0.000	0.03	0.0	1.3	0	
1.002 4.000		93.835 94.418	-0.: -0.:		0.000 0.000	0.14 0.04	0.0 0.0	7.0 1.4		
5.000		94.418 94.518	-0.1		0.000	0.04	0.0	1.4	0	
1.003		93.811	-0.		0.000	0.19	0.0	10.6	01	
6.000		94.231	-0.		0.000	0.09	0.0	1.9		
6.001		93.945	-0.		0.000	0.20	0.0	3.4		
7.000	11	94.039	-0.	111	0.000	0.15	0.0	3.8	01	ĸ
1.004	12	93.794	-0.3	166	0.000	0.34	0.0	17.3	01	ĸ
1.005	13	93.787	-0.	058	0.000	0.33	0.0	8.2	01	ĸ
1.006	14	93.674	-0.1	151	0.000	0.24	0.0	8.2	OI	ĸ

		Page 1
	Dog & Partridge Chipping	
	Proposed SW Simulations	m m
 Date 19.04.2023	1 in 1 Yr Storms	
	Designed by	
File D&P NEW SW.MDX	Checked by Network 2014.1	
Micro Drainage	Network 2014.1	
Free Flowing	g Outfall Details for Storm	
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm (m))
1.006 SW DRAIN	94.550 93.500 93.500 1200	0
Simulat	ion Criteria for Storm	
Hot Start (mins Hot Start Level (mm Manhole Headloss Coeff (Global Number of Input Hydrog	r 1.000 Additional Flow - % of Total) 0 MADD Factor * 10m³/ha Sto	Flow 0.000 prage 2.000 mins) 1440 mins) 1
Number of Offline Cor	ntrols 0	
Synthe	etic Rainfall Details	
Return Period (years) Region Engl M5-60 (mm) Ratio R	1 Cv (Summer) land and Wales Cv (Winter) 19.000 Storm Duration (mins) 0.300	0.840
©1982	2-2014 XP Solutions	

														Pag	e 2
							Dog &	Part	ridq	e Ch	ippin	g			
							Propo	sed Si	W Si	mulat	tions			14	A .
							-	1 Yr :							
ate 19	.04.	2023					Desig	ned b	y					-11	
'ile D&H	P NE	w sw	.MDX				-	ed by							ر
licro Di	rair	age					Netwo	rk 20	14.1						
					Onl	ine (Contr	ols fo	or S	torm					
Нı	vdro	-Bral	ke On	et i mum	® Ma	anhol	e: 13	3, DS/	PN:	1.00	5. Vo	lume	(m ³): 2	9
	<u></u>		<u></u>	<u> </u>										<u>,, </u>	<u> </u>
					Γ		Head	ence MD (m)	-24E	-0130-	2000-		.000		
							low (1						20.0		
							lush-F				-	alcul			
							-	ive M	linim	ise up	ostrea	m sto	-		
					T۲		eter (Level	• •				03	198		
		Min	imum (Outlet				•••				20	225		
				ted Mar	-								1500		
				Co	ontro	l Poi	nts	Hea	ad (n	1) Flo	w (1/s	ı)			
			D	esign 1	Poin				1.00		19.				
							ush-F		0.33		19.				
			м	ean Flo	0W 01		(ick-F)		0.72	-	17. 16.				
The hyd Hydro-H	Brake	• Opti	calcu mum® a	ulatior as spec	cifie	ed. S	en bas hould	sed on anothe	r ty	pe of)ischa contr	rge r ol de	vice	other	than a
-	Brake Brake	e Opti e Opti	calcu mum® a	ulatior as spec	cifie	ed. S	en bas hould	sed on anothe	r ty	pe of)ischa contr	rge r ol de	vice	other	than a
Hydro-H Hydro-H invalic	Brake Brake dateo	e Opti e Opti 1	. calcu mum® a mum® b	ulatior as spec be util	cifie Lisec	ed. S i then	en bas hould these	sed on anothe	r ty .ge r	pe of outin <u>c</u>)ischa contr calc	rge r ol d e ulati	vice ons w	other ill be	than a
Hydro-H Hydro-H invalic Depth 0.	Brake Brake datec (m) .100	e Opti e Opti 1	calcu mum® a mum® b (1/s) 6.8	ulatior as spec be util Depth	cifie lised (m) .200	ed. S i then	en bas hould these (1/s) 21.7	sed on anothe stora Depth 3	r ty .ge r (m) .000	pe of outin <u>c</u>	Discha contr calc (1/s) 33.6	rge r ol de ulati Dept	vice ons w h (m) 7.000	other fill be	than a (1/s) 50.6
Hydro-H Hydro-H invalic Depth 0.	Brake Brake dated (m) .100 .200	e Opti e Opti 1	calcu mum® a mum® b (1/s) 6.8 18.6	Depth	(m) .200	ed. S i then	en bas hould these (1/s) 21.7 23.3	sed on anothe stora Depth 3 3	(m) (000 .500	pe of outin <u>c</u>	(1/s) 33.6 36.2	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500	other ill be Flow	than a (1/s) 50.6 52.4
Hydro-H Hydro-H invalic Depth 0. 0. 0.	Brake Brake dated (m) .100 .200 .300	e Opti e Opti 1	calcu mum® a mum® d (1/s) 6.8 18.6 19.8	ulation as spec be util Depth	(m) .200 .400	ed. S i then	en bas hould these (1/s) 21.7 23.3 24.9	sed on anothe stora Depth 3. 3. 4.	(m) (m) .000 .500 .000	pe of outin <u>c</u>	Discha contr calc (1/s) 33.6 36.2 38.6	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200	e Opti e Opti 1	<pre>calcumum® a mum® a mum® a (1/s) 6.8 18.6 19.8 19.8</pre>	Depth	(m) .200 .400 .600	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3	Depth	(m) (m) .000 .500 .000 .500	pe of outin <u>c</u>	Discha contr calc (1/s) 33.6 36.2 38.6 40.9	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other Mill be	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400	e Opti e Opti 1	calcu mum® a mum® d (1/s) 6.8 18.6 19.8	Depth	(m) .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9	Depth	(m) (m) .000 .500 .000	pe of outin <u>c</u>	Discha contr calc (1/s) 33.6 36.2 38.6	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000	other ill be	than a (1/s) 50.6 52.4 54.0
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .000 .500	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-H Hydro-H invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1	<pre>calcu mum@ a mum@ l (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	(m) (m) .000 .500 .500 .500 .500 .500 .000	pe of outin <u>c</u>	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6 57.2

	Page 3	
	Dog & Partridge Chipping	
	Proposed SW Simulations	سر ا
Date 19.04.2023	1 in 1 Yr Storms	
	Designed by	
File D&P NEW SW.MDX	Checked by Network 2014.1	ىرلى. مەل
licro Drainage	Network 2014.1	
Storag	e Structures for Storm	
Cellular Stor	age Manhole: 13, DS/PN: 1.005	
	vert Level (m) 93.620 Safety Factor 2.0 nt Base (m/hr) 0.00000 Porosity 0.95	
Infiltration Coefficies	nt Side (m/hr) 0.00000	
	Area (m^2) Depth (m) Area (m^2) Inf. Area (m^2)	
0.000 24.0 0.800 24.0	0.0 0.801 0.0 0.0 0.0	
	32-2014 XP Solutions	

								Pa	age 4
			I	og & Par	tridge	Chippin	ıg		-
			F	Proposed	SW Sim	ulations	:	<u>ال</u> ر	L
				l in 1 Yr	Storm	S			- U
ate 19.04.2023	3		I	Designed	by				
Tile D&P NEW SV	W.MDX		0	Checked b	у				رلې
licro Drainage			1	Network 2	014.1				
Sum	nary c	of Resu	lts for	30 minut	e 1 ye	ar Winte	er (S	torm)	
Ma	rgin f	or Flood	Analysi	rning (mm) s Timestep	Fine		tatus tatus		
		Water		DTS Status			Pipe		
	US/MH	Level	Depth			Overflow	-		
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	
1.000	1	94.521	-0.12	29 0.000	0.05	0.0	1.8	ок	
1.001		93.833	-0.24		0.03		1.7		
2.000	3	94.626	-0.12	0.000	0.07	0.0	3.0	OK	
3.000		94.515	-0.13		0.02	0.0	1.1		
1.002		93.828	-0.22		0.11	0.0	5.7		
4.000		94.417	-0.13		0.03	0.0	1.2		
5.000		94.517	-0.13		0.03	0.0	1.5		
1.003		93.810	-0.20		0.16	0.0	8.6		
6.000 6.001		94.227 93.941	-0.12 -0.10		0.07 0.17		1.6 2.9		
7.000		94.035	-0.10		0.17		3.1		
1.004		93.801	-0.15		0.12		13.8		
1.004		93.794	-0.05		0.36		8.8		
1.006		93.677	-0.14		0.26		8.8		

		Page 1
	Dog & Partridge Chipping	
	Proposed SW Simulations	Mr.
	1 in 1 Yr Storms	- Jun
Date 19.04.2023	Designed by	
File D&P NEW SW.MDX	Checked by	
Micro Drainage	Network 2014.1	
Free Flowing	Outfall Details for Storm	
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm (m)	
1.006 SW DRAIN	94.550 93.500 93.500 1200	0
Simulat	ion Criteria for Storm	
Hot Start (mins Hot Start Level (mm Manhole Headloss Coeff (Global	r 1.000 Additional Flow - % of Total) 0 MADD Factor * 10m³/ha St) 0 Run Time (Flow 0.000 orage 2.000 mins) 1440 mins) 1
	ntrols 1 Number of Time/Area Diagrams	
Synthe	tic Rainfall Details	
Return Period (years) Region Eng M5-60 (mm) Ratio R	1 Cv (Summer) land and Wales Cv (Winter) 19.000 Storm Duration (mins) 0.300	0.840
©1982	2-2014 XP Solutions	

														Page	2
							Dog &	Part	rida	e Ch	ippin	q			
							-	sed S	_			-		14	
							-	1 Yr						\parallel	\sim
ate 19	.04.2	2023						ned b	_					-1	
ile D&	P NE	w SW.	MDX				-	ed by	_						رلج ۲۰۰۰ را
licro D								rk 20							
					Onl	ine (Contr	ols fo	or S	torm					
H	vdro-	-Brak	e Oro	timum	® Ma	anhol	e: 13	8, DS/	PN:	1.00	5, Vo	lume	(m ³)	: 2.	9
	1		· · 1												
					г		Refere Head	ence MD (m))-SHE	-0198-	-2000-		.000		
						-	low (1	•••					20.0		
						F	lush-F	'lo™			С	alcula	ated		
								ive M	inim	ise up	pstrea	m sto:			
					_		eter (• •					198		
		Mini	m11m ()u+1~+			Level					93	.620		
)utlet ed Mar	-								225 1500		
		bu	ggebe										1000		
				Co	ontro	ol Poi	nts	Hea	ad (n	1) Flo	W (1/s	•)			
			D	esign 1	Poin			ed)			19.				
								lo™ lo®	0.33		19. 17.				
							(ick-F	TORA	0.72	20					
The hydro-I Hydro-I	Brake	Optim	calcu num® a	is spec	ns ha cifi€	ave be ed. S	en bas hould	sed on anothe	the i er ty	pe of	contr	rge re ol de	vice c	ther	
	Brake Brake	Optim Optim	calcu num® a	latior is spec	ns ha cifi€	ave be ed. S	en bas hould	sed on anothe	the i er ty	Head/I pe of	Discha contr	rge re ol de	vice c	ther	
Hydro-1 Hydro-1 invalio	Brake Brake dated	Optim Optim	calcu uum® a uum® k	latior is spec be util	ns ha cifie lisec	ave be ed. S d then	en bas hould these	sed on anothe stora	the i er ty ige r (m)	Head/I pe of outing	Discha contr g calc (1/s)	rge re ol de ulatio	vice c ons wi	ther 11 be	than a
Hydro-1 Hydro-1 invalio Depth	Brake Brake dated (m) 1	Optim Optim	calcu uum® a uum® k (1/s) 6.8	alation as spec be util Depth 1.	ns ha cifie lisec (m) .200	ave be ed. S d then	en bas hould these (1/s) 21.7	sed on anothe stora Depth 3	the introduction the international strategy i	Head/I pe of outing	Discha contro g calc (1/s) 33.6	rge re ol de ulatio Deptl	vice c ons wi h (m) 7.000	ther 11 be	than a (1/s) 50.6
Hydro-Howen (hydro-Hydro-Howen (hydro-Hydro-Howen (hydro-Howen (hydro-Howen (hydro-Hydro-Howen (hydro-Howen (hydro-Howen (hydro-Howen (hydro-Hwali (hydro-Hwali (hydro-Hwali (hydro-Hwali (hydro-Hwali (hydro-Hwali (hydro-Howen (hydro-Hwali (hydro-H	Brake Brake dated (m) 1 .100 .200	Optim Optim	calcu num® a num® k (1/s) 6.8 18.6	Depth	ns ha cifie lisec (m) .200 .400	ave be ed. S d then	en bas hould these (1/s) 21.7 23.3	sed on anothe stora Depth 3 3	the i er ty; ige r (m) .000 .500	Head/I pe of outing	Discha contro g calc (1/s) 33.6 36.2	rge re ol dev ulatio Dept	vice c ons wi h (m) 7.000 7.500	ther 11 be	than a (1/s) 50.6 52.4
Hydro- Hydro- invalid Depth 0. 0.	Brake Brake dated (m) 1 .100 .200 .300	Optim Optim	calcu num® a num® k (1/s) 6.8 18.6 19.8	Depth 1. 1. 1. 1.	ns ha cifie lisec (m) .200 .400 .600	ave be ed. S d then	en bas hould these (1/s) 21.7 23.3 24.9	sed on anothe stora Depth 3 3 4	the international terms of ter	Head/I pe of outing	Discha contr g calc (1/s) 33.6 36.2 38.6	rge ro ol de ulatio Deptl	vice c ons wi h (m) 7.000 7.500 8.000	ther 11 be	(1/s) 50.6 52.4 54.0
Hydro- Hydro- invalid Depth	Brake Brake dated (m) 1 .100 .200 .300 .400	Optim Optim	calcu num® a num® k (1/s) 6.8 18.6 19.8 19.8	llation as spec be util Depth 1. 1. 1.	ns ha cifie lisec (m) .200 .400 .600 .800	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3	Depth 3 4 4	the i er ty ige r (m) .000 .500 .500	Head/I pe of outing	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9	rge ro ol de ulatio Deptl	vice c ons wi h (m) 7.000 7.500 8.000 8.500	ther 11 be	(1/s) 50.6 52.4 54.0 55.6
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500	Optim Optim	calcu num® a num® k (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	nlation as spec be util Depth 1. 1. 1. 1. 2.	ns ha cifie lisec (m) .200 .400 .600 .800 .000	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7	sed on anothe stora Depth 3 3 4 4 5	the international terms of ter	Head/I pe of outing	Discha contr g calc (1/s) 33.6 36.2 38.6	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.000 7.500 8.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400	Optim Optim	calcu num® a num® k (1/s) 6.8 18.6 19.8 19.8	Depth 1. 1. 1. 1. 2. 2.	ns ha cifie lisec (m) .200 .400 .600 .800	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	the i er ty: ige r (m) .000 .500 .000 .500 .000	Head/I pe of outing	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	(1/s) 50.6 52.4 54.0 55.6
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) .200 .400 .600 .800 .000 .200	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	sed on anothe stora	the i er ty: ige r (m) .000 .500 .000 .500 .000 .500	Head/I pe of outing	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800 (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi h (m) 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi 7.000 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi 7.000 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi 7.000 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) (200 (400 (600 (800) (000) (200) (400)	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 6	the internet type of the internet type of the internet in	Head/I pe of outing	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi 7.000 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro Hydro invalie Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated .100 .200 .300 .400 .500 .600 .800	Optim Optim	calcu uum® a uum® k 1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (m) 2000 4000 6000 2000 4000 6000	ave be ed. S d then Flow	en bas hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2 31.4	sed on anothe stora Depth 3 3 4 4 5 5 6	the isr ty: ige r (m) .000 .500 .000 .500 .000 .500	Head/I pe of outing Flow	Cischa contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge ra ol dev ulatio Deptl	vice c ons wi 7.000 7.500 8.000 8.500 9.000	ther 11 be	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>

		Page 3
	Dog & Partridge Chipping	
	Proposed SW Simulations	Mr.
	1 in 1 Yr Storms	1 - Um
Date 19.04.2023	Designed by	
File D&P NEW SW.MDX	Checked by	
Micro Drainage	Network 2014.1	
Storage	Structures for Storm	
Cellular Storage	Manhole: 13, DS/PN: 1.005	
Inver Infiltration Coefficient	t Level (m) 93.620 Safety Factor 2.1 Base (m/hr) 0.00000 Porosity 0.9	
Infiltration Coefficient		5
Depth (m) Area (m ²) Inf. Are	a (m²) Depth (m) Area (m²) Inf. Area	(m²)
0.000 24.0 0.800 24.0	0.0 0.801 0.0 0.0	0.0
©1982-	2014 XP Solutions	

								Page 4
				og & Par	-		-	<u>.</u>
				roposed			8	$\ \mathcal{T}_{\mathcal{T}}$
				in 1 Yr		IS		
e 19.04.202	3		E	esigned	by			
e D&P NEW S	W.MDX		c	hecked b	y			
ro Drainage			N	etwork 2	014.1			
Sum	mary d	of Resu	lts for	60 minut	:e 1 y€	ear Winte	er (S	torm)
Ma	argin f	or Floo	Analysi	rning (mm) s Timestep DTS Status	Fine		tatus tatus	
		Water	Surcharge	d Flooded			Pipe	
	US/MH	Level	Depth			Overflow	-	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	1	94.518	-0.13	2 0.000	0.04	0.0	1.2	OK
1.001		93.823	-0.25					
2.000	3	94.621	-0.12		0.05	0.0	2.1	OK
3.000	4	94.511	-0.13	9 0.000	0.02	0.0	0.8	OK
1.002		93.817	-0.23				4.1	OK
4.000	6	94.415	-0.13	5 0.000	0.02	0.0	0.8	OK
5.000	7	94.515	-0.13	5 0.000	0.02	0.0	1.0	OK
1.003	8	93.800	-0.21	0.000	0.11	0.0	6.2	OK
6.000	9	94.222	-0.12	8 0.000	0.05	0.0	1.1	OK
6.001	10	93.935	-0.11	5 0.000	0.12	0.0	2.1	OK
7.000	11	94.030	-0.12	0.000	0.09	0.0	2.2	OK
1.004	12	93.789	-0.17	1 0.000	0.20	0.0	10.0	OK
1.005	13	93.783	-0.06	2 0.000	0.32	0.0	7.9	OK
1.006	14	93.673	-0.15	2 0.000	0.23	0.0	7.9	OK

					Dog d	& Partr	ridae (Chip	ping		Pa	ge 1
					-	osed SV	-	_			14	A .
					1 in	2 Yr 5	Storms					UUU U
ate 19.	04.2023	3				gned by	/					
Tile D&P		.MDX				ced by						· · · · · · · · · · · · · · · · · · ·
Aicro Dr	aınage				Netwo	ork 201	14.1					
	SI	ORM SE	WER D	ESIGN	by th	e Modii	fied Ra	atic	onal N	letho	d	
			Net	work I	esign	Table	for St	corn	n			
	PN	Length (m)	Fall (m)	Slope (1:X)	I. Area (ha)		Base Flow (1		k (mm)	HYD SECT	DIA (mm)	
		12.290 8.270							0.600 0.600	-		
	2.000	9.280	0.700	13.3	0.031	5.00		0.0	0.600	0	150	
	3.000	5.960	0.600	9.9	0.011	5.00		0.0	0.600	0	150	
		12.350			0.000				0.600			
		8.090 5.720			0.012				0.600		150 150	
		14.120							0.600		300	
		19.160			0.016				0.600			
	7.000	6.700 7.040							0.600		150 150	
	1.004	12.420				0.00			0.600		300	
				Netw	ork Re	sults	Table					
PN	Rain (mm/hr)	T.C. (mins)	-	Σ I. <i>1</i> (ha		Σ Base ow (l/s)	Foul) (1/s)		Flow /s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.000			94.50		.018	0.0			0.0	2.18	38.5	0.0
1.001	0.00	5.24	93.78	00.	.018	0.0	0.0		0.0	0.94	66.6	0.0
2.000	0.00	5.06	94.60	00.	.031	0.0	0.0		0.0	2.78	49.2	0.0
3.000	0.00	5.03	94.50	00.	.011	0.0	0.0		0.0	3.22	56.8	0.0
1.002	0.00	5.47	93.75	00.	.060	0.0	0.0		0.0	0.89	62.9	0.0
4.000	0.00	5.05	94.40	0 0.	012	0.0	0.0		0.0	2.62	46.2	0.0
5.000	0.00	5.03	94.50	00.	.015	0.0	0.0		0.0	3.39	59.9	0.0
1.003	0.00	5.72	93.71	00.	.093	0.0	0.0		0.0	0.93	65.8	0.0
6.000 6.001			94.20 93.90		.016 .031	0.0			0.0 0.0	1.26 1.17		0.0 0.0
	0.00	5.07	94.00	0 0.	.032	0.0	0.0		0.0	1.66	29.3	0.0
7.000	0.00											

