

Part L2 Compliance Report Clitheroe Care Home PA1674



| RIBA   | 0 | 1 | 2 | 2 | 4 | F | C | 7 |
|--------|---|---|---|---|---|---|---|---|
| STAGE: | 0 | 1 | Z | 3 | 4 | Э | D | / |

TACE | Portland House | Oak Green | Earl Road | Cheadle Hulme | Cheshire | SK8 6QL

# **Controlled Document**

| TACE Project Ref: |                | PA1674 |           |          |
|-------------------|----------------|--------|-----------|----------|
|                   | Name           |        | Signature | Date     |
| Prepared by:      | Ali Syed       |        | Æ         | 16.03.23 |
| Checked:          | Stephan Senior |        | Sseron    | 16.03.23 |
| TACE Approved:    | James Massey   |        | A         | 16.03.23 |

| Revisio | Revision Record |    |                                               |      |      |  |  |
|---------|-----------------|----|-----------------------------------------------|------|------|--|--|
| Rev.    | Date            | Ву | Summary of Changes                            | Chkd | Aprd |  |  |
| А       | 03.02.23        | AS | Preliminary Issue                             | SS   | JM   |  |  |
| В       | 16.03.23        | JL | Updated U-values inline with architects email | SS   | JM   |  |  |

# Contents

| 1.0   | Execu    | utive Summary                                      | 1 |
|-------|----------|----------------------------------------------------|---|
| 1.1   | Pla      | anning                                             | 1 |
| 1.2   | Lo       | w or Zero Carbon (LZC)                             | 1 |
| 1.3   | Bu       | uilding Regulations Part L2A 2013                  | 1 |
| 2.0   | Intro    | duction                                            | 5 |
| 2.1   | So       | oftware                                            | 5 |
| 2.2   | Lo       | cation                                             | 5 |
| 3.0   | Ener     | gy & Sustainability Strategy                       | 5 |
| 3.1   | Int      | troduction6                                        | 5 |
| 3     | .1.1     | Lean – Building Passive Measures                   | 7 |
| 3     | .1.2     | Mean – High-Efficiency Systems, Plant and Controls | 3 |
| 3.    | .1.3     | Green – Renewable Technologies                     | ) |
| 4.0   | Mech     | hanical Services Design Criteria                   | ) |
| 5.0   | Elect    | rical Services Design Criteria12                   | L |
| 6.0   | Conc     | lusion13                                           | 3 |
| Appen | dix I –  | - BRUKL Report                                     | 1 |
| Appen | dix II - | – EPC                                              | 5 |

### 1.0 Executive Summary

This report has been prepared to satisfy the requirements of Eric Wright Developer and Borough of Ribble Valley targets to demonstrate that, that thorough consideration has been given to the energy use and carbon consumption of the proposed new care home at Clitheroe.

The proposed development complies with the requirements of the Building Regulations Approved Document L2 (ADL2) 2021.

### 1.1 Planning

The Local Planning Authority (LPA) is borough of Ribble Valley, Lancashire.

#### 1.2 Low or Zero Carbon (LZC)

With Passive measures incorporated within the design of the proposed development it was not possible to achieve required BER over TER, therefore, passive measures alone are not enough and so renewables were adopted within the design philosophy. At this stage the advised source of renewable energy is photovoltics.

#### 1.3 Building Regulations Part L2A 2013

This building is currently complying with Part L2A 2021 with an actual building emissions rate (BER) demonstrating 5.2% reduction in carbon emissions in comparison with the notional building target emissions rate (TER).

| The CO <sub>2</sub> emission and prim       | ary energy rates of the building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | must not exceed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I the targets |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Target CO <sub>2</sub> emission rate (TER), | kgCO <sub>2</sub> /m <sup>2</sup> annum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| Building CO <sub>2</sub> emission rate (BER | ), kgCO₂/m²annum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| Target primary energy rate (TPE             | R), kWh/m²annum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 134.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| Building primary energy rate (BPI           | ER), kWh/m²annum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 126.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| Do the building's emission and pr           | imary energy rates exceed the targets?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BER =< TER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BPER =< TPER  |
|                                             | Energy Performance Certificate  HMGovernment Non-Domestic Building Citheres Certificate Reference No Certificate Referenc | nt<br>mber:<br>3-3152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|                                             | Respectively of the part of th | of de la biologica de la construcción de la constru |               |

From the attached sketch of Criterion 1 and EPC, it can be seen the building not just comply with the Building Regulation Part L2A, but also achieve EPC rating A.

# TACE

### 2.0 Introduction

TACE have been appointed to develop model and perform Part L2A analysis for new care home development Clitheroe Care Home, Standen Central Site, Clitheroe.

This developed comprises of 2 storey care home containing around 70 ensuite bedrooms for the elderly. While on the ground floor beside ensuite bedrooms, the floor also contains admin and manager offices, dining rooms, lounges, hair saloon, library, seating area and bar. While the first floor contains ensuite bedrooms, dining areas, cinema, activities.

This report is about the areas within the building which falls under Building Regulations Part L2A.



Proposed development

# 2.1 Software

This study has been undertaken using TAS dynamic simulation software V9.5.4 and UK Building regulations 2021 studio to generate a BRUKL and EPC rating. This allows us to assess the building servicing strategy and energy profiles.



# 2.2 Location

The weather file selected for the project is Manchester in accordance with the SBEM weather locations application.

The proposed development is situated at Standen Central Site, Clitheroe.



**Project location** 

# 3.0 Energy & Sustainability Strategy

# 3.1 Introduction

A sustainable building will be delivered through the utilisation of a holistic approach, which considers, plans and monitors the use of natural resources. The strategy for achieving this is outlined as follows:

# The Low Carbon Design Hierarchy

The strategy for reducing carbon dioxide  $(CO_2)$  emissions and energy consumption within the temporary accommodation, development will be to embrace a lean, mean and green approach as defined below.

- Lean the use of advanced building modelling software and passive construction techniques.
- Mean Incorporation of high-efficiency systems and effective controls throughout the design.
- Green Incorporation of renewable energy sources where possible



# 3.1.1 Lean – Building Passive Measures

The passive measures are to be included within the design of the development to reduce energy use and the associated  $CO_2$  emissions are;

- Improved building fabric parameters over those required by Building Regulations Part L2A 2021
- Windows with high thermal insulation
- Improved air permeability
- Maximisation of daylight
- Optimise glazing solar energy transmittance

# **Enhanced Insulation to The Building Envelope**

Limiting heat losses across the entire building envelope will future proof the energy efficiency of the development over its whole life. To achieve this, the fabric thermal U-Value requirements as detailed within Approved Document L2A 2021 of the Building Regulations will be improved upon.

The table below shows the limiting U-values required to meet Building Regulations compared to the targeted values which exceed the Building Regulations requirements.

The targeted values as noted will be confirmed during the detailed design stage of the building in conjunction with finalisation of the energy efficiency measures included to meet the CO<sub>2</sub> emission rates required by Building Regulations.

| Building Element | Building Regulations<br>Limiting Value (W/m <sup>2</sup> . K) | Proposed Construction<br>Value (W/m <sup>2</sup> . K) |
|------------------|---------------------------------------------------------------|-------------------------------------------------------|
| Roof Pitched     | 0.16                                                          | 0.16                                                  |
| External Wall    | 0.26                                                          | 0.22                                                  |
| Floor            | 0.25                                                          | 0.12                                                  |
| Windows & Door   | 1.6                                                           | 1.2                                                   |



### **Engineered Facade Design**

The glazed proportion of the building facades and the glazing location will be designed to maximise the use of natural daylight to offset demand for artificial lighting.

| Building Element | AD L2A Solar G Value | Target Solar G Value |
|------------------|----------------------|----------------------|
| Glazed Units     | 0.7                  | 0.4                  |

#### **Reduced Air Permeability**

The development will be constructed to improved building airtightness criteria beyond the level required to comply with Building Regulations.

| Building Regulations<br>Document | Maximum allowable air<br>permeability (m³/m².hr at<br>50 Pa) | Targeted air permeability<br>(m³/m².hr at 50 Pa) |
|----------------------------------|--------------------------------------------------------------|--------------------------------------------------|
| Approved Document L2A            | 8.0                                                          | 5.0                                              |

#### Weather File

For the analysis, the weather file used was Manchester.TRY weather file taken from CIBSE weather data.