Page 2 Page 6 Partridge Chipping Proposed SW Simulations		
<pre>broposed SW Simulations in 2 Yr Storms Designed by File DAP NEW SW.MDX Micro Drainage Network 2014.1 STORM SEWER DESIGN by the Modified Rational Method Network Design Table for Storm FN Length Fall SLope I.Area T.E. Base K STD DIA (m) (m) (1:X) (ha) (mine) Flow (l/e) (mm) SECT (mm) 1.005 4.330 0.020 216.5 0.000 0.00 0.0 0.600 o 225 1.006 18.180 0.100 181.8 0.000 0.00 0.0 0.600 o 225 Network Results Table FN Rain T.C. US/IL E I.Area E Base Fool Add Flow Vel Cap Flow (mm/hr) (mine) (m) (ha) Flow (l/e) (l/e) (m/e) (l/e) (l/e) 1.005 0.00 6.04 93.620 0.156 0.0 0.0 0.0 0.00 0.97 38.4 0.0 1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.0 0.97 38.4 0.0 Free Flowing Outfall Details for Storm Outfall Outfall C. Level Kin D.L W Fipe Number Name (m) (m) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (l/s) 0.000 Hot Start (mins) 0 MADD Factor * 10m*/ha Storage 2.000 Hot Start Level (mm) 0 Number of Storage Structures 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Online Controls 0 Synthetic Rainfall Details C Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.480 NE 560 (mm) 19.000 Storm Duration (mine) 15</pre>		
<pre>in 2 Yr Storms Date 19.04.2023 Designed by Checked by Checked by Detwork 2014.1 STORM SEWER DESIGN by the Modified Rational Method Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HTD DIA (m) (m) (1:3) (ha) (mins) Flow (1/s) (mm) SECT (mm) 1.005 4.330 0.020 216.5 0.000 0.00 0.00 0.00 0.00 0.225 1.006 18.180 0.000 0.00 0.00 0.00 0.00 0.225 1.006 18.180 0.000 0.00 0.00 0.00 0.00 0.225 1.006 18.180 0.000 0.00 0.00 0.00 0.00 0.225 1.006 18.180 0.000 1.00 0.00 0.00 0.00 0.00 0</pre>		N
bate 19.04.2023 File DAP NEW SW.MDX Micro Drainage Network 2014.1 STORM SEWER DESIGN by the Modified Rational Method Network Design Table for Storm FN Length Fall Slope I.Area T.E. Base k HTD DIA (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) 1.005 4.330 0.020 216.5 0.000 0.00 0.0 0.0 0.600 o 225 1.006 18.180 0.100 181.8 0.000 0.00 0.0 0.0 0.600 o 225 Network Results Table FN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) (1/s) 1.005 0.00 6.04 93.620 0.156 0.0 0.0 0.0 0.0 0.97 38.4 0.0 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (m) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MMD Factor * 10m/ha Storage 2.000 Hot Start (mins) 0 MMD Factor * 10m/ha Storage 2.000 Hot Start (mins) 1 Munber of Storage Structures 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Ofline Controls 1 Number of Ofline Controls 0 Number of Ofline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 2 C v (Summer) 0.750 Region England and Wales C v (Winter) 0.840 Mice Of moline Controls 0 Number of Ofline Controls 0 Number of Storage Structures 1 Number of Ofline Controls 0 Number of Storage Structures 1 Number Ofline Controls 0 Number of Ofline Controls 0 Number of Ofline Controls 0 Number Ofline Controls 0		
File D&P NEW SW.MDX Checked by Connect Micro Drainage Network 2014.1 STORM SEWER DESIGN by the Modified Rational Method Network 2014.1 STORM SEWER DESIGN by the Modified Rational Method Network 2014.1 STORM SEWER DESIGN by the Modified Rational Method Network Design Table for Storm PN Length Fail Slope LArea T.E. Base k HTD DIA (m) (n) (1:X) (ha) (mins) Flow (1/s) (m) SECT (mn) 1.005 4.330 0.020 216.5 0.000 0.00 0.0 0.00 0.0 225 Network Results Table PN Rain T.C. US/IL E LAREE E Base Fool Add Flow Vel Cap Flow (mm/hr) (mins) (n) (ha) Flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.005 0.00 6.04 93.620 0.156 0.0 0.0 0.0 0.08 35.2 0.0 Interest Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (n) (n) I. Level (mm) (mn) (m) Interest for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Additional Flow * 0 of Total Flow 0.000 Attract Level (mm) 0 Muther of Input Hydrographs 0 Number of Storage Structures 1 Number of Input Hydrographs 0		
Micro Drainage Network 2014.1 STORM SEWER DESIGN by the Modified Rational Method Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k EYD DIA (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) 1.005 4.330 0.020 216.5 0.000 0.00 0.0 0.00 0.00 0.225 1.006 18.180 0.100 181.8 0.000 0.00 0.0 0.00 0.0		
STORM SEWER DESIGN by the Modified Rational Method Network Design Table for Storm PN Length Fall Slope I.Acea T.E. Base k HD DIA (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) 1.005 4.330 0.020 216.5 0.000 0.00 0.0 0.00 0.00 0 o 225 1.005 18.180 0.100 181.8 0.000 0.00 0.00 0.00		
Detwork Design Table for Storm PN length Fall Slope 1.Ares 7.5. Base k FDD DIA (m) (m) (1:X) (ha) (mins) FLOW (J/s) (m) SECT (mm) 1.005 4.330 0.020 216.5 0.000 0.00 0.00 0.00 0.500 0 225 Detwork Results Table PN Rain T.C. US/IL E 1.Area E Base Foul Add FLOW Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (J/s) (J/s) (J/s) (m/s) (J/s) (J/s) 1.005 0.00 6.04 93.620 0.156 0.00 0.0 0.0 0.08 35.2 0.0 Deter Flowing Outfall Details for Storm Dutfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) (ha) flow (J/s) (J/s) (J/s) Outfall Outfall C. Level I. Level (m) (m) (m) Outfall Outfall Details for Storm Dutfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (m) (m) Outfall Outfall Outfall Potails for Storm Distuict Number of Storage per hectare (J/s) 0.000 Areal Reduction Factor 1.000 Additional Flow + 6 of Total Flow 0.000 Hot Start (mins) 0 MubPeator * 10m ³ /ha Storage 2.000 Hot Start Level (m) 0 Run Time (mins) 1440 Manhel Headh Outfall Outfall Outfall Details Distuit Hydrographe 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Sumber of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Distuit Hydrograph and Wales C V (Winter) C.000 Region England and Wales C V (Winter) 0.000 <td>Micro Drainage No</td> <td>etwork 2014.1</td>	Micro Drainage No	etwork 2014.1
FN Length Fall Slope I.Area T.S. Base k HYD DIA 1.005 4.330 0.020 216.5 0.000 0.00 0.00 0.600 o 225 Network Results Table Network Results Table Number of C.U. US/TL E LARCE E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (n/s) (n/s) 1.005 0.00 6.03 0.0 0.0 0.00 0.688 35.2 0.0 1.005 0.00 6.03 0.156 0.0 0.0 0.0 0.977 38.4 0.0 1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.0 0.977 38.4 0.0 1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m)		
(m) (m) (1x) (ha) (mins) Flow (1/s) (man) SECT (man) 1.005 4.330 0.020 216.5 0.000 0.00 0.00 0.225 1.006 18.180 0.100 181.8 0.000 0.00 0.00 0.225 Network Results Table PN Rain T.C. US/TL E I.Area E Base Foul Add Flow Vel Cap Flow 1.005 0.00 6.04 93.620 0.156 0.0 0.0 0.08 35.2 0.0 1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.97 38.4 0.0 Irree Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) 1.1 Level (mm) (m) 1.006 SW DRAIN 94.550 93.500 1200 0 Simulation Criteria for Storm Manb Facture (1/s) 0.000 Areal Reduction Factur 1.000		
1.006 18.180 0.100 181.8 0.000 0.00 0.0 0.600 o 225 Network Results Table PN Rain T.C. US/IL F I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.005 0.00 6.04 93.620 0.156 0.0 0.0 0.0 0.88 35.2 0.0 1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.0 0.97 38.4 0.0 Item Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) (m) Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) (m) Autom for Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow + 61 Total Flow 0.000 Areal Reduction Factor 1.000 Additional Flow + 61 Total Flow 0.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Mamber of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline C		
FN Rain T.C. US/II. E I.Area E Base Foul Add Flow Vel. Cap Flow 1.005 0.00 6.04 93.620 0.156 0.0 0.0 0.0 0.88 35.2 0.0 1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.0 0.97 38.4 0.0 Tere Flowing Outfall Details for Storm Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Not Start Level (mm) 0 Run Time (mins) 1 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Online Controls 1 Number of Storage Structures 1 Number		
(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.005 0.00 6.04 93.620 0.156 0.0 0.0 0.088 35.2 0.0 1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.07 38.4 0.0 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (n) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 Run Time (mins) 140 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 140 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 1 <td< td=""><td>Networ}</td><td><u>Results Table</u></td></td<>	Networ}	<u>Results Table</u>
<pre>1.006 0.00 6.35 93.600 0.156 0.0 0.0 0.0 0.97 38.4 0.0 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 2 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 15</pre>	•	-
Outfall Outfall C. Level I. Level Min D, L W Pipe Number Name (m) (m) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Expendent of Storage Structures 1 0.750 Rainfall Model FSR Profile Type Winter Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 15		
Outfall Outfall C. Level I. Level Min D, L W Pipe Number Name (m) (m) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Image: Structures 1 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Region England and Wales Cv (Winter) 0.840 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 15	Free Flowing Ou	tfall Details for Storm
Pipe NumberName(m)(m)I. Level (mm)(mm)1.006 SW DRAIN94.55093.50093.50012000Simulation Criteria for StormVolumetric Runoff Coeff 0.840Foul Sewage per hectare (1/s) 0.000Areal Reduction Factor 1.000Additional Flow - % of Total Flow 0.000Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Run Time (mins)Manhole Headloss Coeff (Global)0.500Output Interval (mins)Number of Input Hydrographs 0Number of Storage Structures 1Number of Offline Controls 1Number of Time/Area Diagrams 0Number of Offline Controls 2Synthetic Rainfall DetailsRainfall ModelFSRProfile Type WinterReturn Period (years)2Cv (Summer)085-60 (mm)19.000 Storm Duration (mins)15	rice ricwing ou	trait Details for Storm
Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 2 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 15	Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 1 Number of Online Controls 1 Number of Offline Controls 0 1 Synthetic Rainfall Details Synthetic Rainfall Details 1 Rainfall Model FSR Profile Type Winter Return Period (years) 2 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) 15	Simulation	Criteria for Storm
Rainfall Model FSR Profile Type Winter Return Period (years) 2 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 15	Areal Reduction Factor 1. Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) 0. Number of Input Hydrograph Number of Online Control	000 Additional Flow - % of Total Flow 0.0000MADD Factor * 10m³/ha Storage 2.0000Run Time (mins) 1440500Output Interval (mins) 1ns 0 Number of Storage Structures 1Ls 1 Number of Time/Area Diagrams 0
Return Period (years) 2 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 15	Synthetic	Rainfall Details
	Return Period (years) Region England M5-60 (mm)	2 Cv (Summer) 0.750 and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) 15
©1982-2014 XP Solutions		

													Page	e 3
						۵ Dog	Part	ride	je Ch	ippin	g			
						Propo	sed S	W Si	mula	tions			14	A .
						1 in	2 Yr	Stor	ms					~U
ate 19.04	.2023					Desig	ned b	y					1	
ile D&P N	EW SW.MI	x					ed by							ر لر
icro Drai	nage					Netwo	ork 20	14.1	-					
				Onl	ine (Contr	ols f	or S	torm					
Hydr	o-Brake	Opti	imumó	R Ma	anhol	e• 17	3. DS/	PN.	1.00	5. Vo	lume	(m ³) • 2	9
<u></u>]		•F •											,	<u> </u>
						Refere Head	ence MI (m)	SHE–כ	-0198-	-2000-		2000		
					-	'low (1						20.0		
					F	lush-H	flo™				alcul			
						-	tive N	linim	ise up	pstrea	m sto	-		
				T۳		eter Level	• •				93	198 .620		
	Minimu	m Out	tlet				•••				20	225		
				_		eter						1500		
			Co	ntro	l Poi	nts	He	ad (1	1) Flo	w (l/s	•)			
		Des	ign E	Point	t (Cal	lculat	ed)	1.00	00	19.	9			
							lo™			19.				
		Mon	ר. ה דו			Kick-F ead Ra		0.72	20	17. 16.				
The hydro Hydro-Brak Hydro-Brak	ke Optimum ke Optimum	® as	spec	ifi€	ed. S	hould	sed on anothe	er ty	pe of)ischa contr	ol de	vice	other	than a
Hydro-Brak Hydro-Brak invalidate	ke Optimum ke Optimum ed	® as ® be	spec util	ifie ised	ed. S l then	hould these	sed on anothe e stora	er ty age r	pe of outing	Discha contr g calc	ol de ulati	vice ons w	other ill be	than a
Hydro-Brak Hydro-Brak invalidate Depth (m)	ke Optimum ke Optimum ed Flow (1/	® as ® be s) D	spec util	ifie isec (m)	ed. S l then	Should these (1/s)	sed on anothe stora	er ty age r (m)	pe of outing	Discha contr calc (1/s)	ol de ulati Dept	vice ons w h (m)	other ill be	than a
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100	<pre>ce Optimum ce Optimum ed Flow (1/ 0 6</pre>	® as ® be s) D	spec util epth	ifie ised (m)	ed. S l then	5hould these (1/s) 21.7	sed on anothe stora Depth	er ty age r (m) .000	pe of outing	Discha contr g calc (1/s) 33.6	ol de ulati Dept	vice ons w h (m) 7.000	other ill be	than a (1/s) 50.6
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200	<pre>ce Optimum ce Optimum ed Flow (1/) 6) 18</pre>	® as ® be s) D .8 .6	spec util epth 1.	(m) 200	ed. S l then	<pre>Should these (1/s) 21.7 23.3</pre>	sed on anothe stora Depth 3 3	er ty age r .000 .500	pe of outing	Discha contro calc (1/s) 33.6 36.2	ol de ulati Dept	vice ons w h (m) 7.000 7.500	other ill be	than a (1/s) 50.6 52.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100	<pre>ce Optimum ce Optimum ed Flow (1/</pre>	® as ® be s) D	spec util epth 1. 1.	ifie ised (m)	ed. S l then	5hould these (1/s) 21.7	sed on anothe stora Depth 3 3 4	er ty age r (m) .000	pe of outing	Discha contr g calc (1/s) 33.6	ol de ulati Dept	vice ons w h (m) 7.000	other ill be	than a (1/s) 50.6 52.4
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be (5) D (5) D (5) C (5)	spec util epth 1. 1. 1. 2.	(m) 200 400 600 800	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7	sed on anothe stora Depth 3 3 4 4 5	er ty age r .000 .500 .500 .500 .500	pe of outing	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be (3) D .8 .6 .8 .8 .8 .4 .8	spec util epth 1. 1. 2. 2.	(m) (200 (400 (600 (800 (000) (200)	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	sed on anothe stora Depth 3 3 4 4 5 5	er ty age r .000 .500 .500 .500 .500 .500	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>than a (1/s) 50.6 52.4 54.0 55.6</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be (3) D .8 .6 .8 .8 .8 .4 .8	spec util epth 1. 1. 2. 2. 2.	(m) (200 (400 (600 (800 (000) (200)	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brak Hydro-Brak invalidate Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ce Optimum ce Optimum ed</pre>	(8) as (8) be <p< td=""><td>spec util epth 1. 1. 2. 2. 2.</td><td>(m) (200 400 600 800 000 200 400</td><td>ed. S l then</td><td>(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2</td><td>sed on anothe e stora Depth 3 3 4 4 5 5 5 6</td><td>er ty age r .000 .500 .000 .500 .000 .500 .000</td><td>pe of outing</td><td>Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0</td><td>ol de ulati Dept</td><td>vice ons w. h (m) 7.500 8.000 8.500 9.000</td><td>other ill be</td><td>(1/s) 50.6 52.4 54.0 55.6 57.2</td></p<>	spec util epth 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .000	pe of outing	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w. h (m) 7.500 8.000 8.500 9.000	other ill be	(1/s) 50.6 52.4 54.0 55.6 57.2

			Page 4
	Dog & Partridge Ch	ipping	
	Proposed SW Simulat		<u> </u>
	1 in 2 Yr Storms		
Date 19.04.2023	Designed by		-1
File D&P NEW SW.MDX	Checked by		[],j, -
Micro Drainage	Network 2014.1		-
Storage	Structures for Stor	m	
<u>Cellular Stora</u>	ge Manhole: 13, DS/P	N: 1.005	
	ert Level (m) 93.620 Sa		
Infiltration Coefficien Infiltration Coefficien	t Base (m/hr) 0.00000 t Side (m/hr) 0.00000	Porosity 0.95	•
Depth (m) Area (m²) Inf. A	rea (m ²) Depth (m) Area	(m²) Inf. Area	(m²)
0.000 24.0	0.0 0.801	0.0	0.0
0.800 24.0	0.0		
©198:	2-2014 XP Solutions		

				-				P	age 5
				-	-	e Chippi:	-	16	
				-		nulation	5		ų.
				1 in 2 Y		ns			U.
ate 19.04.2023	3			Designed	by				
ile D&P NEW SW	MDX.WDX			Checked	by				L
icro Drainage			I	Network	2014.1			I	
Summ	nary c	of Resu	lts for	15 minu	te 2 ye	ear Wint	er (S	torm)	
Ma	argin f	or Floo		arning (mn			tatus		
			Analysi	s Timeste. DTS Statu	-	Inertia S	tatus	OFF	
			Surcharg	ed Floode			Pipe		
	-	Level	Depth		-	Overflow			
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	
1.000	1	94.528	-0.1	22 0.00	0.08	0.0	2.8	ОК	
1.001	2	93.854	-0.2			0.0			
2.000	3	94.633	-0.1	17 0.00	0.11	0.0	4.8	ОК	
3.000	4	94.518	-0.1	32 0.00	0.04	0.0	1.7	ОК	
1.002	5	93.850	-0.2	00 0.00	0.18	0.0	9.1	. OK	
4.000	6	94.421	-0.1	29 0.00	0.05	0.0			
5.000		94.521	-0.1			0.0			
1.003		93.837							
6.000		94.234	-0.1						
6.001		93.952	-0.0						
7.000		94.045							
1.004		93.831							
1.005		93.822							
1.006	14	93.687	-0.1	38 0.00	0.32	0.0	10.9	OK	

			Page 1
	Dog & Part	tridge Chipping	
	Proposed :	SW Simulations	Mr.
	1 in 2 Yr		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Date 19.04.2023	Designed I	ру	
File D&P NEW SW.MDX	Checked by	 7	
Micro Drainage	Network 20		
Free Flowi	ng Outfall De	tails for Storm	
Outfall Outfa Pipe Number Name	ll C. Level I. 1 (m) (Level Min D,L m) I. Level (mm)	W (mm)
	, .	(m)	()
1.006 SW DRA	IN 94.550 93	3.500 93.500 1200	0
Simula	ation Criteria	a for Storm	
Volumetric Runoff Co		oul Sewage per hecta:	
Areal Reduction Fac Hot Start (mi		ional Flow - % of To [.] ADD Factor * 10m³/ha	
Hot Start (M1 Hot Start Level (•		e (mins) 1440
Manhole Headloss Coeff (Glob		Output Interva	
		er of Storage Structu er of Time/Area Diagr	
Number of Offline (I OI IIME/AIEG DIAGI	
Synt	hetic Rainfal	l Details	
Rainfall Model Return Period (years)	FSR 2	-	-
· · · · · · · · · · · · · · · · · · ·	z ngland and Wales	- • • •	
M5-60 (mm)		Storm Duration (min	
Ratio R	0.300		

														Page	e 2
							Dog &	Part	ridg	re Ch	ippin	g			
							Propo	sed S	W Si	mula	tions			14	
							1 in	2 Yr	Stor	ms					\mathcal{O}
ate 19	.04.	2023					Desig	ned b	У						
ile D&			.MDX					ed by							· · · · · · · ·
icro D	rair	nage					Netwo	ork 20	14.1						
					Onl	ine (Contr	ols f	or S	torm					
		_			~ •				/	1 00		-			•
<u>H</u> ,	ydro	o-Bra	ке Ор	timum	® Ma			3, DS/): 2.	.9
					г		Refere Head	ence MI (m)	D-SHE	-0198-	-2000-		-2000		
						-	'low (]					_	20.0		
							lush-H			_			ated		
							Object eter (tive N	linim	ıse up	pstrea	m sto	rage 198		
					In		Level	• •				93	198		
		Mir	nimum (Dutlet				•••					225		
		5	Suggest	ed Mar	nhole	e Diam	leter	(mm)					1500		
				Co	ontro	l Poi	nts	He	ad (n	ı) Flo	W (1/s	3)			
			D	esign 1	Point			ed)			19.				
							lush-F	lo™ lo®	0.33		19. 17.				
			м	ean Flo	ow o'				0.72	-	16				
	Brake	e Opti	l calcu imum® a	ulation as spec	cifi€	ed. S	en bas Should	sed on anothe	er ty	Head/I pe of	Discha contr	ol de	evice	other	than a
Hydro- Hydro- invali	Brake Brake dateo	e Opti e Opti i	l calcu imum® a imum® }	ulation as spec be util	cifie Lisec	ed. S i then	en bas Should these	sed on anothe e stora	er ty age r	Head/I pe of outing	Discha contr g calc	ol de ulati	evice ons w	other ill be	
Hydro- Hydro- invalio Depth	Brake Brake dateo (m)	e Opti e Opti i	l calcu imum® a imum® } (1/s)	ulation as spec be util Depth	cifie Lisec (m)	ed. S d then Flow	en bas should these (1/s)	sed on anothe stora	er ty age r (m)	Head/I pe of outing	Discha contr g calc (1/s)	ol de ulati Dept	evice lons w ch (m)	other ill be Flow	than a
Hydro- Hydro- invalia Depth	Brake Brake dated (m) .100	e Opti e Opti i	L calcu imum® a imum® b (1/s) 6.8	ulation as spec be util Depth	cifie Lisec (m) .200	ed. S d then Flow	en bas Should these (1/s) 21.7	sed on anothe stora Depth 3	er ty age r (m) .000	Head/I pe of outing	Discha contr g calc (1/s) 33.6	ol de ulati	vice ons w ch (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro- Hydro- invalia Depth	Brake Brake dated (m) .100 .200	e Opti e Opti d Flow	L calcu imum® a imum® } (1/s) 6.8 18.6	Depth	cifie Lisec (m)	ed. S d then Flow	en bas should these (1/s)	sed on anothe stora Depth 3 3	er ty age r (m) .000 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2	ol de ulati	vice ons w h (m) 7.000 7.500	other ill be Flow	than a (1/s) 50.6 52.4
Hydro- Hydro- invali Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) .100 .200 .300 .400	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800	ed. S d then Flow	een bas bhould a these (1/s) 21.7 23.3 24.9 26.3	sed on anothe stora Depth 3 3 4 4	er ty age r .000 .500 .000 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9	ol de ulati Dept	evice ons w ch (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invalia Depth	Brake Brake dated (m) .100 .200 .300 .400 .500	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .800 .000	ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7	sed on anothe stora	er ty age r .000 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600	e Opti e Opti d Flow	(1/s) (1/s)	Depth 1 1 1 2 2	(m) .200 .400 .600 .800 .000 .200	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	sed on anothe stora	er ty age r .000 .500 .500 .500 .000 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol de ulati	evice ons w ch (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invalia Depth	Brake Brake dated (m) .100 .200 .300 .400 .500	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .800 .000	ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7	sed on anothe stora	er ty age r .000 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .000 .500 .000 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invalia Depth	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	(1/s) (1/s)	Depth	(m) .200 .400 .600 .800 .000 .200 .400	ed. S d then Flow	en bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora	er ty age r .000 .500 .000 .500 .000 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati	evice ons w 7.000 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

			Page 3
	Dog & Partridge (Chipping	
	Proposed SW Simul		<u> </u> Γ.
	1 in 2 Yr Storms		
Date 19.04.2023	Designed by		
File D&P NEW SW.MDX	Checked by		
Aicro Drainage	Network 2014.1		
Storage	e Structures for St	orm	
	age Manhole: 13, DS		
Inv Infiltration Coefficier Infiltration Coefficier		Safety Factor 3 Porosity 0	
Depth (m) Area (m²) Inf. A			
0.000 24.0 0.800 24.0	0.0 0.801	0.0	0.0
0.000 21.0	0.01		

				roposed			1	¹ /~
10 01 000	2			. in 2 Yr		S		
19.04.202				esigned	_			
D&P NEW SI				hecked b Network 2	_			
o Drainage			Ľ	etwork 2	014.1			
Sum	nary c	of Resu	lts for	30 minut	се 2 уе	ar Winte	er (S	torm)
Ma	argin f	or Floo	Analysi	rning (mm) s Timestep DTS Status	Fine 3	DVD Si Inertia Si		
		Water	Surcharge	d Flooded			Pipe	
	US/MH	Level	Depth	Volume		Overflow	Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	1	94.525	-0.12	.0.000	0.06	0.0	2.3	OK
1.001		93.852	-0.22			0.0		
2.000 3.000		94.630 94.517	-0.12 -0.13			0.0 0.0	3.9 1.4	
1.002		93.850	-0.13			0.0	7.3	
4.000		94.419	-0.13			0.0	1.5	
5.000	7	94.519	-0.13	0.000	0.04	0.0	1.9	OK
1.003		93.845	-0.16			0.0	10.7	
6.000		94.231	-0.11			0.0	2.0	
6.001		93.947	-0.10			0.0	3.8	
7.000 1.004		94.040 93.839	-0.13			0.0	4.0 17.2	
1.004		93.839	-0.12 -0.01			0.0 0.0		
1.005		93.689	-0.13			0.0		

	Page 1
	Dog & Partridge Chipping
	Proposed SW Simulations
	1 in 2 Yr Storms
Date 19.04.2023	Designed by
File D&P NEW SW.MDX	Checked by
Micro Drainage	Network 2014.1
	Outfall Details for Storm
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)
1.006 SW DRAIN	94.550 93.500 93.500 1200 0
Simulati	on Criteria for Storm
Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	1.000 Additional Flow - % of Total Flow 0.0000MADD Factor * 10m³/ha Storage 2.0000Run Time (mins) 14400.500Output Interval (mins) 1
	aphs 0 Number of Storage Structures 1 rols 1 Number of Time/Area Diagrams 0 rols 0
Synthet	ic Rainfall Details
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Winter 2 Cv (Summer) 0.750 and and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) 60 0.300
©1982	-2014 XP Solutions

														Page	e 2
							Dog &	Part	ridg	re Ch	ippin	g			
							Propo	sed S	W Si	mula	tions			14	$\overline{}$
							1 in	2 Yr	Stor	ms				`	
ate 19	.04	.2023					Desig	ned b	у						
ile D&1	P NE	EW SW	.MDX			1	Check	ed by							
icro D:	raiı	nage					Netwo	rk 20	14.1						
					Onl	ine (Contr	ols fo	or S	torm					
Hy	ydro	D-Brai	ke Op	timum	® Ma	anhol	e: 13	8, DS/	'PN:	1.00	5, Vc	lume	(m ³): 2.	.9
						Unit	Refere	ence MI)-SHE	-0198-	-2000-	1000-	2000		
						-	Head						.000		
					Des	-	low (]				~		20.0		
							'lush-E Object	ive M	linim	ise um		alcul m sto			
							eter (198		
							Level	•••				93	.620		
				Dutlet Led Mar	-								225 1500		
		5	luggest	Jeu Hai	more	, Dram	lecer (1000		
				Co	ntro	l Poi	nts	Hea	ad (n	ı) Flo	w (1/s	3)			
			D	esign 1	Point			ed)			19.				
							lush-F. Kick-F.	lo™ ിറ®	0.33		19. 17.				
			м	ean Flo	יס שכ				0.72	_	16.				
Hydro-I Hydro-I	Brak Brak	e Opti e Opti	.mum® a	as spec	ifi€	ed. S	hould		er ty	pe of	contr	ol de	vice	other	than a
Hydro-I Hydro-I invalio	Brak Brak date	e Opti e Opti d	.mum® a .mum® }	as spec pe util	ifie ised	ed. S l then	hould these	anothe e stora	er ty age r	pe of outing	contr g calc	ol de ulati	vice ons w	other ill be	than a
Hydro-H Hydro-H invalio Depth	Brak Brak date (m)	e Opti e Opti d	.mum® ; .mum® } (1/s)	as spec pe util Depth	ifie ised (m)	ed. S i then Flow	hould these (l/s)	anothe stora	er ty age r (m)	pe of outing	contr g calc (1/s)	ol de ulati Dept	vice ons w h (m)	other ill be Flow	than a
Hydro-H Hydro-H invalio Depth	Brak Brak date (m) .100	e Opti e Opti d	.mum® a .mum® } (1/s) 6.8	be util	ifie ised (m)	ed. S i then Flow	5hould these (1/s) 21.7	anothe stora Depth 3	er ty age r (m) .000	pe of outing	contr g calc (1/s) 33.6	ol de ulati	vice ons w h (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro-H Hydro-H invalio Depth 0. 0.	Brak Brak date (m) .100 .200	e Opti e Opti d	.mum® a .mum® 3 (1/s) 6.8 18.6	Depth	(m) 2000, 400	ed. S i then Flow	<pre>Should these (1/s) 21.7 23.3</pre>	anothe stora Depth 3 3	er ty age r (m) .000 .500	pe of outing Flow	contr calc (1/s) 33.6 36.2	ol de ulati Dept	vice ons w h (m) 7.000 7.500	other ill be Flow	than a (1/s) 50.6 52.4
Hydro-H Hydro-H invalio Depth 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400	e Opti e Opti d	.mum® a .mum® } (1/s) 6.8	Depth	ifie ised (m)	ed. S i then Flow	5hould these (1/s) 21.7	anothe stora Depth 3 4 4	er ty age r (m) .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6	ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	Depth	(m) (200 (400 (800 (800) (000)	ed. S i then Flow	<pre>should these (1/s) 21.7 23.3 24.9 26.3 27.7</pre>	anothe stora Depth 3 3 4 4 5	er ty age r (m) .000 .500 .500 .500	pe of outing Flow	contr (1/s) 33.6 36.2 38.6 40.9 43.0	ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8	Depth	(m) (200 (400 (600 (800 (000) (200)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe stora Depth 3 3 4 4 5 5	er ty age r (m) .000 .500 .500 .000 .500	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (800 (800) (000)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .500 .500	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-1 Hydro-1 invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-1 Hydro-1 invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-1 Hydro-1 invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-1 Hydro-1 invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I Hydro-I invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brak Brak date (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (800) (200) (400)	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

ile D&P NEW SW.MDX Checked by	Proposed SW Simulations 1 in 2 Yr Stormsate 19.04.2023 ile D&P NEW SW.MDXDesigned by Checked byChecked byChecked byicro DrainageNetwork 2014.1Storage Structures for StormCellular Storage Manhole: 13, DS/PN: 1.005Invert Level (m) 93.620 Safety Factor 2.0Infiltration Coefficient Base (m/hr) 0.00000Perth (m) Area (m²) Inf. Area (m²)0.000 24.00.00					Page 3
1 in 2 Yr Stormsate 19.04.2023ile D&P NEW SW.MDXChecked byicro DrainageNetwork 2014.1Storage Structures for StormCellular Storage Manhole: 13, DS/PN: 1.005Invert Level (m) 93.620 Safety Factor 2.0Infiltration Coefficient Base (m/hr) 0.00000Depth (m) Area (m²) Inf. Area (m²)0.00024.00.000.00.000.0	1 in 2 Yr Storms ate 19.04.2023 ile D&P NEW SW.MDX Checked by icro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Popth (m) Area (m²) Inf. Area (m²) 0.000 24.0 0.00 0.801 0.0					6
ate 19.04.2023 Designed by ile D&P NEW SW.MDX Checked by icro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0	ate 19.04.2023 Designed by ile D&P NEW SW.MDX Checked by icro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 24.0 0.0 0.801 0.0 0.0					$\ \mathbf{v} \mathbf{v} \ $
ile D&P NEW SW.MDX Checked by icro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0	ile D&P NEW SW.MDX Checked by icro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.00 0.801 0.0				IS	
icro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) 0.00 0.00 0.000 24.0 0.0 0.801 0.0 0.0	icro Drainage Network 2014.1 <u>Storage Structures for Storm</u> <u>Cellular Storage Manhole: 13, DS/PN: 1.005</u> Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0					
Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.801 0.0	Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.801 0.0		X			
Cellular Storage Manhole: 13, DS/PN: 1.005Invert Level (m) 93.620 Safety Factor 2.0Infiltration Coefficient Base (m/hr) 0.00000Porosity 0.95Infiltration Coefficient Side (m/hr) 0.00000Depth (m) Area (m²) Inf. Area (m²)0.00024.00.000.8010.000.0	Cellular Storage Manhole: 13, DS/PN: 1.005Invert Level (m) 93.620 Safety Factor 2.0Infiltration Coefficient Base (m/hr) 0.00000Porosity 0.95Infiltration Coefficient Side (m/hr) 0.00000Depth (m) Area (m²) Inf. Area (m²)0.00024.00.000.8010.000.0	icro Drainage		Network 2014.1		
		C Infiltra Infiltra Depth (m) A 0.000	ellular Storag Inve tion Coefficient tion Coefficient rea (m ²) Inf. Ar 24.0	Structures for S ge Manhole: 13, I rt Level (m) 93.62 Base (m/hr) 0.0000 Side (m/hr) 0.0000 rea (m ²) Depth (m) A 0.0 0.801	OS/PN: 1.005 0 Safety Factor 0 Porosity (0 Area (m ²) Inf. Are).95 3a (m²)

										Page 4
				-		-	Chippin	-		<u></u>
							ulations			Ly.
						Storm	s			
te 19.04.2023					gned 1					
le D&P NEW SU	W.MDX				ked by	_				
cro Drainage				Netv	ork 2	014.1				
Sum	nary c	of Resu	lts fo	r 60	minut	е 2 уе	ar Winte	er (St	torm)	
Ma	argin f	for Floo	d Risk W Analys	is Ti			DVD St Inertia St			
			Surchar	-				Pipe		
PN	US/MH Name	Level (m)	Depth (m)		/olume (m³)	Flow / Cap.	Overflow (1/s)		Statu	-
						-			olalu	3
1.000		94.520	-0.		0.000	0.05	0.0	1.6	0	
1.001 2.000		93.838 94.624	-0. -0.		0.000	0.03 0.06	0.0 0.0	1.5 2.7		
3.000		94.824 94.514	-0. -0.		0.000	0.08	0.0	1.0		
1.002		93.836	-0.		0.000	0.10	0.0	5.1		
4.000		94.416	-0.		0.000	0.03	0.0	1.1		
5.000		94.516	-0.		0.000	0.03	0.0	1.3		
1.003		93.827	-0.		0.000	0.14	0.0	7.7		
6.000	9	94.225	-0.	125	0.000	0.07	0.0	1.4	0	K
6.001	10	93.939	-0.	111	0.000	0.15	0.0	2.7	0	к
7.000	11	94.033	-0.	117	0.000	0.11	0.0	2.8	0	K
1.004		93.821	-0.		0.000	0.25	0.0	12.5		К
1.005		93.813			0.000	0.41	0.0	10.3		
1.006	14	93.684	-0.	141	0.000	0.30	0.0	10.3	0	K

	Page 1	
	Dog & Partridge Chipping	
	Proposed SW Simulations	
	1 in 30 Yr Storms + CC	سر
Date 19.04.2023	Designed by	
File D&P NEW SW.MDX		
	Checked by	
Micro Drainage	Network 2014.1	
	Outfall Details for Storm	
Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
1.006 SW DRAIN	94.550 93.500 93.500 1200 0	
Simulati	ion Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	1.000 Additional Flow - % of Total Flow 40.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Run Time (mins) 1440	
	graphs 0 Number of Storage Structures 1 strols 1 Number of Time/Area Diagrams 0 strols 0	
Synthe	tic Rainfall Details	
Rainfall Model	FSR Profile Type Winter	
Return Period (years)	30 Cv (Summer) 0.750	
	Land and Wales Cv (Winter) 0.840	
M5-60 (mm) Ratio R	19.000 Storm Duration (mins) 15 0.300	
Racio R	0.300	
©1982	2-2014 XP Solutions	

س <u>التت</u>
<u> </u>
<u> </u>
/s)
0.6
2.4
4.0
5.6 7.2
8.7
0 2 4 5 7

			Page 3
	Dog & Partridge	Chipping	
	Proposed SW Simu	ulations	Mr.
	1 in 30 Yr Stor	ns + CC	1 ° U
ate 19.04.2023	Designed by		
ile D&P NEW SW.MDX	Checked by		نې د
icro Drainage	Network 2014.1		
	Structures for S	torm	
<u>Cellular</u> Stora	ge Manhole: 13, D	S/PN: 1.005	
Inve Infiltration Coefficient Infiltration Coefficient) Porosity (
Depth (m) Area (m²) Inf. A	rea (m ²) Depth (m) A	rea (m²) Inf. Arc	aa (m ²)
0.000 24.0 0.800 24.0	0.0 0.801	0.0	0.0
0.000 2.10			

								Page 4
				Dog & P	artrido	ge Chipp	ing	
				-		imulatio	-	14
				-		orms + C		$\parallel \sim$
10 04 00	0.0						C	
e 19.04.20				Designe	_			
D&P NEW		X		Checked				
ro Drainag	Je		1	Network	2014.3	1		
Su	mmary	of Rea	sults for	15 minu	ute 30	year Wi	nter	(Storm)
	Margir	for Fl	ood Risk Wa	rning (m	m) 200 i	סעס ו	Statu	S OFF
	nar gri					e Inertia		
			-	DTS Stat	-			
			Surcharged				Pipe	
PN	US/MH Name	Level (m)	Depth (m)	(m ³)	Flow / Cap.	Overflow (1/s)	(1/s)	Status
EM	Name	()	(111)	(ш-)	cap.	(1/3)	(1/5)	blatus
1.000	1	94.547	-0.103	0.000	0.21	0.0	7.4	OK
1.001	2	94.157	0.077	0.000	0.11	0.0	5.8	SURCHARGED
2.000	3	94.656	-0.094	0.000	0.29	0.0	12.7	OK
3.000	4	94.531	-0.119	0.000	0.10	0.0	4.5	OK
1.002	5	94.155	0.105	0.000	0.39	0.0	19.7	SURCHARGED
4.000	6	94.435	-0.115	0.000	0.12	0.0	4.9	OK
5.000	7	94.535	-0.115	0.000	0.12	0.0	6.2	OK
1.003	8	94.148	0.138	0.000	0.53	0.0	29.0	SURCHARGED
6.000	9	94.258	-0.092	0.000	0.31	0.0	6.6	OK
6.001	10	94.146	0.096	0.000	0.74	0.0	13.0	SURCHARGED
7.000	11	94.149	-0.001	0.000	0.52	0.0	13.1	OK
1.004	12	94.138	0.178	0.000	0.99	0.0	49.4	SURCHARGED
1.005		94.123				0.0		SURCHARGED
1.006		93.722			0.57			

	Page 1
	Dog & Partridge Chipping
	Proposed SW Simulations
	1 in 30 Yr Storms + CC
Date 19.04.2023	Designed by
File D&P NEW SW.MDX	Checked by
Micro Drainage	Network 2014.1
Free Flowing	Outfall Details for Storm
	C. Level I. Level Min D,L W
Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)
	94.550 93.500 93.500 1200 0
Simulati	on Criteria for Storm
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	1.000 Additional Flow - % of Total Flow 40.0000MADD Factor * 10m³/ha Storage 2.0000Run Time (mins) 1440
Number of Input Hydrogr	raphs 0 Number of Storage Structures 1 rols 1 Number of Time/Area Diagrams 0
	ic Rainfall Details
<u></u>	
Return Period (years) Region Engla M5-60 (mm) Ratio R	30 Cv (Summer) 0.750 and and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) 30 0.300
©1982	-2014 XP Solutions

							Page 2
			Dog &	Partrido	ge Chippin	g	[
			Propo	sed SW Si	Imulations		14 A.
				30 Yr Sto			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ate 19.04.20	23		Desig	ned by			
ile D&P NEW :	SW.MDX		_	ed by			[].
licro Drainago	e		Netwo	ork 2014.1	<u>l</u>		
		Onl	line Contr	ols for S	torm		
Hydro-Bi	rake Op	timum® M	anhole: 13	B, DS/PN:	1.005, Vo	lume (m³)	: 2.9
			Unit Refere	ence MD-SHE	-0198-2000-	1000-2000	
			Design Head			1.000	
		De	sign Flow (]			20.0	
			Flush-E Object		C ise upstrea	alculated m_storage	
			Diameter (and abouted	198	
		I	nvert Level			93.620	
ŀ		-	e Diameter (225	
	Suggest	ed Manhol	e Diameter ((mm)		1500	
		Contro	ol Points	Head (r	n) Flow (l/s	3)	
	D	esign Poir	t (Calculat				
				lo™ 0.33			
			Kick-F. ver Head Ra:	10® 0.72	20 17. - 16.		
Hydro-Brake Op							
	otimum® a	as specifi	ed. Should	another ty	pe of contr	ol device d	other than a
Hydro-Brake Or Hydro-Brake Or	ptimum® a ptimum® b	as specifi De utilise	ed. Should d then these	another ty e storage r	pe of contr outing calc	ol device c ulations wi	ll be
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flo 0.100	ptimum® a ptimum® k pw (l/s) 6.8	ns specifi De utilise Depth (m) 1.200	ed. Should d then these Flow (1/s) 21.7	another ty e storage r Depth (m) 3.000	pe of contr outing calc Flow (1/s) 33.6	ol device dulations wi Depth (m) 7.000	ther than a 11 be Flow (1/s) 50.6
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flo 0.100 0.200	ptimum® a ptimum® k bw (l/s) 6.8 18.6	ns specifi de utilise Depth (m) 1.200 1.400	ed. Should d then these Flow (1/s) 21.7 23.3	another ty e storage r Depth (m) 3.000 3.500	pe of contr outing calc Flow (1/s) 33.6 36.2	ol device o ulations wi Depth (m) 7.000 7.500	ther than a 11 be Flow (1/s) 50.6 52.4
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flo 0.100 0.200 0.300	etimum® a etimum® b ow (1/s) 6.8 18.6 19.8	as specifi be utilise Depth (m) 1.200 1.400 1.600	ed. Should d then these Flow (1/s) 21.7 23.3 24.9	another ty e storage r Depth (m) 3.000 3.500 4.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6	ol device o ulations wi Depth (m) 7.000 7.500 8.000	ther than a 11 be Flow (1/s) 50.6 52.4 54.0
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flo 0.100 0.200 0.300 0.400	ptimum® a ptimum® h pw (1/s) 6.8 18.6 19.8 19.8	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9	ol device o ulations wi Depth (m) 7.000 7.500 8.000 8.500	ther than a 11 be Flow (1/s) 50.6 52.4 54.0 55.6
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flo 0.100 0.200 0.300	etimum® a etimum® b ow (1/s) 6.8 18.6 19.8	as specifi be utilise Depth (m) 1.200 1.400 1.600	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6	ol device o ulations wi Depth (m) 7.000 7.500 8.000 8.500	ther than a 11 be Flow (1/s) 50.6 52.4 54.0
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a better than a flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600	<pre>ptimum@ a ptimum@ l ptimum@ l ptimum@ l py</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a 11 be 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a 11 be 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a better than a flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	ther than a 11 be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	ther than a 11 be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a 11 be 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a 11 be 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	ther than a 11 be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a 11 be 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Or Hydro-Brake Or invalidated Depth (m) Flc 0.100 0.200 0.300 0.400 0.500 0.600 0.800	<pre>ptimum® a ptimum® a ptimum® b</pre>	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device o ulations wi 7.000 7.500 8.000 8.500 9.000 9.500	Ther than a better than a flow (1/s) 50.6 52.4 54.0 55.6 57.2

												Page 3
						Part						<u> </u>
						sed S				5		$\ \mathcal{T}_{\mathcal{T}}\ $
						30 Yr			+ CC			\parallel \bigcirc
	04.2023					ned b						
	NEW SW.	MDX				ed by						
licro Dr	ainage				Netwo	rk 20	14.1					
				orage S								
		Cellu	lar :	Storage	e Manh	ole:	13,	DS/P	N: 1	.005		
				Invert ficient B ficient S	Base (r		0.000	00		Facto		
	Depth (m)	Area	(m²)]	inf. Area	11. (m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
	0.000 0.800		24.0 24.0		0.0 0.0		.801		0.0			0.0
	0.000	2			0.0							

								Pac	je 4
			I	Dog & Pa	artrid	ge Chipp	ing		-
				-		imulatio	-	14	
				-		orms + C			سہ
Date 19.04.20	123			Designed			0		
				Checked	-				·····
File D&P NEW		×				1		L	ىلى كى مەلى
licro Drainaç	le		Ľ	Network	2014.	L			
C 111	mm = 1037	of Por	sults for	30 minu	+ 30	voar Wi	nter	(Storm)	
501	iunar y	OI KE	Surts for	50 11110	ite Ju	year wri	iiter		
	Margin	n for Fl	ood Risk Wa	rning (m	m) 200.	0 DVD	Statu	s OFF	
	-			-		e Inertia	Statu	s OFF	
				DTS Stat	us O	N			
		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth		Flow /	Overflow	-		
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	
1.000	1	94.542	-0.108	0.000	0.17	0.0	6.0	ОК	
1.000		94.542			0.09	0.0		SURCHARGED	
2.000		94.650	-0.100		0.24	0.0		OK	
3.000		94.528	-0.122		0.08	0.0	3.7	OK	
1.002		94.213	0.163		0.32	0.0		SURCHARGED	
4.000		94.432	-0.118		0.10	0.0	4.0	OK	
5.000		94.532	-0.118		0.10	0.0	5.0	OK	
1.003		94.207			0.45	0.0		SURCHARGED	
6.000		94.251	-0.099		0.26	0.0	5.4	OK	
6.001		94.206	0.156		0.56	0.0	9.9	SURCHARGED	
7.000	11	94.207	0.057	0.000	0.43	0.0	10.7	SURCHARGED	
1.004	12	94.196	0.236	0.000	0.80	0.0	40.1	SURCHARGED	
1.005	13	94.181	0.336	0.000	0.80	0.0	19.8	SURCHARGED	
1.006	14	93.722	-0.103	0.000	0.57	0.0	19.8	OK	

	Page 1
	Dog & Partridge Chipping
	Proposed SW Simulations
	1 in 30 Yr Storms + CC
Date 19.04.2023	Designed by
File D&P NEW SW.MDX	Checked by
	Network 2014.1
Micro Drainage	Network 2014.1
Free Flowing	Outfall Details for Storm
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)
1.006 SW DRAIN	94.550 93.500 93.500 1200 0
Simulati	on Criteria for Storm
Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Number of Input Hydrog:	1.000 Additional Flow - % of Total Flow 40.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Run Time (mins) 1440 0.500 Output Interval (mins) 1 raphs 0 Number of Storage Structures 1 trols 1 Number of Time/Area Diagrams 0
	tic Rainfall Details
Return Period (years) Region Engl M5-60 (mm) Ratio R	30 Cv (Summer) 0.750 and and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) 60 0.300

														Page	e 2
							Dog &	Part	ridq	re Ch	ippin	g			
							Propo	sed S	W Si	mula	tions			$\parallel \mathcal{L}$	\sim
							1 in	30 Yr	Sto	orms ·	+ CC				\mathcal{O}
ate 19							Desig	ned b	у						
ile D&			.MDX					ed by							ل
licro D	rain	age					Netwo	ork 20	14.1						
					Onl	ine (Contr	ols f	or S	torm					
H	ydro-	-Brai	ke Op	timum	® Ma	anhol	.e: 13	8, DS/	PN:	1.00	5, Vo	lume	e (m³): 2.	9
						Unit	Refere	ence MI	D-SHE	-0198-	-2000-	1000-	2000		
						esign	Head	(m)				1	.000		
					Des	-	'low (] 'lush-E				c	alcul	20.0 ated		
								cive N	Minim	ise um					
							eter (1			198		
							Level	• •				93	.620		
				Dutlet Led Mar	-								225 1500		
		J	uggest						.,				1000		
			P			ol Poi			-	-	w (1/s	-			
			D	esign 1	Poin		lush-F		1.00		19. 19.				
							Kick-F		0.72		17				
			м	ean Flo	ow o'	ver He	ad Ra	ndo		_	16.	.7			
Hydro-1 Hydro-1	Brake Brake	Opti Opti	. calcu .mum® a	ulatior as spec	ns ha cifie	ive be ed. S	en bas should	sed on anothe	er ty	Head/I pe of	Discha contr	rge r ol de	vice	other) for t than a
Hydro-1 Hydro-1 invalio	Brake Brake dated	Opti Opti	. calcu .mum® a .mum® }	ulation as spec be util	ns ha cifie lisec	ave be ed. S d then	en bas Should these	sed on anothe e stora	er ty age r	Head/I pe of outing	Discha contr g calc	rge r ol de ulati	vice ons w	other ill be	than a
Hydro-J Hydro-J invalio Depth	Brake Brake dated (m)	Opti Opti	. calcu mum® a mum® } (1/s)	ulation as spec be util Depth	ns ha cifie lisec (m)	ave be ed. S d then Flow	en bas should these (1/s)	sed on anothe stora	er ty age r (m)	Head/I pe of outing	Discha contr g calc (1/s)	rge r ol de ulati Dept	vice ons w h (m)	other ill be Flow	than a
Hydro-J Hydro-J invalio Depth 0.	Brake Brake dated (m) 1	Opti Opti	. calcu .mum® a .mum® } (1/s) 6.8	ulation as spec be util Depth	ns ha cifie lisec (m) .200	ave be ed. S d then Flow	en bas Should these (1/s) 21.7	sed on anothe stora Depth 3	er ty age r . (m)	Head/I pe of outing	Discha contr g calc (1/s) 33.6	rge r ol de ulati Dept	vice ons w h (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro-I Hydro-I invalio Depth 0.	Brake Brake dated (m) 100 .200	Opti Opti Flow	. calcu .mum® a .mum® b (1/s) 6.8 18.6	Depth	ns ha cifie lisec (m) .200 .400	ave be ed. S d then Flow	en bas should these (1/s)	sed on anothe stora Depth 3 3	er ty age r (m) .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500	other ill be Flow	than a
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400	Opti Opti Flow	. calcu mum® a mum® b (1/s) 6.8 18.6 19.8 19.8	Depth	ns ha cifie Lisec (m) .200 .400 .600 .800	ave be ed. S d then Flow	een bas bhould (1/s) 21.7 23.3 24.9 26.3	sed on anothe stora Depth 3 3 4 4	er ty age r .000 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9	rge r ol de ulati	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-J Hydro-J invalio Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) : .100 .200 .300 .400 .500	Opti Opti Flow	(1/s) (1/s)	Depth	ns ha cifie lisec (m) .200 .400 .600 .800 .000	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7	sed on anothe stora Depth 3 3 4 4 5	er ty age r .000 .500 .500 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalio Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 2 2	(m) (m) (200 (400 (600 (800) (000) (200)	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	beed on anothe stora	(m) (m) .000 .500 .500 .000 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	rge r ol de ulati	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-J Hydro-J invalio Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) : .100 .200 .300 .400 .500	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	ns ha cifie lisec (m) .200 .400 .600 .800 .000	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7	beed on anothe stora	er ty age r .000 .500 .500 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalio Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalio Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalio Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalio Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-J Hydro-J invalid Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake Brake dated (m) 1 .100 .200 .300 .400 .500 .600 .800	Opti Opti Flow	(1/s) (1/s)	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	beed on anothe stora	er ty age r .000 .500 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>

Dog & Partridge Chipping Proposed SW Simulations 1 in 30 Yr Storms + CC Le DAP NEW SW.MDX Designed by Checked by oro Drainage Le DAP NEW SW.MDX Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Pactor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Ares (n²) Inf. Ares (n²) Depth (m) Ares (n²) Inf. Ares (n²) 0.000 24.0 0.0 0.801 0.0 0.0 0.800 24.0 0.0 0.801 0.0 0.0														Page 3	
1 in 30 Yr Storms + CC te 19.04.2023 Designed by Le D&P NEW SW.MDX Checked by cro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0														<u> </u>	
te 19.04.2023 Designed by Checked by Checked by Checked by Cro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.0 0.801 0.0 0.0														$\ \mathcal{V}_{\gamma}\ $	~
le D&P NEW SW.MDX Checked by cro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0		0.0								orms	+ CC			_ `	
Cro Drainage Network 2014.1 Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0			1 DV												
Storage Structures for Storm Cellular Storage Manhole: 13, DS/PN: 1.005 Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.00 0.0			IDX							1				L	يركم.
Cellular Storage Manhole: 13, DS/PN: 1.005Invert Level (m) 93.620 Safety Factor 2.0Infiltration Coefficient Base (m/hr) 0.00000Porosity 0.95Infiltration Coefficient Side (m/hr) 0.00000Depth (m) Area (m ²) Inf. Area (m ²)0.000 24.00.801 0.0		Je					letwo	IK 20	14.1						
Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0				S	torag	ge St	ruct	ures	for	Stor	<u>rm</u>				
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 24.0 0.0 0.801 0.0 0.0			Cell	ular											
0.000 24.0 0.0 0.801 0.0 0.0					ficie	ent Ba	ase (r	n/hr)	0.000	000					
	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
									.801		0.0			0.0	
								I							

								Page 4
				-		ge Chipp	-	k.
				-		imulatio		$\ \mathcal{T}_{\mathcal{T}}$
				1 in 30	Yr Sto	orms + C	С	
e 19.04.20)23		I	Designe	d by			
D&P NEW	SW.MD	X		Checked	by			···· ··· ···
o Drainac	je		1	Network	2014.3	L		
Sui	mmary	of Rea	sults for	60 minu	ite 30	year Wi	nter	(Storm)
	Morain	for Fl	.ood Risk Wa	rning (m	m) 200 (Statu	- OFF
	Margin	I LOI FI				e Inertia		
			-	DTS Stat	-		Deaca	
			Surcharged				Pipe	
	-	Level	Depth		-	Overflow		
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	1	94.534	-0.116	0.000	0.12	0.0	4.2	OK
1.001	2	94.162	0.082	0.000	0.07	0.0	3.3	SURCHARGED
2.000	3	94.641	-0.109	0.000	0.17	0.0	7.3	OK
3.000	4	94.522	-0.128	0.000	0.05	0.0	2.6	OK
1.002	5	94.161	0.111	0.000	0.23	0.0	11.8	SURCHARGED
4.000	6	94.426	-0.124	0.000	0.07	0.0	2.8	OK
5.000	7	94.526	-0.124	0.000	0.07	0.0	3.5	OK
1.003	8	94.155	0.145	0.000	0.33	0.0	18.2	SURCHARGED
6.000	9	94.243	-0.107	0.000	0.18	0.0	3.7	OK
6.001	10	94.154	0.104	0.000	0.39	0.0	6.8	SURCHARGED
7.000	11	94.155	0.005	0.000	0.30	0.0	7.5	SURCHARGED
1.004	12	94.144	0.184	0.000	0.60	0.0	30.3	SURCHARGED
1.005	13	94.128	0.283	0.000	0.80	0.0	19.8	SURCHARGED
1.006	14	93.722	-0.103	0.000	0.57	0.0	19.8	OK

		Page 1
	Dog & Partridge Chipping	
	Proposed SW Simulations	h
	1 in 100 Yr Storms + CC	
Date 19.04.2023	Designed by	
File D&P NEW SW.MDX		
	Checked by Network 2014.1	السيكيا
Micro Drainage	Network 2014.1	
Free Flowing	Outfall Details for Storm	
	C. Level I. Level Min D,L W	
Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)	
1.006 SW DRAIN	94.550 93.500 93.500 1200 0	
Simulati	on Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	1.000 Additional Flow - % of Total Fl 0 MADD Factor * 10m³/ha Stora 0 Run Time (mir	ow 40.000 nge 2.000 ns) 1440
Mannole Headloss Coell (Global)	0.500 Output Interval (min	15) 1
	raphs 0 Number of Storage Structures 1 trols 1 Number of Time/Area Diagrams (trols 0	
Synthe	tic Rainfall Details	
Rainfall Model	FSR Profile Type Wi	inter
Return Period (years)	100 Cv (Summer) (
	and and Wales Cv (Winter) (
M5-60 (mm)	19.000 Storm Duration (mins)	15
Ratio R	0.300	
	2014 VD Cal-t-t	
©1982	2-2014 XP Solutions	

														Page	e 2
							Dog &	Part	ridq	ge Ch	ippin	g			
							Propo	sed S	SW Si	mula	tions			14	~ .
								100 i		Storm	s + C	с			U.
ate 19							-	ned b	_						
ile D&			.MDX					ed by							
icro D	ralı	nage					Netwo	ork 20)14.1	•					
					Onl	ine (Contr	ols f	or S	torm					
н	vdro	-Bra	ke On	timum	® M≂	nhol	۹۰ ۱۹	8. DS	/PN•	1.00	5. Vc	lume	(m ³)· 2	9
<u></u>	yurt	, Dru		<u>e main</u>				ence M						,. 2.	<u> </u>
							Head			0100	2000-		.000		
					Des	-	low (1						20.0		
							lush-E		Minim	100	-	alcul			
							object eter (tive (mm)	nrujw	⊥se u]	strea	STO	rage 198		
					In		Level	• •				93	.620		
				Dutlet	-								225		
		5	Suggest	ed Mar	hole	Diam	eter	(mm)					1500		
				Co	ntro	l Poi	nts	He	ad (1	a) Flo	w (1/s	3)			
			D	esign 1	Point						19.				
							lush-F Kick-F		0.33		19. 17.				
			м	ean Flo	ro wc				0.72	_	16				
Hydro- Hydro-	Brak Brak	e Opti e Opti	imum® a	ulatior as spec pe util	ifie	ed. S	hould	anoth	er ty	pe of	contr	ol de	vice	other	than a
Hydro- Hydro- invali	Brak Brak date	e Opti e Opti d	imum® a imum® 1	as spec pe util	ifie. ised	d. S l then	hould these	anoth e stor	er ty age r	pe of outing	contr g calc	ol de ulati	vice ons w	other ill be	than a
Hydro- Hydro- invali Depth	Brak Brak date (m)	e Opti e Opti d	imum® ; imum®] (1/s)	as spec pe util Depth	ifie ised (m)	d. S l then	hould these (1/s)	anoth e stor	er ty age r 1 (m)	pe of outing	contr g calc (1/s)	ol de ulati Dept	vice ons w h (m)	other ill be Flow	than a (1/s)
Hydro- Hydro- invali Depth	Brak Brak date (m) .100	e Opti e Opti d	imum® ; imum®] (1/s) 6.8	as spec pe util Depth	ifie ised (m)	d. S l then	hould these (1/s) 21.7	anoth e stor	er ty age r h (m) 3.000	pe of outing	contr g calc (1/s) 33.6	ol de ulati Dept	vice ons w h (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro- Hydro- invali Depth 0 0	Brak Brak date (m)	e Opti e Opti d Flow	imum® ; imum®] (1/s)	Depth	ifie ised (m)	d. S l then Flow	hould these (1/s)	anoth e stor	er ty age r 1 (m)	pe of outing Flow	contr g calc (1/s)	ol de ulati Dept	vice ons w h (m)	other ill be Flow	than a (1/s)
Hydro- Hydro- invali Depth 0 0 0 0	Brak Brak date (m) .100 .200 .300 .400	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8	Depth	(m) (200 (400 (600 (800)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3	anoth stor Deptl	er ty age r (m) 3.000 3.500 4.000 4.500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9	ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invali Depth 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500	e Opti e Opti d Flow	imum® 3 imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.4	Depth	(m) (200 (400 (800 (800) (000)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7	anoth e stor	er ty age r a (m) 3.000 3.500 4.000 4.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600	e Opti e Opti d Flow	imum® 3 imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	Depth	(m) (200 (400 (600 (800) (000) (200)	d. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anoth e stor	er ty age r (m) 3.000 3.500 4.000 4.500 5.000 5.500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak date (m) .100 .200 .300 .400 .500	e Opti e Opti d Flow	imum® 3 imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.4	Depth	(m) (200 (400 (800 (800) (000)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7	anoth e stor	er ty age r a (m) 3.000 3.500 4.000 4.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brak Brak (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) (200 (400 (600 (800 (000) (200) (400)	d. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anoth e stor	er ty age r (m) 3.000 3.500 4.500 5.000 5.500 5.000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>

				Page 3				
	Dog & Pa	artridge	Chipping					
		d SW Simu		<u> </u>				
			orms + CC					
Date 19.04.2023	Designed by							
File D&P NEW SW.MDX	Checked by							
Micro Drainage	Network 2014.1							
Micro Drainage <u>Storage</u> <u>Cellular Stora</u>	Network Structure ge Manhole ert Level (n t Base (m/h) t Side (m/h)	2014.1 es for St e: 13, D: n) 93.620 r) 0.00000 r) 0.00000	S/PN: 1.005 Safety Factor Porosity	y 0.95				

Le D&P NEW SW.MDX Checked by									Page
Proposed SW Simulations 1 in 100 Yr Storms + CC te 19.04.2023 le D&P NEW SW.MDX Checked by cro Drainage Network 2014.1 Summary of Results for 15 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Succharged PN Name (m) (m) (m³) Cap. 1.000 1 94.553 -0.097 0.000 0.01 94.535 1.001 1 94.535 1.002 5 94.352 0.000 0.16 0.001 0.4.4 0.001 94.540 0.001 0.4.44 0.001 94.440 0.001 0.4.44 0.001 94.540 0.001 0.6.9 0.003 94.664 0.000 0.48 0.001 94.540				I	Dog & Pa	artrido	ge Chipp	ing	
1 in 100 Yr Storms + CC te 19.04.2023 Designed by Checked by Designed by Checked by Cro Drainage Network 2014.1 Summary of Results for 15 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe PIN Water Surcharged Flooded Pipe Plow NMMME (m) (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.110 0.000 0.16 0.0 6.4 OK 4.000 6 94.440 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346					-			-	\ <u>\</u>
te 19.04.2023 Designed by Checked by le D&P NEW SW.MDX Checked by cro Drainage Network 2014.1 Summary of Results for 15 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe PN Vater Surcharged Flooded Pipe Volume Flow / Overflow Flow FN 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.110 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 -0.110 0.000 0.69 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>					-				
Le D&P NEW SW.MDX Checked by cro Drainage Network 2014.1 Summary of Results for 15 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.110 0.000 0.12 0.0 5.8 OK 1.002 5 94.354 0.000 0.4 0.0 <	10 04 01	000					SCOIMS T	CC	
bro Drainage Network 2014.1 Summary of Results for 15 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.44 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000					-	_			
Summary of Results for 15 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 -0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.48 0.0 14.8 SURCHARGED 6.001 10 94.344 0.294 0.000 0.65 0.0 14.8 SURCHARG	e D&P NEW	SW.MD	X	0	Checked	by			
Margin for Flood Risk Warning (mm) 200.0 Analysis Timestep DTS Status DVD Status OFF Inertia Status OFF Water Surcharged Depth Flooded Pipe (m ³) Flow PN Name (m) 0 0.00 0.27 0.0 9.5 0K 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 0K 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 0K 3.000 4 94.535 -0.115 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 0K 1.003 8 94.346 0.336 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.65 0.0 0K	ro Drainao	ge		1	Network	2014.1	L		
Analysis Timestep DTS Status Fine ON Inertia Status OFF Water Surcharged Depth Flowdow (m ³) Pipe Flow Cap. Pipe (l/s) PN Name (m) (m) 0.000 0.27 0.0 9.5 OK 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 0.036 0.000 0.41 0.0 8.5 SURCHARGED <	Sun	nmary	of Res	ults for	15 minu	te 100	year Wi	nter	(Storm)
DTS Status ON US/MH Kater Surcharged Floded Ploef Flow Cap. (1/s) Flow Flow NM Name (m) 0 0.000 0.27 0.0 9.5 OK 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.69 0.0 37.7 SURCHARG		Margir	ı for Fl						
US/MH Level Depth Volume Flow / Cap. Overflow Flow 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.48 0.0 24.4 SURCHARGED 4.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.41 0.0 8.5 SURCHARGED 6.001 10 94.344 0.294 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>Statu</td> <td>S OFF</td>				-		-		Statu	S OFF
PN Name (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.41 0.0 8.5 SURCHARGED 6.001 10 94.354 0.004 </th <th></th> <th></th> <th>Water</th> <th>Surcharged</th> <th>Flooded</th> <th></th> <th></th> <th>Pipe</th> <th></th>			Water	Surcharged	Flooded			Pipe	
1.000 1 94.553 -0.097 0.000 0.27 0.0 9.5 OK 1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.69 0.0 37.7 SURCHARGED 6.001 10 94.344 0.294 0.000 0.85 0.0 14.8 SURCHARGED 7.000 11 94.346 0.196 0.000 0.64 0.0 16.1 SURCHARGED		US/MH	Level	Depth	Volume	Flow /	Overflow	Flow	
1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.69 0.0 37.7 SURCHARGED 6.001 10 94.354 0.004 0.000 0.41 0.0 8.5 SURCHARGED 7.000 11 94.346 0.294 0.000 0.45 0.0 14.8 SURCHARGED 7.000 11 94.346 0.196 0.000 0.64 0.0 16.1 SURCHARGED	PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.001 2 94.353 0.273 0.000 0.13 0.0 6.5 SURCHARGED 2.000 3 94.664 -0.086 0.000 0.38 0.0 16.4 OK 3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.69 0.0 37.7 SURCHARGED 6.001 10 94.354 0.004 0.000 0.41 0.0 8.5 SURCHARGED 7.000 11 94.346 0.294 0.000 0.45 0.0 14.8 SURCHARGED 1.004 12 94.334 0.374 0.000 1.23 0.0 61.6 SURCHARGED	1 000	1	94 553	-0 097	0 000	0 27	0 0	95	OK
2.000394.664-0.0860.0000.380.016.4OK3.000494.535-0.1150.0000.120.05.8OK1.002594.3520.3020.0000.480.024.4SURCHARGED4.000694.440-0.1100.0000.160.06.4OK5.000794.540-0.1100.0000.160.08.0OK1.003894.3460.3360.0000.690.037.7SURCHARGED6.000994.3540.0040.0000.410.08.5SURCHARGED6.0011094.3440.2940.0000.850.014.8SURCHARGED7.0001194.3460.1960.0001.230.061.6SURCHARGED1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED									
3.000 4 94.535 -0.115 0.000 0.12 0.0 5.8 OK 1.002 5 94.352 0.302 0.000 0.48 0.0 24.4 SURCHARGED 4.000 6 94.440 -0.110 0.000 0.16 0.0 6.4 OK 5.000 7 94.540 -0.110 0.000 0.16 0.0 8.0 OK 1.003 8 94.346 0.336 0.000 0.69 0.0 37.7 SURCHARGED 6.000 9 94.354 0.004 0.000 0.41 0.0 8.5 SURCHARGED 6.001 10 94.346 0.294 0.000 0.85 0.0 14.8 SURCHARGED 7.000 11 94.346 0.196 0.000 0.64 0.0 16.1 SURCHARGED 1.004 12 94.334 0.374 0.000 1.23 0.0 61.6 SURCHARGED 1.005 13 94.318 0.473 0.000 0.80 0.0 19.8 SURCHARGED									
1.002594.3520.3020.0000.480.024.4SURCHARGED4.000694.440-0.1100.0000.160.06.4OK5.000794.540-0.1100.0000.160.08.0OK1.003894.3460.3360.0000.690.037.7SURCHARGED6.000994.3540.0040.0000.410.08.5SURCHARGED6.0011094.3440.2940.0000.850.014.8SURCHARGED7.0001194.3460.1960.0000.640.016.1SURCHARGED1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED									
5.000794.540-0.1100.0000.160.08.0OK1.003894.3460.3360.0000.690.037.7SURCHARGED6.000994.3540.0040.0000.410.08.5SURCHARGED6.0011094.3440.2940.0000.850.014.8SURCHARGED7.0001194.3460.1960.0000.640.016.1SURCHARGED1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED									SURCHARGED
1.003894.3460.3360.0000.690.037.7SURCHARGED6.000994.3540.0040.0000.410.08.5SURCHARGED6.0011094.3440.2940.0000.850.014.8SURCHARGED7.0001194.3460.1960.0000.640.016.1SURCHARGED1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED	4.000	6	94.440	-0.110		0.16	0.0	6.4	OK
6.000994.3540.0040.0000.410.08.5SURCHARGED6.0011094.3440.2940.0000.850.014.8SURCHARGED7.0001194.3460.1960.0000.640.016.1SURCHARGED1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED	5.000	7	94.540	-0.110	0.000	0.16	0.0	8.0	ОК
6.0011094.3440.2940.0000.850.014.8SURCHARGED7.0001194.3460.1960.0000.640.016.1SURCHARGED1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED	1.003	8	94.346	0.336	0.000	0.69	0.0	37.7	SURCHARGED
7.0001194.3460.1960.0000.640.016.1SURCHARGED1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED	6.000	9	94.354	0.004	0.000	0.41	0.0	8.5	SURCHARGED
1.0041294.3340.3740.0001.230.061.6SURCHARGED1.0051394.3180.4730.0000.800.019.8SURCHARGED	6.001				0.000	0.85	0.0	14.8	SURCHARGED
1.005 13 94.318 0.473 0.000 0.80 0.0 19.8 SURCHARGED							0.0		
1.006 14 93.722 -0.103 0.000 0.57 0.0 19.8 OK									
	1.006	14	93.722	-0.103	0.000	0.57	0.0	19.8	OK

Page 1 Dog 6 Partridge Chipping Proposed SW Simulations 1 in 100 Yr Storms + CC Date 19.04.2023 Designed by Micro Drainage Network 2014.1 Free Flowing Outfall Details for Storm Outfall Outfall C. Level Min D,L W Fipe Number Name (n) (n) I. Level (m) (m) (n) 1.006 SN DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - 4 of Total Flow 40.000 Hot Start (mn) 0 MADD Factor * 10m*/ha Storage 2.000 Hot Start (mn) 0 MADD Factor * 10m*/ha Storage 2.000 Hot Start (mn) 0 MADD Factor * 10m*/ha Storage 2.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 100 CV (Summer) 0.750 Region England and Wales CV (Winter) 0.840 M5-60 (mn) 19.000 Storm Duration (mins) 30 Ratic R 0.300
Proposed SW Simulations 1 in 100 Yr Storms + CC Date 19.04.2023 File D&P NEW SW.MDX Micro Drainage Network 2014.1 Free Flowing Outfall Details for Storm Outfall Outfall C. Level Min D,L W Pipe Number Name (m) (m) I. Level Min D,L W Pipe Number Name (m) 1.006 SW DRAIN 94.550 93.500 93.500 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 Mun Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 Machel FSR Profile Type Winter Redot Cr (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 30
1 in 100 Yr Storms + CC Date 19.04.2023 File D&P NEW SW.MDX Micro Drainage Network 2014.1 Free Flowing Outfall Details for Storm Outfall Outfall C. Level Min D,L W Pipe Number Name (m) I. Level Min D,L W Pipe Number Name (m) I. Level (mm) (mm) (m) 1.006 SW DRAIN 94.550 93.500 Pipe Number Name (m) 1.006 SW DRAIN 94.550 93.500 1.006 SW DRAIN 94.550 93.500 1200 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Wi
Date 19.04.2023 File D&P NEW SW.MDX Micro Drainage Network 2014.1 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 100 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 30
File D&P NEW SW.MDX Checked by Micro Drainage Network 2014.1 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Expentitic Rainfall Details 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 30
Micro Drainage Network 2014.1 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 30
Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D, L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) (m) I. Level (mm) (mm) (m) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Region England and Wales Cv (Winter) 0.750 Region England and Wales Cv (Winter) 0.840
Outfall Outfall C. Level I. Level Min D, L W Pipe Number Name (m) (m) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 30
Pipe Number Name (m) (m) I. Level (mm) (mm) 1.006 SW DRAIN 94.550 93.500 93.500 1200 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 30
Simulation Criteria for Storm Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 Manbole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins)
Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Winter Return Period (years) 100 Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins)
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 1440 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Synthetic Rainfall Details Rainfall Model FSR Return Period (years) 100 Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins)
Rainfall ModelFSRProfile Type WinterReturn Period (years)100Cv (Summer)0.750Region England and WalesCv (Winter)0.840M5-60 (mm)19.000 Storm Duration (mins)30
Rainfall ModelFSRProfile Type WinterReturn Period (years)100Cv (Summer)0.750Region England and WalesCv (Winter)0.840M5-60 (mm)19.000 Storm Duration (mins)30
Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 19.000 Storm Duration (mins) 30
©1982-2014 XP Solutions

													Page	e 2
						Dog &	a Part	ridq	je Ch	ippin	g		5	
					:	Propo	sed S	W Si	mula	tions			14	\sim
							100 i		Storm	s + C	С			\mathcal{O}
ate 19.0						-	ned b							
ile D&P		.MDX					ed by						L	ر
icro Dra	inage					Netwo	ork 20	14.1	•					
				Onl	ine (Contr	ols f	or S	torm					
Hyd	ro-Bra	ke Op	timum	B Ma	anhol	.e: 13	3, DS/	PN:	1.00	5, Vo	lume	(m³): 2.	9
					Unit	Refere	ence Mi	D-SHE	-0198-	-2000-	1000-2	2000		
				E	esign	Head	(m)				1	.000		
				Des	-	'low (] 'lush-H				~		20.0		
							rive l	Minim	ise u		alcula m stoi			
						eter (~ ~			198		
					vert	Level	(m)				93	620		
			Dutlet	_								225		
	ç	Suggest	ed Man	hole	e Diam	leter	(mm)				-	L500		
						nts		-	a) Flo	W (1/s	3)			
		D	esign I	Point		lculat lush-F		1.00		19. 19.				
						lush-F Kick-F		0.33		19.				
		М	ean Flo	יס שכ				0.72	_	16				
Hydro-Bra Hydro-Bra	ake Opt: ake Opt:	imum® a	as spec	ifie	ed. S	hould	anothe	er ty	pe of	contr	ol dev	vice (other	
Hydro-Bra Hydro-Bra invalidat	ake Opt: ake Opt: ted	imum® a imum® b	as spec pe util	ifie ised	ed. S l then	hould these	anothe stora	er ty age r	pe of outing	contr g calc	ol dev ulatio	vice (ons w:	other ill be	than a
Hydro-Bra Hydro-Bra invalidat Depth (π	ake Opt: ake Opt: ted n) Flow	imum® a imum® } (1/s)	as spec pe util Depth	ifie isec (m)	ed. S d then Flow	hould these (1/s)	anothe stora	er ty age r (m)	pe of outing	contr g calc (1/s)	ol dev ulatio	vice (ons w: n (m)	other ill be Flow	than a
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10	ake Opt: ake Opt: ted n) Flow 00	imum® a imum® } (1/s) 6.8	as spec be util Depth 1.	ifie ised (m)	ed. S d then Flow	5hould these (1/s) 21.7	anothe stora Depth	er ty age r (m)	pe of outing	contr g calc (1/s) 33.6	ol dev ulatio	vice (ons w: n (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20	ake Opt: ake Opt: ted n) Flow 00	imum® a imum® } (1/s) 6.8 18.6	Depth	(m) 200	ed. S i then Flow	<pre>Should these (1/s) 21.7 23.3</pre>	anothe stora Depth 3 3	er ty age r (m) 6.000 6.500	pe of outing Flow	contr g calc (1/s) 33.6 36.2	ol dev ulatio	vice (ons w: n (m) 7.000 7.500	other ill be Flow	than a (1/s) 50.6 52.4
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10	ake Opt: ake Opt: ted))))))))))))))))	imum® a imum® } (1/s) 6.8	Depth 1. 1.	ifie ised (m)	ed. S i then Flow	5hould these (1/s) 21.7	anothe stora Depth 3 3 4	er ty age r (m)	pe of outing Flow	contr g calc (1/s) 33.6	ol dev ulatio	vice (ons w: n (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30	ake Opt: ake Opt: ted)0)0)0)0)0)0)0	imum® a imum® 3 (1/s) 6.8 18.6 19.8	Depth	(m) 200 400 600	ed. S i then Flow	<pre>should these (1/s) 21.7 23.3 24.9</pre>	anothe stora Depth 3 4 4	er ty age r (m) .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	Depth 1. 1. 1. 1. 2. 2.	(m) (200 (400 (600 (800 (000) (200)	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe store Depth 3 4 4 5 5	er ty age r . (m) .500 .500 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol dev ulatio	rice (ons w: (m) 7.000 7.500 3.000 3.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 (400 (600 (800 (000) (200)	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20 0.30 0.40 0.50 0.60 0.80	ake Opt: ake Opt: ted 00 00 00 00 00 00 00 00 00 00 00 00 00	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe store Depth 3 3 4 4 5 5 6	er ty age r . (m) .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ons w: 1 (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

		Page 3
	Dog & Partridge Chipping	
	Proposed SW Simulations	
	1 in 100 Yr Storms + CC	
Date 19.04.2023	Designed by	
File D&P NEW SW.MDX	Checked by	
Micro Drainage	Network 2014.1	
Storage	Structures for Storm	
Cellular Storag	e Manhole: 13, DS/PN: 1.005	

Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	24.0	0.0	0.801	0.0	0.0
0.800	24.0	0.0			

								Page 4	!
			I	Dog & Pa	artridg	re Chipp	ing		
			I	Proposed	d SW Si	mulatio	ns	<u>Γ</u> Υ	,
				-		torms +		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\cup
te 19.04.20	23			Designe					
le D&P NEW		v		Checked					
cro Drainac		л		Network					
STO DIAINAS	Je			Network	2014.1	•			
Sum	mary	of Res	ults for	30 minu	te 100	year Wi	nter	(Storm)	
	Margin	for Fl	-		ep Fine	e Inertia	Statu: Statu:		
							_		
			Surcharged				Pipe		
PN	US/MH Name	Level (m)	Depth (m)	(m ³)	Flow / Cap.	Overflow (1/s)	Flow (l/s)	Status	
1.000	1	94.548	-0.102	0.000	0.23	0.0	7.9	OK	
1.001		94.504				0.0		SURCHARGED	
2.000	3	94.657	-0.093	0.000	0.31	0.0	13.6	ОК	
3.000		94.532				0.0	4.8	OK	
1.002		94.502				0.0		SURCHARGED	
4.000		94.502	-0.048			0.0	5.3	OK	
5.000 1.003		94.536 94.495	-0.114 0.485		0.13 0.59	0.0 0.0	6.6	OK SURCHARGED	
6.000		94.495	0.485			0.0		SURCHARGED	
6.001		94.494	0.444			0.0		SURCHARGED	
7.000		94.499	0.349			0.0		FLOOD RISK	
1.004		94.483	0.523			0.0		SURCHARGED	
1.005	13	94.468	0.623	0.000	0.80	0.0	19.8	SURCHARGED	
1.006	14	93.722	-0.103	0.000	0.57	0.0	19.8	OK	

	Page 1
	Dog & Partridge Chipping
	Proposed SW Simulations
	1 in 100 Yr Storms + CC
Date 19.04.2023	Designed by
File D&P NEW SW.MDX	Checked by
Micro Drainage	Network 2014.1
Free Flowing	Outfall Details for Storm
	C. Level I. Level Min D,L W
Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)
1.006 SW DRAIN	94.550 93.500 93.500 1200 0
Simulati	on Criteria for Storm
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	1.000 Additional Flow - % of Total Flow 40.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Run Time (mins) 1440
Number of Input Hydrog	raphs 0 Number of Storage Structures 1 trols 1 Number of Time/Area Diagrams 0
Number of Offline Cont	-
Synthet	tic Rainfall Details
Rainfall Model	FSR Profile Type Winter
Return Period (years) Region Engl	100Cv (Summer)0.750and and WalesCv (Winter)0.840
M5-60 (mm)	19.000 Storm Duration (mins) 60
Ratio R	0.300
©1982	-2014 XP Solutions

														Page	e 2
							Dog &	a Part	ride	ge Ch	ippin	g			
							Propo	sed S	W Si	mula	tions			14	
							1 in	n 100	Yr S	storm	s + C	С			U ⁻
ate 19							Desig	ned b	y						
ile D&			.MDX					ed by							ل رلم
icro D	rair	nage					Netwo	ork 20	14.1						
					Onl	ine (Contr	ols f	or S	torm					
H	ydrc	-Bra	ke Op	timum	® Ma	anhol	e: 13	3, DS/	'PN:	1.00	5, Vo	lume	e (m³): 2.	. 9
						Unit	Refere	ence MI	D-SHE	-0198-	-2000-	1000-	2000		
						-	Head low (1						.000 20.0		
					Dea	-	lush-E				С	alcul			
							-	tive N	linim	ise up	pstrea	m sto	-		
					т⊷		eter (Level	• •				00	198 .620		
		Mir	nimum (Dutlet								33	225		
		S	Suggest	ed Mar	nhole	e Diam	eter ((mm)					1500		
				Co	ontro	l Poi	nts	He	ad (1	a) Flo	w (1/s	3)			
			D	esign 1	Point			ed)			19				
							lush-F.	lo™ lo®	0.33		19. 17.				
			м	ean Fl	ow o'	ver He			0.72	-	16				
H yd ro- Hydro-	Brake Brake	e Opti e Opti	l calcu imum® a	ulation as spec	ns ha cifi€	ive be ed. S	en bas Should	sed on	er ty	Head/I pe of	Discha contr	rge r ol de	vice	other	o for t than a
Hydro- Hydro- invali	Brake Brake dateo	e Opti e Opti i	l calcu imum® a imum® }	ulation as spec be util	ns ha cifie lisec	ave be ed. S d then	en bas Should these	sed on anothe e stora	er ty age r	Head/I pe of outing	Discha contr g calc	rge r ol de ulati	vice ons w	other ill be	than a
Hydro- Hydro- invali Depth	Brake Brake datec (m)	e Opti e Opti i	l calcu imum® a imum® b (1/s)	ulatior as spec be util Depth	ns ha cifie lisec (m)	ave be ed. S d then	en bas should these (1/s)	sed on anothe stora	er ty age r (m)	Head/I pe of outing	Discha contr g calc (1/s)	rge r ol de ulati Dept	vice ons w h (m)	other ill be Flow	than a
Hydro- Hydro- invali Depth 0	Brake Brake dated (m) .100	e Opti e Opti i	L calcu imum® a imum® b (1/s) 6.8	ulation as spec be util Depth	ns ha cifie lisec (m) .200	ave be ed. S d then	en bas Should these (1/s) 21.7	sed on anothe stora Depth 3	er ty age r (m) .000	Head/I pe of outing	Discha contr g calc (1/s) 33.6	rge r ol de ulati Dept	vice ons w h (m) 7.000	other ill be Flow	than a
Hydro- Hydro- invali Depth 0 0	Brake Brake datec (m)	e Opti e Opti d Flow	l calcu imum® a imum® b (1/s)	Depth	ns ha cifie lisec (m)	ave be ed. S d then Flow	en bas should these (1/s)	sed on anothe stora Depth 3 3	er ty age r (m)	Head/I pe of outing Flow	Discha contr g calc (1/s)	rge r ol de ulati Dept	vice ons w h (m)	other ill be Flow	than a (1/s) 50.6
Hydro- Hydro- invali Depth 0 0 0 0	Brake Brake dated (m) .100 .200 .300 .400	e Opti e Opti d Flow	L calcu imum® a imum® } (1/s) 6.8 18.6 19.8 19.8	Depth	ns ha cifie Lisec (m) .200 .400 .600 .800	ave be ed. S d then Flow	een bas bhould (1/s) 21.7 23.3 24.9 26.3	sed on anothe stora Depth 3 3 4 4	er ty age r .000 .500 .000 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invali Depth 0 0 0 0 0 0	Brake Brake dated (m) .100 .200 .300 .400 .500	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	Depth	ns ha cifie lisec (m) .200 .400 .600 .800 .000	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7	sed on anothe stora Depth 3 3 4 4 5	er ty age r .000 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	rge r ol de ulati	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	Depth	(m) (m) (200 (400 (600 (800) (000) (200)	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	(m) .200 .400 .600 .800 .200 .200 .400	ave be ed. S d then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500 .000	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d Flow	L calcu imum® a imum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth	ns ha cific lisec (m) .200 .400 .800 .200 .400 .600	ave be ed. S i then Flow	een bas should these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2 31.4	sed on anothe stora Depth 3 3 4 4 5 5 5 6	er ty age r (m) .000 .500 .000 .500 .000 .500	Head/I pe of outing Flow	Discha contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	rge r ol de ulati Dept	vice ons w h (m) 7.500 8.000 8.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

				Page 3
	Dog & Pa	rtridge C	hipping	
		SW Simul		<u> </u> <u>\</u>
		0 Yr Stor		
 ate 19.04.2023	Designed			
ile D&P NEW SW.MDX	Checked			
icro Drainage	Network			
<u>Storage</u> Cellular Stora	Structure ge Manhole			
Inve Infiltration Coefficient Infiltration Coefficient	: Base (m/hr) 0.00000	Safety Factor Porosity	
Depth (m) Area (m²) Inf. An	rea (m²) Dep	th (m) Are	a (m²) Inf. A	rea (m²)
0.000 24.0	0.0	0.801	0.0	0.0
0.800 24.0	0.0			

Dog & Partridge Chipping Proposed SW Simulations 1 in 100 Yr Storms + CC19.04.2023 D&P NEW SW.MDXDesigned by Checked by	Dog & Partridge Chipping Proposed SW Simulations 1 in 100 Yr Storms + CC 19.04.2023 D&P NEW SW.MDX Designed by Checked by Checked by Darainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Floodet Pipe US/MH Level Pipe Depth Volume Flow / Overflow Flow (m ³) Cap. (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.110 0.000 0.07 0.0 3.4 OK 1.001 2 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 2.000 3 94.647 -0.075 0.000 0.09 0.0 3.4 OK 1.001 2 94.475 0.425 0.000 0.3 0.0 2.3.7 SURCHARGED 4.00	Dog & Partridge Chipping Proposed SW Simulations 1 in 100 Yr Storms + CC 19.04.2023 Designed by Checked by Dainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Opth Volume Flow / Overflow Flow (m ³) Cap. 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.000 1 94.540 -0.110 0.000 0.22 0.0 9.5 OK 1.000 1 94.540 -0.124 0.000 0.01 3.4 OK 1.002 5 94.475 0.425 0.000 0.09 0.0 3.7 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 1.003 8 94.469 0.459 0.000 0.37 0.0 9.2 FLOODED 1.004 194.459 0.419 0.000 0.37	Dog & Partridge Chipping Proposed SW Simulations 1 in 100 Yr Storms + CC 19.04.2023 D&P NEW SW.MDX Designed by Checked by Darainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe PI Water Surcharged Floode Pipe OTS Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.124 0.000 0.03 0.0 2.3.7 SURCHARGED 4.000 94.469 0.459 0.000 0.24 0.0 2.7 SURCHARGED 1.001 2 94.475 0.425 0.000 0.37 OK 1.001 94.526 -0.124 0.000									Pa
1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by D Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded PN Name (m) (m) (m) (m) (m) 0.000 0.000 0.16 0.001 94.540 1.001 2.94.477 0.394.647 -0.103 0.000 0.08 0.001 94.475 0.002 0.95 0.003 94.647 -0.119 0.000 0.001 0.3.4 0.002 5.94.475 0.003 0.09 0.0 1.002 5.94.475 0.425 0.000 0.09 0.0 3.7 0.001 94.479 0.129 0.000 0.46	1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by Do Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded VS/MH Level Depth Volume Volume Flow / Overflow PN Name 1.000 1 94.540 -0.110 0.000 0.000 0.16 0.001 2 94.477 0.394.647 -0.103 0.000 0.07 0.0 3.000 4 94.526 -0.124 0.000 1.002 5 94.475 0.425 0.000 0.3.7 4.000 6 94.475 0.000 0.09 0.0 4.6 4.000 9 94.479 0.129 0.000 0.46 0K 1.003 8 94.469 0.459 0.000 0.45 <	I in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe VS/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.46 OK 0.01 1.6 0.45 0.07 9.2.71 OK </td <td>1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by D Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded Pipe Water Surcharged Flooded Pipe DTS Status 00 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 0.425 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6<td></td><td></td><td></td><td>1</td><td>Dog & P</td><td>artrido</td><td>ge Chipp</td><td>ing</td><td></td></td>	1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by D Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded Pipe Water Surcharged Flooded Pipe DTS Status 00 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 0.425 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 <td></td> <td></td> <td></td> <td>1</td> <td>Dog & P</td> <td>artrido</td> <td>ge Chipp</td> <td>ing</td> <td></td>				1	Dog & P	artrido	ge Chipp	ing	
1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by D Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded PN Name (m) (m) (m3) Cap. (1/s) (1/s) Succharged Flow / Overflow Flow Pipe VS/MH Level Depth Volume Flow / Overflow Flow 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 1.5.3 SURCHARGED	1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by 0 Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe VS/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m3) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 0.425 0.000 0.37 OK 1.001 2 94.479 0.129 0.000 0.04 4.6 OK <td>I in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe VS/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.46 OK 0.01 1.6 0.45 0.07 9.2.71 OK<!--</td--><td>1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by 0 Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded PN Name (m) (m) (m3) Cap. 1.000 1 94.540 -0.110 0.000 0.000 0.08 1.001 2 94.477 0.394.647 -0.103 0.000 0.07 0.000 0.08 1.002 5 94.475 0.003 0.00 1.003 8 94.469 0.459 0.000 0.000 0.46 0.001 94.479 0.129 0.000 0.000 0.9 0.001 2.3.7 SURCHARGED 4.000 6 94.475 0.000</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td><u> </u>[~</td></td>	I in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe VS/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.46 OK 0.01 1.6 0.45 0.07 9.2.71 OK </td <td>1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by 0 Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded PN Name (m) (m) (m3) Cap. 1.000 1 94.540 -0.110 0.000 0.000 0.08 1.001 2 94.477 0.394.647 -0.103 0.000 0.07 0.000 0.08 1.002 5 94.475 0.003 0.00 1.003 8 94.469 0.459 0.000 0.000 0.46 0.001 94.479 0.129 0.000 0.000 0.9 0.001 2.3.7 SURCHARGED 4.000 6 94.475 0.000</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td><u> </u>[~</td>	1 in 100 Yr Storms + CC 19.04.2023 Designed by D&P NEW SW.MDX Checked by 0 Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded PN Name (m) (m) (m3) Cap. 1.000 1 94.540 -0.110 0.000 0.000 0.08 1.001 2 94.477 0.394.647 -0.103 0.000 0.07 0.000 0.08 1.002 5 94.475 0.003 0.00 1.003 8 94.469 0.459 0.000 0.000 0.46 0.001 94.479 0.129 0.000 0.000 0.9 0.001 2.3.7 SURCHARGED 4.000 6 94.475 0.000					-			-	<u> </u> [~
19.04.2023 Designed by Checked by D&P NEW SW.MDX Checked by Do Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 Analysis Timestep DTS Status DVD Status OFF ON Water Surcharged Flood Risk Warning (mm) 200.0 DVD Status OFF Pipe Water Surcharged Flood Risk Warning (mm) 200.0 DVD Status OFF Status OFF Water Surcharged Flood Risk Warning (mm) 200.0 DVD Status OFF Status OFF Water Surcharged Flood Risk Warning (mm) 200.0 DVD Status OFF Status OFF Water Surcharged Flood Risk Warning (mm) 200.0 DVD Status OFF Status OFF Water Surcharged Flow (m³) Cap. Pipe Water On 0.000 0.16 0.0 5.5 OK 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED<	19.04.2023 Designed by Checked by D&P NEW SW.MDX Checked by o Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DS/MH Level Depth Volume Flow Pipe PN Name (m) (m) (m3) Cap. (l/s) (l/s) 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.113 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 0.425 0.000 0.37 0.0 3.7 OK 1.003 8 94.469 0.459 0.000 0.46 OK 0.0 1.0 9.2 FLOOD RISK <	Instruction Designed by Checked by D&P NEW SW.MDX Checked by Dainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DS/MH Level Depth Volume Flooded Pipe PN Name (m) (m) (m ³) Cap. 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.30 0.0 15.3 SURCHARGED 4.000 94.469 0.459 0.000 0.0 4.6 OK<	Image: 19.04.2023 Designed by Checked by Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe Water Surcharged Flooded Pipe VS/MH Level Depth Volume Flow / Overflow Flow I.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 4.000 6 94.475 0.425 0.000 0.30 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.459 0.000 0.37 0.0 9.2 FL					-				`
D&P NEW SW.MDX Checked by Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.03 0.0 1.5.3 SURCHARGED 4.000 6 94.475 0.425 0.000 0.03 0.0 1.5.3 SURCHARGED 2.000 9.4.647 0.012 0.000 0.3.7 OK	D&P NEW SW.MDX Checked by Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.37 SURCHARGED 2.000 94.531 -0.119 0.000 0.09 0.0 3.7 OK	D&P NEW SW.MDX Checked by Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DIS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) Checked by Flow Flow 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.22 0.0 9.5 OK 1.002 5 94.475 0.425 0.000 0.03 0.0 15.3 SURCHARGED 2.000 3 94.647 -0.119 0.000 0.09 0.0 3.7 OK 1.002 5 94.475 0.425 0.000 0.09 0.0 3.7<	D&P NEW SW.MDX Checked by Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flow Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) 0.00 0.16 0.0 5.5 OK 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 0.124 0.000 0.07 0.3.4 OK 1.002 5 94.475 0.425 0.000 0.37 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 4.000 6 94.471 0.321 0.000 0.43 0.0 23.7 SURCHARGED	19 04 20	103					JUUTIUS	00	
Description Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Manage (m) (m ³) Cap. (1/s) 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 1.000 1 94.540 -0.110 0.000 0.22 0.0 9.5 OK 1.000 1 94.526 -0.124 0.000 0.016 0.0 5.5 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6	Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flow DTS Status ON PN Name (m) (m) (m³) Cap. (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 4.6 OK 1.002 5 94.479 0.129 0.000 0.09 0.0 4.6	Drainage Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flow DTS Status ON Water Surcharged Flow DTS Status ON PN Name (m) (m) (m³) Cap. (1/s) Status 1.000 1 94.540 -0.110 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.033 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 1.002 94.475 -0.124 0.000 0.09 0.0 3.7 OK 1.003	Network 2014.1 Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m ³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.0 1.5.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.0 1.5.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 4.6 OK 1.002 5 94.469 0.459					-	_			
Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flow Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.03 0.0 1.5.3 SURCHARGED 4.000 94.469 0.459 0.000<	Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flow DTS Status ON Water Surcharged Flow PN Name (m) (m) (m ³) 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 1.002 5 94.475 0.425 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.4.6 OK 1.003 8 94.469	Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine DTS Status ON Water Surcharged Flow DTS Status ON Water Surcharged Flow DTS Status ON Water Surcharged Flow PN Name (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK	Summary of Results for 60 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow FN Name (m) (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.0 3.7 OK 4.000 6 94.479 0.129 0.000 <td< td=""><td></td><td></td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			X						
Margin for Flood Risk Warning (mm) 200.0 Analysis Timestep Fine Inertia Status OFF DTS Status ON DVD Status OFF Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m ³) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459	Margin for Flood Risk Warning (mm) 200.0 Analysis Timestep Fine Inertia Status OFF DTS Status ON DVD Status OFF Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.46 OK	Margin for Flood Risk Warning (mm) 200.0 Analysis Timestep Fine Inertia Status OFF DTS Status ON DVD Status OFF Water Surcharged Flooded Depth Fine Flow / Overflow (l/s) Pipe Flow PN Name (m) (m) (m³) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.1103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.09 0.0 3.7 OK 3.000 4 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.425 0.000 0.46 OK 1.003 94.469 <td>Margin for Flood Risk Warning (mm) 200.0 Analysis Timestep DTS Status DVD Status OFF Inertia Status OFF Water Surcharged Floeded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.46 OK 1.003 8 94.469 0.419 0.000 0.43 0.0<!--</td--><td>ro Draina</td><td>ge</td><td></td><td>]</td><td>Network</td><td>2014.3</td><td>L</td><td></td><td></td></td>	Margin for Flood Risk Warning (mm) 200.0 Analysis Timestep DTS Status DVD Status OFF Inertia Status OFF Water Surcharged Floeded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.01 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.46 OK 1.003 8 94.469 0.419 0.000 0.43 0.0 </td <td>ro Draina</td> <td>ge</td> <td></td> <td>]</td> <td>Network</td> <td>2014.3</td> <td>L</td> <td></td> <td></td>	ro Draina	ge]	Network	2014.3	L		
Analysis Timestep DTS Status Fine ON Inertia Status OFF Water Surcharged Depth Floded Volume Pipe Flow Pipe (l/s) Pipe Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9	Analysis Timestep DTS Status Fine ON Inertia Status OFF Water Surcharged Level Floded Depth Plove (m ³) Pipe Cap. Pipe (l/s) Flow 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 94.469 0.459 0.000 0.45 0.0 7.9	Malysis Timestep DTS Status Fine Inertia Status OFF US/MH Level (m) Depth (m) Flooded (m ³) Flow / Overflow Cap. Pipe (1/s) Flow Flow 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 <	Malysis Timestep DTS Status Fine ON Inertia Status OFF US/MH Level (m) Depth (m) Volume (m ³) Flow / Overflow Cap. Pipe (1/s) Flow Flow (1/s) 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7	Sun	mary	of Res	ults for	60 minu	te 100	year Wi	nter	(Storm)
Water Surcharged Flooded Pipe Flow Pipe PN Name (m) 0epth Volume Flow Overflow Flow (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.09 0.0 3.7 OK 1.002 5 94.475 -0.075 0.000 0.09 0.0 3.7 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419	Water Surcharged Flooded Pipe Flow Cap. Overflow Flow Cl/s Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.09 0.0 3.7 OK 1.002 5 94.475 -0.075 0.000 0.09 0.0 3.7 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 6.001	Water Surcharged Floded Flow Pipe NAme Level Depth Volume Flow Overflow Flow (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 <td>Water Surcharged FLooded Flow Pipe Name Level Depth Volume Flow Overflow Flow N Name (m) (m) (m³) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.22 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED <</td> <td></td> <td>Margir</td> <td>n for Fl</td> <td>Analysi</td> <td>s Timest</td> <td>ep Fine</td> <td>e Inertia</td> <td></td> <td></td>	Water Surcharged FLooded Flow Pipe Name Level Depth Volume Flow Overflow Flow N Name (m) (m) (m³) Cap. (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.22 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED <		Margir	n for Fl	Analysi	s Timest	ep Fine	e Inertia		
US/MH Level (m) Depth (m) Volume (m ³) Flow / Overflow Cap. Flow (l/s) Flow (l/s) 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 <td< td=""><td>US/MH Level (m) Depth (m) Volume (m³) Flow / Overflow (l/s) Flow (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469</td><td>US/MH Level (m) Depth (m) Volume (m³) Flow / Overflow Cap. Flow (1/s) Flow (1/s) 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 4.6 OK 1.003 8 94.469<!--</td--><td>US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45</td><td></td><td></td><td></td><td></td><td></td><td></td><td>N</td><td>D4</td><td></td></td></td<>	US/MH Level (m) Depth (m) Volume (m ³) Flow / Overflow (l/s) Flow (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469	US/MH Level (m) Depth (m) Volume (m ³) Flow / Overflow Cap. Flow (1/s) Flow (1/s) 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 4.6 OK 1.003 8 94.469 </td <td>US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td>D4</td> <td></td>	US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m ³) Cap. (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45							N	D 4	
PN Name (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 </td <td>PN Name (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419<!--</td--><td>PN Name (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419<td>PN Name (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>Overflow</td><td>-</td><td></td></t<></td></td></td>	PN Name (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 </td <td>PN Name (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419<td>PN Name (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>Overflow</td><td>-</td><td></td></t<></td></td>	PN Name (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 <td>PN Name (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>Overflow</td><td>-</td><td></td></t<></td>	PN Name (m) (m ³) Cap. (l/s) (l/s) Status 1.000 1 94.540 -0.110 0.000 0.16 0.0 5.5 OK 1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>Overflow</td><td>-</td><td></td></t<>				-			Overflow	-	
1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.469 0.419 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< th=""><th>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.469 0.419 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< th=""><th>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 4.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.9 2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED</th><th>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 0K 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 0K 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 0K 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12</th><th>PN</th><th>-</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th>Status</th></t<></th></t<>	1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.469 0.419 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< th=""><th>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 4.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.9 2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED</th><th>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 0K 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 0K 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 0K 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12</th><th>PN</th><th>-</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th>Status</th></t<>	1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 4.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.9 2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED	1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 0K 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 0K 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 0K 5.000 7 94.531 -0.119 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12	PN	-		-					Status
1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 0K 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 0K 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 0K 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 0K 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.469 0.419 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 0K 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 0K 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 0K 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 0K 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK</td><td>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 23.7 SURCHARGED 6.001 94.479 0.129 0.000 0.45 0.0 7.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.9 2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>1 000</td><td>1</td><td>94 540</td><td>0 110</td><td>0 000</td><td>0 16</td><td>0.0</td><td>5 5</td><td>OF</td></t<></td></t<></td></t<>	1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 0K 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 0K 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 0K 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 0K 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK</td><td>1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 23.7 SURCHARGED 6.001 94.479 0.129 0.000 0.45 0.0 7.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.9 2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>1 000</td><td>1</td><td>94 540</td><td>0 110</td><td>0 000</td><td>0 16</td><td>0.0</td><td>5 5</td><td>OF</td></t<></td></t<>	1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 0K 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 0K 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 0K 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 0K 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK	1.001 2 94.477 0.397 0.000 0.08 0.0 3.9 SURCHARGED 2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 23.7 SURCHARGED 6.001 94.479 0.129 0.000 0.45 0.0 7.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.9 2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>1 000</td><td>1</td><td>94 540</td><td>0 110</td><td>0 000</td><td>0 16</td><td>0.0</td><td>5 5</td><td>OF</td></t<>	1 000	1	94 540	0 110	0 000	0 16	0.0	5 5	OF
2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9.4.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.0	2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 3.7 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td>2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 3.7 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	2.000 3 94.647 -0.103 0.000 0.22 0.0 9.5 OK 3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 3.7 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.44 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td>3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td>3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.43 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td>3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td></td>	3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td>3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.43 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td>3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td>	3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.43 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td>3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	3.000 4 94.526 -0.124 0.000 0.07 0.0 3.4 OK 1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.45 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005	1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005	1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.43 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	1.002 5 94.475 0.425 0.000 0.30 0.0 15.3 SURCHARGED 4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED									
4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	4.000 6 94.475 -0.075 0.000 0.09 0.0 3.7 OK 5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED									-
5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	5.000 7 94.531 -0.119 0.000 0.09 0.0 4.6 OK 1.003 8 94.469 0.459 0.000 0.43 0.0 23.7 SURCHARGED 6.000 9 94.479 0.129 0.000 0.24 0.0 4.9 SURCHARGED 6.001 10 94.469 0.419 0.000 0.45 0.0 7.9 SURCHARGED 7.000 11 94.471 0.321 0.000 0.37 0.0 9.2 FLOOD RISK 1.004 12 94.459 0.499 0.000 0.76 0.0 38.3 SURCHARGED 1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED									
1.003894.4690.4590.0000.430.023.7SURCHARGED6.000994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	1.003894.4690.4590.0000.430.023.7SURCHARGED6.000994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	1.003894.4690.4590.0000.430.023.7SURCHARGED6.000994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	1.003894.4690.4590.0000.430.023.7SURCHARGED6.000994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED									
6.000994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	6.000994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	6.000994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	6.0009994.4790.1290.0000.240.04.9SURCHARGED6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED									
6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	6.0011094.4690.4190.0000.450.07.9SURCHARGED7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED									
7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	7.0001194.4710.3210.0000.370.09.2FLOOD RISK1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED									
1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED	1.0041294.4590.4990.0000.760.038.3SURCHARGED1.0051394.4440.5990.0000.800.019.8SURCHARGED									
1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED	1.005 13 94.444 0.599 0.000 0.80 0.0 19.8 SURCHARGED									

	Pa	ge 1
	Dog & Partridge Chipping	<u> </u>
	Proposed SW Simulations	.
	1 in 100 Yr Storms + CC	~m
Date 19.04.2023	Designed by	_
File D&P NEW SW.MDX	Checked by	
	Network 2014.1	ب بالم کس
Micro Drainage	Network 2014.1	
<u>_</u> _	g Outfall Details for Storm C. Level I. Level Min D,L W	
Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)	
	94.550 93.500 93.500 1200 0	
Simulati	ion Criteria for Storm	
Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Number of Input Hydrog	r 1.000 Additional Flow - % of Total Flow 40) 0 MADD Factor * 10m³/ha Storage 2) 0 Run Time (mins)	.000
Number of Offline Con		
Synthe	etic Rainfall Details	
Rainfall Model Return Period (years) Region Engl M5-60 (mm) Ratio R	FSR Profile Type Winter 100 Cv (Summer) 0.750 land and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) 120 0.300	
©1982	2-2014 XP Solutions	

													Page	e 2
					I	og &	Part	ridg	re Ch	ippin	g			
					E	Propo	sed SI	W Si	mula	tions			14	
						1 in	100	Yr S	torm	s + C	С			U U
ate 19.	04.2023	3			I	Desig	ned b	У]	
ile D&P	NEW SU	W.MDX					ed by							
icro Dr	ainage				1	letwo	rk 20	14.1						
			<u>c</u>	Onli	ne C	Contr	ols fo	or S	torm					
Hyd	dro-Bra	ake Op	timum®) Mar	nhole	e: 13	8, DS/	PN:	1.00	5, Vo	lume	(m³)): 2.	. 9
				U	nit H	Refere	ence MD	-SHE	-0198-	-2000-	1000-2	000		
				De	sign	Head	(m)				1.	000		
				Desi	-	low (]				~		0.0		
						lush-E Object	∵lo™ ∶ive M	linim	ise um		alcula m stor			
						eter (198		
						Level					93.			
			Dutlet E ted Manh	-								225 500		
		Suggest	ted Mann	1016	Diame	eter ((mm)				1	500		
			Con	trol	Poir	nts	Hea	ad (m	ı) Flo	w (1/s	3)			
		D	esign P	oint						19.				
							lo™ lo®			19. 17.				
		М	ean Flo	w ove					_	16.				
Hydro-B	rake Opt rake Opt ated				l. SI	hould	anothe	r ty	pe of		ol dev	ice d	other	than a
Hydro-Bi invalida	rake Opt ated	imum® }	be utili	ised	l. Sl then	hould these	anothe stora	r ty ge r	pe of outing	contr g calc	ol dev ulatio	ice d ns wi	other ill be	than a
Hydro-Bi invalida Depth	rake Opt ated (m) Flow	imum® } (1/s)	be utili Depth	ised (m) I	l. Sl then	hould these (1/s)	anothe stora	r ty ge r (m)	pe of outing	contr g calc (1/s)	ol dev ulatio	ice o ns wi (m)	other ill be Flow	than a
Hydro-Br invalida Depth (rake Opt ated	imum® }	be utili Depth	ised (m) 1 200	l. Sl then	hould these (1/s) 21.7	anothe stora Depth 3	r ty: ge r (m) .000	pe of outing	contr g calc (1/s) 33.6	ol dev ulatio Depth	ice o ns wi (m) .000	other ill be Flow	than a
Hydro-Bu invalida Depth (0.1 0.2	rake Opt ated (m) Flow 100	imum® } (1/s) 6.8	be utili Depth	ised (m) 1 200 400	l. Sl then	hould these (1/s)	anothe stora Depth 3. 3.	r ty ge r (m)	pe of outing Flow	contr g calc (1/s)	ol dev ulatio Depth 7 7	ice o ns wi (m)	other ill be Flow	than a (1/s) 50.6
Hydro-Bn invalida Depth (0.1 0.2 0.3 0.4	rake Opt ated (m) Flow 100 200 300 400	imum® } (1/s) 6.8 18.6 19.8 19.8	Depth 1.2 1.4 1.6 1.8	ised (m) 1 200 400 600 800	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3	anothe stora Depth 3 3 4 4	r ty; ge r (m) .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9	ol dev ulatio Depth 7 7 8 8 8	ice (ns wi (m) .000 .500 .000 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5	rake Opt ated (m) Flow 100 200 300 400 500	imum® } (1/s) 6.8 18.6 19.8 19.8 19.4	Depth 1.2 1.4 1.6 1.8 2.0	ised (m) 1 200 400 600 800 000	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7	anothe stora Depth 3 3 4 4 5	r ty; ge r (m) .000 .500 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol dev ulatio Depth 7 8 8 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600	imum® } (1/s) 6.8 18.6 19.8 19.8 19.4 18.8	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	Depth 3 4 4 5 5	r ty; ge r (m) .000 .500 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9	ol dev ulatio Depth 7 7 8 8 8 9 9 9	ice (ns wi (m) .000 .500 .000 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500	imum® } (1/s) 6.8 18.6 19.8 19.8 19.4	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 000	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.8	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Br invalida Depth (0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake Opt ated (m) Flow 100 200 300 400 500 600 800	imum® } (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1.2 1.4 1.6 1.8 2.0 2.2	ised (m) 1 200 400 600 800 800 200 400	l. Sl then	hould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	Depth 3 3 4 4 5 5 6	r ty; ge r (m) .000 .500 .000 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio Depth 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

				Page 3
		Dog & Partride	ge Chipping	
		Proposed SW S:	imulations	Mr.
		1 in 100 Yr :	Storms + CC	
ate 19.04.2023		Designed by		
ile D&P NEW SW.	MDX	Checked by		
icro Drainage		Network 2014.	1	I
		ge Structures for		
	Ir	rage Manhole: 13, nvert Level (m) 93.	620 Safety Factor	
Infilt	ration Coefficie	ent Base (m/hr) 0.00 ent Side (m/hr) 0.00	000	
Depth (m)	Area (m²) Inf.	Area (m ²) Depth (m)	Area (m ²) Inf. 1	Area (m²)
0.000		0.0 0.801	0.0	0.0
0.800	24.0	0.0		

e D&P NEW SW.MDX Checked by ro Drainage Network 2014.1 Summary of Results for 120 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow FN Name (m) (m ³) Cap. (1/s) Status 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.14 0.6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.24 4.000 6.9 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 Surcharge									Pa
Proposed SW Simulations 1 in 100 Yr Storms + CC e 19.04.2023 D&F NEW SW.MDX Checked by Checked by Co Drainage Network 2014.1 Summary of Results for 120 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow FN Name (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.532 -0.118 0.000 0.0 3.6 1.001 2 94.234 0.154 0.000 0.0 3.0 1.001 2 94.233 0.118 0.000 0.0 3.0 2.000 3 94.638 -0.112 0.000 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 2.000 5 94.233 0.183 0.000<					Dog & Pa	artrido	ge Chipp	ing	
1 in 100 Yr Storms + CC e 19.04.2023 e Designed by e Designed by ro Drainage Network 2014.1 Summary of Results for 120 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DS/MH Depth Volume Flow / Overflow Flow FN Name (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.532 -0.118 0.000 0.06 0.0 3.0 Sumod 1 94.532 -0.118 0.000 0.06 0.0 3.0 Surcharged 1.000 1 94.532 -0.118 0.000 0.06 0.0 3.0 1.001 2 94.234 0.154 0.000 0.06 0.2 2 1.002 5 94.233 0.183 0.000 0.01 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000					-			-	14
e 19.04.2023 Designed by Checked by e D&P NEW SW.MDX Checked by ro Drainage Network 2014.1 Summary of Results for 120 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded PN Name (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 94.532 1.000 1 94.532 1.001 2 94.234 0.112 0.000 0.014 0.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.01.0 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG					-				`
e D&P NEW SW.MDX Checked by ro Drainage Network 2014.1 Summary of Results for 120 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Water Surcharged Flowded PN Name (m) (m) (m³) Cap. (1/s) Status 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.14 0.6.2 3.000 4 94.521 -0.122 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 Surcharge 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 Surcharge	19 04 2	023						~~	
ro Drainage Network 2014.1 Summary of Results for 120 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m ³) Cap. 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.00			v		-	_			• · · ·
Summary of Results for 120 minute 100 year Winter (Storm) Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine DTS Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0			<u> </u>						
Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) (l/s) Status 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226<) Draina	ge			Network	2014.1	-		
Analysis Timestep DTS Status Fine Inertia Status OFF Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (l/s) Status 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SUR	Sun	mary o	of Resi	ults for i	120 minu	ite 100	year W	inter	(Storm)
US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m ³) Cap. (l/s) (l/s) Status 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.00 16.5 SURCHARG 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG <th></th> <th>Margir</th> <th>n for Fl</th> <th></th> <th>is Timest</th> <th>ep Fine</th> <th>e Inertia</th> <th></th> <th></th>		Margir	n for Fl		is Timest	ep Fine	e Inertia		
PN Name (m) (m ³) Cap. (l/s) (l/s) Status 1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG			Water	Surcharged	Flooded			Pipe	
1.000 1 94.532 -0.118 0.000 0.10 0.0 3.6 1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG		US/MH	Level	Depth	Volume	Flow /	Overflow	Flow	
1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG	PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.001 2 94.234 0.154 0.000 0.06 0.0 3.0 SURCHARG 2.000 3 94.638 -0.112 0.000 0.14 0.0 6.2 3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG	1.000) 1	94.532	-0.118	0.000	0.10	0.0	3.6	OF
3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG									
3.000 4 94.521 -0.129 0.000 0.05 0.0 2.2 1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG									OF
1.002 5 94.233 0.183 0.000 0.21 0.0 10.7 SURCHARG 4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG									OF
4.000 6 94.424 -0.126 0.000 0.06 0.0 2.4 5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG								-	-
5.000 7 94.524 -0.126 0.000 0.06 0.0 3.0 1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG	4.000								OF
1.003 8 94.226 0.216 0.000 0.30 0.0 16.5 SURCHARG	5.000) 7	94.524	-0.126			0.0	3.0	OF
								16.5	SURCHARGEI
6.000 9 94.239 -0.111 0.000 0.15 0.0 3.2	6.000) 9	94.239	-0.111	0.000	0.15	0.0	3.2	OF
6.001 10 94.226 0.176 0.000 0.32 0.0 5.6 SURCHARG	6.001	. 10	94.226	0.176	0.000	0.32	0.0	5.6	SURCHARGEI
7.000 11 94.227 0.077 0.000 0.25 0.0 6.3 SURCHARG	7.000) 11	94.227	0.077	0.000	0.25	0.0	6.3	SURCHARGEI
1.004 12 94.216 0.256 0.000 0.54 0.0 27.1 SURCHARG	1.004	12	94.216	0.256	0.000	0.54	0.0	27.1	SURCHARGEI
1.005 13 94.200 0.355 0.000 0.80 0.0 19.8 SURCHARG	1.005	i 13	94.200	0.355	0.000	0.80	0.0	19.8	SURCHARGEI
1.006 14 93.722 -0.103 0.000 0.57 0.0 19.8		5 14	93.722	-0.103	0.000	0.57	0.0	19.8	OF

	Page 1
	Dog & Partridge Chipping
	Proposed SW Simulations
	1 in 100 Yr Storms + CC
Date 19.04.2023	Designed by
File D&P NEW SW.MDX	Checked by
Micro Drainage	Network 2014.1
Free Flowing (Outfall Details for Storm
Outfall Outfall C Pipe Number Name	: Level I. Level Min D,L W (m) (m) I. Level (mm) (m)
1.006 SW DRAIN	94.550 93.500 93.500 1200 0
Simulatic	on Criteria for Storm
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	1.000 Additional Flow - % of Total Flow 40.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Run Time (mins) 1440
	aphs 0 Number of Storage Structures 1 cols 1 Number of Time/Area Diagrams 0 cols 0
Synthet.	ic Rainfall Details
Rainfall Model Return Period (years) Region Engla: M5-60 (mm) Ratio R	FSR Profile Type Winter 100 Cv (Summer) 0.750 nd and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) 180 0.300
M1000	2014 XP Solutions
©1982-	ZALA VE DATACTOUS

													Page	e 2
						۵ Dog	a Part	rido	ge Ch	ippin	g		Ē	
							sed S						14	~
						1 in	n 100	Yr S	Storm	s + C	С		`	- U
ate 19.04	4.2023					Desig	ned k	у					1	
ile D&P 1	NEW SW	.MDX					ed by						<u> </u>	· ····J
licro Dra	inage					Netwo	ork 20	14.1	-					
				Onl	ine (Contr	ols f	or S	torm					
Hydı	o-Bral	ke Op	timum	® Ma	nhol	.e: 13	3, DS,	PN:	1.00	5, Vo	lume	(m³)): 2.	9
					Unit	Refere	ence Mi	D-SHE	-0198-	-2000-	1000-20	000		
					-	Head	• •					000		
				Des	-	'low (1 'lush-H				r	20 alculat	0.0 ted		
							-	Minim	ise up		m stora			
					Diam	eter	(mm)		-		-	198		
		م المحمد ال	Net 1 = t			Level	• •				93.0			
			Dutlet Led Man	-								225 500		
	5	aggeot						.,						
		_			l Poi					w (1/s				
		D	esign I	Point		lculat lush-F		1.00		19. 19.				
						Kick-F		0.72		17				
		M	ean Flo	ro wc	ver He	ead Ra	nge		-	16.	.7			
The hydro Hydro-Bra Hydro-Bra	ke Opti ke Opti	.mum® a	as spec	ifie	ed. S	Should	anothe	er ty	pe of	contr	ol dev:	ice d	other	than a
Hydro-Bra Hydro-Bra invalidat	ke Opti ke Opti ed	.mum® a .mum® b	as spec be util	ifie. ised	ed. S l then	Should these	anothe stora	er ty age r	pe of outing	contr g calc	ol dev: ulation	ice d ns wi	other ill be	than a
Hydro-Bra Hydro-Bra invalidat Depth (m)	ke Opti ke Opti ed) Flow	.mum® a .mum® k (1/s)	as spec be util Depth	ifie ised (m)	ed. S l then	Should these (1/s)	anothe stora	er ty age r (m)	pe of outing	contr g calc (1/s)	ol dev: ulation	ice d ns wi (m)	other ill be	than a
Hydro-Bra Hydro-Bra invalidat Depth (m) 0.10	ke Opti ke Opti ed) Flow 0	mum® a .mum® k (1/s) 6.8	as spec pe util Depth 1.	ifie ised (m)	ed. S l then	Should 1 these (1/s) 21.7	anothe stora Depth	er ty age r . (m)	pe of outing	contr g calc (1/s) 33.6	ol dev: ulation Depth 7.	ice o ns wi (m) .000	other ill be	than a (1/s) 50.6
Hydro-Bra Hydro-Bra invalidat Depth (m 0.10 0.20	ke Opti ke Opti ed) Flow 0	mum® a mum® k (1/s) 6.8 18.6	Depth	ifie ised (m) 200	ed. S l then Flow	Should these (1/s) 21.7 23.3	anothe store Depth 3 3	er ty age r (m) .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2	ol dev: ulation Depth 7. 7.	ice o ns wi (m) .000 .500	other ill be Flow	than a
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400	ke Opti ke Opti ed) Flow 0 0 0 0	mum® a mum® k (1/s) 6.8 18.6 19.8 19.8	Depth 1. 1. 1.	(m) (200 (400 (600 (800)	ed. S l then Flow	<pre>Should these (1/s) 21.7 23.3 24.9 26.3</pre>	anothe e stora Depth 3 4 4	er ty age r .000 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9	ol dev: ulation Depth 7. 8. 8. 8.	ice (ns wi (m) .000 .500 .000 .500	other ill be Flow	<pre>than a (1/s) 50.6 52.4 54.0 55.6</pre>
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0	mum® a mum® k (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	Depth 1. 1. 1. 2.	(m) 200 400 600 800	ed. S l then Flow	should these (1/s) 21.7 23.3 24.9 26.3 27.7	anothe stora Depth 3 4 4 5	er ty age r .000 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol dev: ulation Depth 7. 8. 8. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mum® a mum® h (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	Depth 1. 1. 1. 1. 2. 2.	(m) (200 (400 (600 (800) (000) (200)	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe e store Depth 3 3 4 4 5 5	(m) (m) .000 .500 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol dev: ulation 7 7 8 8 8 9 9 9	ice (ns wi (m) .000 .500 .000 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mum® a mum® k (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	Depth 1. 1. 1. 1. 2. 2. 2.	(m) 200 400 600 800	ed. S l then Flow	should these (1/s) 21.7 23.3 24.9 26.3 27.7	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Bra Hydro-Bra invalidat Depth (m 0.100 0.200 0.300 0.400 0.500 0.600 0.800	ke Opti ke Opti ed) Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mum® a mum® b (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9</pre>	Depth 1. 1. 1. 1. 2. 2. 2.	(m) (200 400 600 800 000 200 400	ed. S l then Flow	(1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e stora Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev: ulation 7. 7. 8. 8. 9. 9.	ice (ns wi (m) .000 .500 .500 .500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

			Page 3
-	Dog & Partridge (Chipping	
	Proposed SW Simul		<u> </u>
	1 in 100 Yr Stor		I UU
Date 19.04.2023	Designed by		
File D&P NEW SW.MDX	Checked by		ر بند ، ، ما ا
Aicro Drainage	Network 2014.1		
_			
Storag	e Structures for St	orm	
Cellular Stor	age Manhole: 13, DS	/PN: 1.005	
Infiltration Coefficie	vert Level (m) 93.620 nt Base (m/hr) 0.00000	Safety Factor Porosity O	
Infiltration Coefficie Depth (m) Area (m ²) Inf.	nt Side (m/hr) 0.00000	a (m²) Inf Are	aa (m ²)
0.000 24.0 0.800 24.0	0.0 0.801	0.0	0.0
	0.0014		
e1 0	32-2014 XP Solutions		

							Page 4
			Dog & Pa	artridg	e Chipp	ing	
			Proposed	d SW Si	mulatio	ns	
<u>_</u>			1 in 10	00 Yr S	torms +	СС	
te 19.04.20	23		Designed	d by			
le D&P NEW	SW.MDX		Checked	by			· · · · · · · · · · · ·
cro Drainag	e		Network	2014.1			Ι
Sum	nary of	Results for	180 minu	te 100	year W	Inter	(Storm)
	Morgin fo	or Flood Risk W	Jowning (m	m) 200 0	סעס	Status	OFF
	Margin ic		sis Timest				
		-	DTS State				
	17-	+ G	4 81			Dina	
	US/MH Le	ter Surcharge vel Depth		Flow / (Overflow	Pipe Flow	
PN		m) (m)	(m ³)	Cap.	(1/s)		Status
1.000 1.001	194 294			0.08 0.05	0.0 0.0	2.7 2.5	OK OK
2.000	3 94			0.11	0.0	4.7	OK
3.000	4 94			0.04	0.0	1.7	OK
1.002	594	.038 -0.01	2 0.000	0.17	0.0	8.4	OK
4.000	694			0.05	0.0	1.8	OK
5.000	7 94			0.05	0.0	2.3	OK
1.003 6.000	894 994			0.24 0.12	0.0 0.0	12.9	SURCHARGED OK
6.001	9 94 10 94			0.12	0.0	2.4 4.5	OK
7.000	10 94				0.0	4.9	OK
1.004	12 94				0.0		SURCHARGED
1.005	13 94	.006 0.16	1 0.000	0.79	0.0	19.6	SURCHARGED
1.006	14 93	.722 -0.10	3 0.000	0.57	0.0	19.6	OK

		Page 1
	Dog & Partridge Chipping	
	Proposed SW Simulations	
	1 in 100 Yr Storms + CC	$\parallel \sim \sim$
Date 19.04.2023	Designed by	-
File D&P NEW SW.MDX	Checked by Network 2014.1	
Micro Drainage	Network 2014.1	
Free Flowing	Outfall Details for Storm	
Outfall Outfall (Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
1.006 SW DRAIN	94.550 93.500 93.500 1200 0	
Simulatio	on Criteria for Storm	
Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Number of Input Hydrogr	<pre>1.000 Additional Flow - % of Total Flo 0 MADD Factor * 10m³/ha Storag 0 Run Time (mins 0.500 Output Interval (mins aphs 0 Number of Storage Structures 1</pre>	w 40.000 e 2.000) 1440
Number of Online Cont Number of Offline Cont	rols 1 Number of Time/Area Diagrams 0 rols 0	
Synthet	ic Rainfall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Wir 100 Cv (Summer) 0. and and Wales Cv (Winter) 0. 19.000 Storm Duration (mins) 0.300	750
@1007	-2014 XP Solutions	
U1962-	ZOLA VI DOLUCIOUP	

														Page	e 2
							Dog &	Part	ride	ge Ch	ippin	g			
							Propo	sed S	W Si	imula	tions			M.	\sim
							1 in	100	Yr S	Storm	s + C	С		`	
ate 19	.04.	2023					Desig	ned b	у					1	
ile D&1	P NE	IW SW	.MDX				Check	ed by	, —						رلې ا مړلې
licro D:	rain	age					Netwo	ork 20	14.1	L					
					Onl	ine (Contr	ols f	or S	torm					
Hy	ydro	-Bra	ke Op	timum	® Ma	anhol	.e: 13	8, DS/	PN:	1.00	5, Vo	lume	(m³)): 2.	9
						Unit	Pofore	ence MI		-0198	_2000_	1000-2	000		
					E		Head		J-366	-0190	-2000-		000		
					Des	sign F	'low (]	l/s)				2	0.0		
							lush-E					alcula			
							Object leter (cive l (mm)	minim	use uj	pstrea		age 198		
					In		Level	• •					620		
		Min	imum (Outlet				• •					225		
		S	Suggest	ted Mar	nhole	e Diam	eter ((mm)				1	500		
				Co	ontro	l Poi	nts	He	ad (1	n) Flo	w (1/:	3)			
			D	esign 1	Point						19				
							lush-F.	lo™ lo®	0.33		19 17				
			м	ean Flo	ດພິດາ				0.72	-	16				
Hydro-I	Brake	e Opti e Opti	.mum® a	as spec	cifi€	ed. S	hould	anothe	er ty	pe of	contr	ol dev	ice d	other	than a
Hydro-I invalio	Brake dateo	e Opti e Opti 1	.mum® a .mum®]	as spec be util	cifie Lisec	ed. S i then	hould these	anothe e stora	er ty age r	pe of outing	contr g calc	ol dev ulatio	ice d ns wi	other ill be	than a
Hydro-H invalic Depth	Brake datec (m)	e Opti e Opti 1	.mum® ; .mum®] (1/s)	as spec be util Depth	cifie Lisec (m)	ed. S d then Flow	hould these (l/s)	anothe stora	er ty age r (m)	pe of outing Flow	contr g calc (1/s)	ol dev ulatio	ice o ns wi (m)	other ill be Flow	(1/s)
Hydro-H invalio Depth 0.	Brake datec (m) .100	e Opti e Opti 1	.mum® ; .mum®] (1/s) 6.8	as spec be util Depth	cifie lised (m) .200	ed. S d then Flow	5hould these (1/s) 21.7	anothe stora Depth	er ty age r . (m)	pe of outing Flow	contr g calc (1/s) 33.6	ol dev ulatio Depth 7	ice o ns wi (m) .000	other ill be Flow	than a (1/s) 50.6
Hydro-H invalio Depth 0.	Brake dated (m) .100 .200	e Opti e Opti 1 Flow	.mum® ; .mum®] (1/s) 6.8 18.6	as spec be util Depth	(m) 2000 .400	ed. S d then Flow	Should these (1/s) 21.7 23.3	anothe stora Depth 3 3	er ty age r (m) .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2	ol dev ulatio Depth 7 7	ice (ns w: (m) .000 .500	other ill be Flow	(1/s) 50.6 52.4
Hydro-H invalio Depth 0. 0. 0.	Brake datec (m) .100	e Opti e Opti 1 Flow	.mum® ; .mum®] (1/s) 6.8	Depth	cifie lised (m) .200	ed. S d then Flow	5hould these (1/s) 21.7	anothe stora Depth 3 3 4	er ty age r . (m)	pe of outing Flow	contr g calc (1/s) 33.6	ol dev ulatio Depth 7 7 8	ice o ns wi (m) .000	other ill be Flow	than a (1/s) 50.6
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500	e Opti e Opti 1 Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	Depth	(m) .200 .400 .800 .000	ed. S d then Flow	<pre>should these (1/s) 21.7 23.3 24.9 26.3 27.7</pre>	anothe stora Depth 3 4 4 5	er ty age r .000 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol dev ulatio Depth 7 7 8 8 8 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600	e Opti e Opti 1 Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8	Depth	(m) .200 .400 .600 .800 .000 .200	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe stora Depth 3 4 4 5 5	er ty age r .000 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol dev ulatio Depth 7 7 8 8 8 9 9 9	ice (ns wi (m) .000 .500 .000 .500	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti 1 Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	ed. S i then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-I invalic Depth 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti i Flow	(1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8 17.9	Depth 1 1 1 1 2 2 2	(m) .200 .400 .600 .800 .200 .400 .600	ed. S d then Flow	chould these (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2 31.4	anothe stora Depth 3 3 4 4 5 5 6	er ty age r .000 .500 .000 .500 .000 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio 7 7 8 8 9 9	ice (ns wi (m) .000 .500 .000 .500 .000	other ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2

		Page 3
	Dog & Partridge Chipping	
	Proposed SW Simulations	
	1 in 100 Yr Storms + CC	
Date 19.04.2023	Designed by	
File D&P NEW SW.MDX	Checked by	
Micro Drainage	Network 2014.1	
St	orage Structures for Storm	

Cellular Storage Manhole: 13, DS/PN: 1.005

Invert Level (m) 93.620 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)

0.000	24.0	0.0	0.801	0.0	0.0
0.800	24.0	0.0			

								Page 4	
			I	Dog & Pa	artrido	ge Chipp	ing		
			1	-		mulatio		ا/س	
				1 in 10	00 Yr S	Storms +	CC		س
ate 19.04.20)23		1	Designe	d by				
ile D&P NEW	SW.MD	X		Checked	by				ر مرکز ۲۰
icro Drainac				Network		_			
	, –								
Sum	mary d	of Resu	ults for 2	240 minu	ute 100	year W:	inter	(Storm)	
	Margin	for Fl	ood Risk Wa) DVD e Inertia	Status		
			-	DTS Stat	-		Statu	S OFF	
	TTC /M11	Water Level	Surcharged Depth			Overflow	Pipe		
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status	
	11111113	()	(,	(Cap.	(1)3)	(1,5)	DELECUD	
1.000		94.524			0.06	0.0	2.2	OK	
1.001		93.945				0.0	2.2	OK	
2.000		94.630				0.0	3.8	OK	
3.000		94.517				0.0	1.4	OK	
1.002 4.000		93.944 94.418	-0.106 -0.132		$0.14 \\ 0.04$	0.0 0.0	7.2 1.5	OK OK	
5.000		94.418 94.519	-0.132			0.0	1.5	OK	
1.003		93.939	-0.071			0.0	11.1	OK	
6.000		94.231	-0.119			0.0	2.0	OK	
6.001		93.948	-0.102		0.22	0.0	3.8	OK	
7.000		94.040	-0.110			0.0	3.9	OK	
1.004		93.929	-0.031			0.0		OK	
1.005		93.914				0.0		SURCHARGED	
1.006	14	93.716	-0.109	0.000	0.53	0.0	18.3	OK	

		Page 1
	Dog & Partridge Chipping	
	Proposed SW Simulations	1 4
	1 in 100 Yr Storms + CC	
Date 19.04.2023	Designed by	-
File D&P NEW SW.MDX	Checked by	المراجع المراجع
Micro Drainage	Network 2014.1	
	Outfall Details for Storm	
Outfall Outfall (Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
1.006 SW DRAIN	94.550 93.500 93.500 1200 0	
Simulatio	on Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	1.000 Additional Flow - % of Total Flo 0 MADD Factor * 10m ³ /ha Storag 0 Run Time (mins	w 40.000 e 2.000) 1440
	aphs 0 Number of Storage Structures 1 rols 1 Number of Time/Area Diagrams 0 rols 0	
Synthet	ic Rainfall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Win 100 Cv (Summer) 0. and and Wales Cv (Winter) 0. 19.000 Storm Duration (mins) 0.300	750
©1982-	-2014 XP Solutions	

														Page	e 2
							Dog &	Part	ridq	ge Ch	ippin	g			
							Propo	sed S	W Si	mula	tions			IL L	
							1 in	100 i	Yr S	Storm	s + C	С			\mathcal{O}
ate 19	.04.	.2023					-	ned b	_						
ile D&			.MDX					ed by							ل
icro D	rair	nage					Netwo	ork 20	14.1	-					
					Onl	ine (Contr	ols f	or S	torm					
H	ydro	-Bra	ke Op	timum	® Ma	anhol	e: 13	8, DS/	PN:	1.00	5, Vo	lume	(m ³): 2.	.9
						Unit	Refere	ence Mi	D-SHE	-0198-	-2000-	1000-2	2000		
						-	Head						.000		
					Des	-	'low (] 'lush-E				r	alcula	20.0 ated		
								tive l	Minim	ise u					
						Diam	eter	(mm)		-			198		
		M-1),,+ 1~+			Level	•••				93	.620		
				Dutlet ted Mar	_								225 L500		
		2	Juggebi			l Poi				-) Ble	- 11/				
			_						-	-	W (1/s	-			
			D	esign 1	Point		lculat lush-F		1.00		19. 19.				
							Kick-F		0.72		17				
			М	ean Flo	יס שכ	ver He	ead Ra	nge		-	16	.7			
Hydro-	Brak	e Opti	imum® a		cifi€	ed. S	hould	anothe	er ty	pe of	contr	ol dev	vice	other	o for t than a
Hydro- Hydro- invali	Brak Brak date	e Opti e Opti d	imum® a imum® l	as spec be util	cifie lisec	ed. S l then	hould these	anothe e stora	er ty age r	pe of outing	contr g calc	ol dev ulatio	vice ons w	other ill be	than a
Hydro- Hydro- invali Depth	Brak Brak date (m)	e Opti e Opti d	imum® ; imum®] (1/s)	as spec be util Depth	ifie lisec (m)	ed. S i then Flow	hould these (1/s)	anothe e stora	er ty age r (m)	pe of outing	contr g calc (1/s)	ol dev ulatio	vice ons w n (m)	other ill be Flow	than a
Hydro- Hydro- invali Depth	Brak Brak date (m) .100	e Opti e Opti d	imum® ; imum®] (1/s) 6.8	as spec be util Depth 1.	ifie lised (m) .200	ed. S i then Flow	hould these (1/s) 21.7	anothe e stora Depth	er ty age r . (m)	pe of outing	contr g calc (1/s) 33.6	ol dev ulatio	vice ons w n (m) 7.000	other ill be Flow	than a (1/s) 50.6
Hydro- Hydro- invali Depth 0 0	Brak Brak date (m) .100 .200	e Opti e Opti d	imum® ; imum®] (1/s)	be util Depth 1.	(m) 2000 .400	ed. S l then Flow	hould these (1/s)	anothe stora Depth 3 3	er ty age r (m) .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2	ol dev ulatio	vice ons w (m) 7.000 7.500	other ill be Flow	than a (1/s) 50.6 52.4
Hydro- Hydro- invali Depth 0 0 0 0	Brak Brak (dated (m) .100 .200 .300 .400	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8	Depth	(m) .200 .400 .600	ed. S l then Flow	<pre>should these (1/s) 21.7 23.3 24.9 26.3</pre>	anothe stora Depth 3 4 4	er ty age r .000 .500 .000	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9	ol dev ulatio	rice (ns w. 7.000 7.500 3.000 3.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invali Depth 0 0 0 0 0 0	Brake Brake dates (m) .100 .200 .300 .400 .500	e Opti e Opti d	imum® 3 imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.4	Depth	(m) .200 .400 .600 .800	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7	anothe stora Depth 3 4 4 5	er ty age r .000 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake (m) .100 .200 .300 .400 .500 .600	e Opti e Opti d	imum® (1/s) (1/s) 6.8 18.6 19.8 19.8 19.4 18.8	Depth	(m) .200 .400 .600 .800 .000 .200	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	anothe e stora Depth 3 4 4 5 5	(m) (m) .000 .500 .500 .000 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol dev ulatio	rice ons w. 7.000 7.500 3.000 3.500	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake Brake dates (m) .100 .200 .300 .400 .500	e Opti e Opti d	imum® 3 imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.4	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro- Hydro- invali Depth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Brake dated (m) .100 .200 .300 .400 .500 .600 .800	e Opti e Opti d	imum® a imum® 1 (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	Depth 1. 1. 1. 1. 2. 2. 2.	(m) .200 .400 .600 .800 .000 .200 .400	ed. S l then Flow	(1/s) (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	anothe e store Depth 3 3 4 4 5 5 5 6	er ty age r .000 .500 .500 .500 .500 .500 .500	pe of outing Flow	contr g calc (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol dev ulatio	rice (ns w. (m) 7.000 7.500 3.000 3.500 9.000	other ill be Flow	than a (1/s) 50.6 52.4 54.0 55.6 57.2

			Page 3
	Dog & Partr	idge Chipping	
		I Simulations	<u> </u>
		r Storms + CC	
ate 19.04.2023	Designed by		
ile D&P NEW SW.MDX	Checked by		راب ، ، ،
icro Drainage	Network 201		
S	orage Structures :	for Storm	
Cellular	Storage Manhole: 1	13, DS/PN: 1.005	5
	Invert Level (m) ficient Base (m/hr) 0 ficient Side (m/hr) 0	.00000 Porosi	or 2.0 ty 0.95
Depth (m) Area (m²)	Inf. Area (m ²) Depth	(m) Area (m ²) Inf.	. Area (m²)
0.000 24.0 0.800 24.0		801 0.0	0.0

								Pa	ge 4
						ge Chipp			
				Proposed	d SW Si	mulatio	ns	<u> </u> \	<u> </u>
				1 in 10	00 Yr S	Storms +	CC		\mathcal{O}^{μ}
Date 19.04.20)23			Designe	d by				
Tile D&P NEW	SW.MC	X		Checked	by			·	·····
Aicro Drainac				Network	_				
	,-					-			
Sum	mary (of Resu	ults for 2	360 minu	te 100	year W:	inter	(Storm)	
	Margin	for Fl	ood Risk Wa	-			Status		
			Analys:	is Timest DTS Stat	-	e Inertia	Status	3 OFF	
				DIS SLAL	us or	V			
		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth			Overflow			
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	
1.000	1	94.521	-0.129	0.000	0.05	0.0	1.7	OK	-
1.001		93.884			0.03	0.0	1.6	OR	
2.000	3	94.625	-0.125	0.000	0.07	0.0	2.9	OR	t i
3.000	4	94.515	-0.135	0.000	0.02	0.0	1.0	OK	[
1.002		93.883	-0.167		0.11	0.0	5.4	OR	
4.000		94.416	-0.134		0.03	0.0	1.1	OK	
5.000		94.516	-0.134		0.03	0.0	1.4	OK	
1.003 6.000		93.879 94.226	-0.131 -0.124		0.15 0.07	0.0 0.0	8.4 1.5	OR	
6.001		94.226			0.07	0.0	2.9	OF	
7.000		94.034			0.12	0.0		OK	
1.004		93.872			0.28	0.0		OK	
1.005		93.861	0.016		0.56	0.0		SURCHARGED	
1.006	14	93.699	-0.126	0.000	0.41	0.0	14.0	OK	[

		D 1
	og & Dontnidge Chintin	Page 1
	og & Partridge Chipping	L
	roposed SW Simulations	I ~ m
	1 in 100 Yr Storms + CC	
	esigned by	
	hecked by	
Micro Drainage N	etwork 2014.1	
	tfall Details for Storm	
	Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
1.006 SW DRAIN 9	4.550 93.500 93.500 1200 0	
Simulation	Criteria for Storm	
Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) 0.	000 Additional Flow - % of Total Flow 0 MADD Factor * 10m³/ha Storage 0 Run Time (mins) 500 Output Interval (mins)	√ 40.000 ≥ 2.000) 1440
	ns 0 Number of Storage Structures 1 .s 1 Number of Time/Area Diagrams 0 .s 0	
Synthetic	Rainfall Details	
Rainfall Model Return Period (years) Region England M5-60 (mm) Ratio R	and Wales Cv (Winter) 0.4	750
<u>ଜୀ ୨</u> ୫୨–୨/	014 XP Solutions	
@±302-20		

							Page	2
			Dog &	Partrido	ge Chippin	g		
			Propo	sed SW Si	Imulations		14	\sim
			1 in	100 Yr S	Storms + C	с		C
ate 19.04.2	023		Desig	ned by				
ile D&P NEW	SW.MDX			ed by				·· ···)
icro Draina	ge		Netwo	ork 2014.1	L			
		On	line Contr	ols for S	torm			
Hydro-	Brake Op	timum® M	anhole: 13	B, DS/PN:	1.005, Vo	lume (m³): 2.9	9
			Unit Refere	ence MD-SHE	-0198-2000-	1000-2000		
			Design Head	(m)		1.000		
		De	sign Flow (]		~	20.0		
			Flush-E Object		c ise upstrea	alculated m storage		
			Diameter (<u>-</u>	198		
	- -		nvert Level	•••		93.620		
		-	e Diameter (e Diameter (225 1500		
	Suggest	Lea Mannoi	e Diameter ((nun)		1200		
		Contr	ol Points	Head (r	n) Flow (1/s	3)		
	D	esign Poir	it (Calculat					
				lo™ 0.33 lo® 0.72				
	М	ean Flow c	over Head Ra		- 16.			
The hydrolog Hydro-Brake Hydro-Brake	Optimum® a	as specifi	ed. Should	sed on the another ty	Head/Discha pe of contr	ol device	other t	
Hydro-Brake Hydro-Brake invalidated	Optimum® a Optimum® }	as specifi oe utilise	ed. Should d then these	sed on the another ty e storage r	Head/Discha pe of contr outing calc	ol device ulations w	other t ill be	than a
Hydro-Brake Hydro-Brake invalidated Depth (m) F	Optimum® a Optimum® b low (l/s)	as specifi ce utilise Depth (m)	ed. Should d then these Flow (1/s)	sed on the another ty e storage r Depth (m)	Head/Discha pe of contr outing calc Flow (l/s)	ol device ulations w Depth (m)	other t ill be Flow	:han a (1/s)
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100	Optimum® a Optimum® b low (1/s) 6.8	as specifi be utilise Depth (m) 1.200	ed. Should d then these Flow (1/s) 21.7	sed on the another ty e storage r Depth (m) 3.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6	ol device ulations w Depth (m) 7.000	other t ill be Flow	:han a (1/s) 50.6
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200	Optimum® a Optimum® b low (1/s) 6.8 18.6	Depth (m) 1.200	ed. Should d then these Flow (1/s) 21.7 23.3	sed on the another ty e storage r Depth (m) 3.000 3.500	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2	ol device ulations w Depth (m) 7.000 7.500	other t ill be Flow	(1/s) 50.6 52.4
Hydro-Brake Hydro-Brake invalidated Depth (m) F 0.100 0.200 0.300 0.400	Optimum® a Optimum® 1 low (1/s) 6.8 18.6 19.8 19.8	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500	Optimum® a Optimum® 1 low (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600	Optimum® a Optimum® 1 low (1/s) 6.8 18.6 19.8 19.8 19.8 19.4 18.8	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	(1/s) 50.6 52.4 54.0 55.6
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500	Optimum® a Optimum® 1 low (1/s) 6.8 18.6 19.8 19.8 19.8 19.4	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Hydro-Brake invalidated Depth (m) F 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Hydro-Brake invalidated Depth (m) F 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	(1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F: 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>
Hydro-Brake Hydro-Brake invalidated Depth (m) F 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Optimum® a Optimum® 1 6.8 18.6 19.8 19.8 19.8 19.4 18.8 17.9	as specifi be utilise Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	ed. Should d then these Flow (1/s) 21.7 23.3 24.9 26.3 27.7 29.0 30.2	sed on the another ty e storage r Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Head/Discha pe of contr outing calc Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	ol device ulations w Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	other t ill be Flow	<pre>chan a (1/s) 50.6 52.4 54.0 55.6 57.2</pre>

		Page 3
	Dog & Partridge Chip	
	Proposed SW Simulati	
	1 in 100 Yr Storms	
ate 19.04.2023	Designed by	
ile D&P NEW SW.MDX	Checked by	
licro Drainage	Network 2014.1	
Storage	Structures for Storm	
Cellular Stora	ge Manhole: 13, DS/PN	: 1.005
Inve Infiltration Coefficient Infiltration Coefficient		ety Factor 2.0 Porosity 0.95
Depth (m) Area (m²) Inf. A	rea (m²) Depth (m) Area (r	n ²) Inf. Area (m ²)
0.000 24.0 0.800 24.0	0.0 0.801 0 0.0	0.0 0.0

ate 19.04.2023 D ile D&P NEW SW.MDX C	og & Par roposed 1 in 100 esigned hecked b	SW Sim Yr St	ulations	-	
te 19.04.2023 D le D&P NEW SW.MDX C	1 in 100 esigned	Yr St			My .
te 19.04.2023 D le D&P NEW SW.MDX C	esigned		orms + C	0	
e D&P NEW SW.MDX C	-	bv		.0	
	hecked b	1			
cro Drainage N		у			بنین ور مت بست
	etwork 2	014.1			
Current of Doculto for 4	00 minut.	- 100	usen Win	+ a m (
Summary of Results for 48		100	year win	Ler ((SCOTIN)
Margin for Flood Risk War Analysis	rning (mm) s Timestep		DVD Si Inertia Si		
	DTS Status				
Water Surcharge	d Flooded			Pipe	
US/MH Level Depth		-	Overflow		
PN Name (m) (m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000 1 94.519 -0.13	1 0.000	0.04	0.0	1.3	OK
1.001 2 93.851 -0.22		0.03	0.0	1.3	
2.000 3 94.622 -0.12	8 0.000	0.05	0.0	2.3	OK
3.000 4 94.512 -0.13	8 0.000	0.02	0.0	0.8	OK
1.002 5 93.849 -0.20	1 0.000	0.09	0.0	4.5	OK
4.000 6 94.415 -0.13		0.02	0.0	0.9	
5.000 7 94.515 -0.13		0.02	0.0	1.1	
1.003 8 93.844 -0.16		0.13	0.0	6.9	
6.000 9 94.223 -0.12		0.06	0.0	1.2	
6.001 10 93.936 -0.11		0.00		2.3	
			0.0		
7.000 11 94.031 -0.11		0.10	0.0	2.4	
1.004 12 93.838 -0.12		0.23		11.6	
1.005 13 93.829 -0.01		0.46			
1.006 14 93.689 -0.13	6 0.000	0.33	0.0	11.5	OK

Dog & Partridge Chipping Proposed SW Simulations 1 in 100 Yr Storms + CCDate 19.04.2023 File D&P NEW SW.MDXDesigned by Checked by	Page 1
Proposed SW Simulations1 in 100 Yr Storms + CCDate 19.04.2023Designed by	L'
1 in 100 Yr Storms + CCDate 19.04.2023Designed by	
Date 19.04.2023 Designed by	
File D&P NEW SW.MDX Checked by	
Micro Drainage Network 2014.1	
Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W	
Pipe Number Name (m) (m) I. Level (mm) (mm (m))
	0
Simulation Criteria for Storm	
Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (Areal Reduction Factor 1.000 Additional Flow - % of Total Hot Start (mins) 0 MADD Factor * 10m ³ /ha Sto Hot Start Level (mm) 0 Run Time (m Manhole Headloss Coeff (Global) 0.500 Output Interval (m Number of Input Hydrographs 0 Number of Storage Structures Number of Online Controls 1 Number of Time/Area Diagrams	Flow 40.000 prage 2.000 tins) 1440 tins) 1
Number of Offline Controls 0	
Synthetic Rainfall Details	
Return Period (years) 100 Cv (Summer) Region England and Wales Cv (Winter) M5-60 (mm) 19.000 Storm Duration (mins) Ratio R 0.300	0.840
©1982-2014 XP Solutions	

						Page 2
		Dog	& Partride	ge Chippin	g	
		Prop	osed SW S:	imulations		Mr.
		1 i	n 100 Yr S	Storms + C	с	
ate 19.04.2023			gned by			
ile D&P NEW SW.MD	X		ked by			ابند ، ،
icro Drainage		Netw	ork 2014.3			
	<u>O</u> :	nline Conti	rols for S	torm		
Hydro-Brake	Optimum®	Manhole: 1	3, DS/PN:	1.005, Vo	lume (m³): 2.9
				-0198-2000-		<u>,</u>
		Design Head	l (m)		1.000	
	I	Design Flow (~	20.0	
		Flush- Objec		C. Nise upstreau	alculated m storage	
		Diameter		upotrea	198 1	
		Invert Level			93.620	
		ipe Diameter			225	
Sugg	jested Manno	ole Diameter	(mm)		1500	
		rol Points		n) Flow (1/s		
	Design Po	int (Calculat Flush-I				
			Elo® 0.7			
	Mean Flow	over Head Ra	ange	- 16.	7	
Hydro-Brake Optimum Hydro-Brake Optimum	n® as specif		d another ty	pe of contro	ol device	other than a
Hydro-Brake Optimum Hydro-Brake Optimum invalidated	n® as specif n® be utili:	fied. Should sed then thes	l another ty se storage r	pe of contro outing calc	ol device ulations w	other than a ill be
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/	n® as specif n® be utili: 's) Depth (1	fied. Should sed then thes m) Flow (1/s)	d another ty se storage r) Depth (m)	pe of contro outing calc	ol device ulations w	other than a ill be
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6	n® as specin n® be utili: 's) Depth (; 5.8 1.2	fied. Should sed then thes m) Flow (1/s) 00 21.	another ty se storage r) Depth (m) 7 3.000	pe of contro outing calco Flow (1/s) 33.6	ol device ulations w Depth (m) 7.000	other than a ill be Flow (1/s) 50.6
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18	N® as specin N® be utilis (5.8 1.2 3.6 1.4	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23.	another ty se storage r) Depth (m) 7 3.000 3 3.500	pe of contro outing calco Flow (1/s) 33.6 36.2	ol device ulations w Depth (m) 7.000 7.500	other than a ill be Flow (1/s) 50.6 52.4
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19	n® as specin n® be utili: 's) Depth (; 5.8 1.2	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.	another ty se storage r) Depth (m) 7 3.000 3 3.500 9 4.000	pe of contro outing calco Flow (1/s) 33.6 36.2	ol device ulations w Depth (m) 7.000	other than a ill be Flow (1/s) 50.6 52.4 54.0
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 1.81 S.8 1.81 S.4 2.01	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24. 00 26. 00 26.	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.4 2.01 S.8 2.21	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24. 00 26. 00 27. 00 29.0	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	DI device ulations w Depth (m) 7.000 7.500 8.000 8.500	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	A another ty se storage r 7 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	Depth 12 S.8 1.2 S.6 1.4 S.8 1.6 S.8 1.8 S.8 1.8 S.8 2.0 S.8 2.2	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24. 00 26. 00 26. 00 27. 00 29.0 00 30.	A another ty se storage r 7 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	A another ty se storage r 7 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	A another ty se storage r 7 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 6 0.200 18 0.300 19 0.400 19 0.500 19 0.600 18 0.800 17	NO as specify NO be utilis NO Depth (1) S.8 1.21 S.6 1.41 S.8 1.61 S.8 1.81 S.8 1.81 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.8 2.21 S.9 2.44	fied. Should sed then thes m) Flow (1/s) 00 21. 00 23. 00 24.9 00 26. 00 27. 00 29.0 00 30.2	another ty se storage r Depth (m) 3 3.000 3 3.500 9 4.000 3 4.500 7 5.000 0 5.500 2 6.000	pe of contro outing calco Flow (1/s) 33.6 36.2 38.6 40.9 43.0 45.1 47.0	Depth (m) 7.000 7.500 8.000 8.500 9.000	other than a ill be Flow (1/s) 50.6 52.4 54.0 55.6 57.2

					Page 3
		Dog & Partri	dge Chippi	ng	
		Proposed SW	Simulation	S	Mr.
		1 in 100 Yr	Storms +	сс	
Date 19.04.2023		Designed by			-1
File D&P NEW SW.M	DX	Checked by			
Micro Drainage		Network 2014	.1		
Infiltr	ation Coefficie ation Coefficie	vert Level (m) 93 nt Base (m/hr) 0.0 nt Side (m/hr) 0.0 Area (m²) Depth (m	00000 Po 00000	prosity 0.9	95
					(m ²)
	24 0				
0.000 0.800	24.0 24.0		01 0.0		(m²) 0.0

Dog & Partridge Chipping Proposed SW Simulations 1 in 100 Yr Storms + CC	
1 in 100 Yr Storms + CC	,
	L.
	\mathbf{C}
te 19.04.2023 Designed by	
le D&P NEW SW.MDX Checked by	
Lcro Drainage Network 2014.1	
Summary of Results for 600 minute 100 year Winter (Storm)	<u> </u>
Margin for Flood Risk Warning (mm) 200.0 DVD Status OFF	
Analysis Timestep Fine Inertia Status OFF DTS Status ON	
Water Surcharged Flooded Pipe	
US/MH Level Depth Volume Flow / Overflow Flow	
PN Name (m) (m) (m ³) Cap. $(1/s)$ (1/s) Status	
1.000 1 94.518 -0.132 0.000 0.03 0.0 1.1 OK	
1.001 2 93.833 -0.247 0.000 0.02 0.0 1.1 OK	
2.000 3 94.620 -0.130 0.000 0.05 0.0 2.0 OK	
3.000 4 94.510 -0.140 0.000 0.01 0.0 0.7 OK	
1.002 5 93.830 -0.220 0.000 0.08 0.0 3.8 OK	
4.000 6 94.413 -0.137 0.000 0.02 0.0 0.8 OK	
5.000 7 94.514 -0.136 0.000 0.02 0.0 1.0 OK	
1.003 8 93.821 -0.189 0.000 0.11 0.0 5.9 OK	
6.000 9 94.221 -0.129 0.000 0.05 0.0 1.0 OK	
6.001 10 93.933 -0.117 0.000 0.11 0.0 2.0 OK	
7.000 11 94.028 -0.122 0.000 0.08 0.0 2.0 OK	
1.004 12 93.815 -0.145 0.000 0.20 0.0 9.9 OK	
1.005 13 93.807 -0.038 0.000 0.40 0.0 9.8 OK	
1.006 14 93.681 -0.144 0.000 0.28 0.0 9.8 OK	