# 3.1.2 Mean – High-Efficiency Systems, Plant and Controls

High-efficiency systems, plant, controls and equipment will be incorporated as follows:

# **Optimised Plant Controls**

Control of heating and cooling plant will be optimised, and weather compensated to ensure plant operates as close to demand as possible and not at full capacity.

#### **Variable Speed Drives**

Variable speed drives shall be installed on circulation pumps and ventilation fans to allow the speed of the respective motors to be amended by the automatic controls to suit changing load of the building. This will ensure energy usage matches demand requirements.

#### **Energy Efficient LED Lighting**

Internal lighting within the landlord areas will incorporate energy-efficient LED lighting where practicable.

Lighting controls will be provided to limit energy use.

Automatic presence/absence detection will be included in appropriate areas. This form of control will ensure lights are automatically switched off during periods of non-occupancy.

External lighting will be designed to incorporate energy efficient luminaires and an automatic lighting control system utilising daylight sensors and time clock control to ensure energy-efficient operation of the lighting.

### **Heat Recovery on Ventilation Systems**

Where installed, the ventilation systems installed within the development will also incorporate heat recovery units within the building. This is then used to heat the incoming fresh air and therefore reduce energy usage.

The heat recovery units will have a low specific fan power to minimise the energy used by the fans.

#### 3.1.3 Green – Renewable Technologies

The design of the building as detailed above place emphasis on passive energy saving by careful design of the building and the building services.

The thermal modelling undertaken based on the TACE M&E design strategy demonstrates that the passive design measures in conjunction with solar photovoltics will meet the CO<sub>2</sub> requirement for Building Regulation Part L2A 2021 compliance.

PV data used for the Part L2A analysis is as followed.

- Total PV Area = 70m<sup>2</sup>
- PV Efficiency = 20%
- PV Inclination = 30°
- PV Orientation = South Facing
- Total PV Area = 110m<sup>2</sup>
- PV Efficiency = 20%
- PV Inclination = 30°
- PV Orientation = East Facing
- Total PV Area = 50m<sup>2</sup>
- PV Efficiency = 20%
- PV Inclination = 30°
- PV Orientation = West Facing

With the inclusion of 230m<sup>2</sup> of PV area for the care home recommended by EDSL TAS thermal modelling analysis the building achieve improvement over TER.

#### 4.0 Mechanical Services Design Criteria

The modelled mechanical services systems, configurations and efficiencies are all based on the current TACE design. Any deviations need to be carefully considered to ensure the minimum efficiencies are achieved.



It is the responsibility of the contractor as part of his plant selection and installation to implement these measures. Should the contractor deviate from these assumptions he will be responsible for producing a revised Part L calculation and report to demonstrate compliance.

The following table summarises the strategy adopted by TACE to the mechanical services installation:

| Type of system    | Sys               | tem Performance Data        | System Performance        |
|-------------------|-------------------|-----------------------------|---------------------------|
| Heating System    | 2) Hoa            | t Source Constator Type     | Flectric Papel Heaters    |
| All Zones         | a) fied<br>b) Fue |                             | Grid Supplied Electricity |
| All Zones         | c) Cor            | arator Seasonal Efficiency  |                           |
| zones fitted      | d) Hea            | t Pacovery Effectiveness    | N/A                       |
| with V/DE/V/DV/ & | a) Dali           | ivery Efficiency            | 100%                      |
| Underfloor        | ej Den            |                             | 100%                      |
| Heating           |                   |                             |                           |
| Heating System    | 2) Hoa            | t Source Generator Type     | ленр                      |
| Zones with        | a) fied<br>b) Euo |                             | Grid Supplied Electricity |
| Linder Floor      | D) Fue            | arator Soconal Efficiency   |                           |
| Under Flour       | d) Her            | the Recovery Effectiveness  | 5.45<br>N/A               |
| пеацінд           | u) Hea            | in Recovery Effectiveness   |                           |
|                   | e) Den            |                             | N/A                       |
| Heating System    | a) Hea            | t Source Generator Type     | ASHP                      |
| Comms Room        | b) Fue            | I Туре                      | Grid Supplied Electricity |
|                   | c) Ger            | erator Seasonal Efficiency  | 410%                      |
|                   | d) Hea            | t Recovery Effectiveness    | N/A                       |
|                   | e) Deli           | ivery Efficiency            | 100%                      |
|                   |                   |                             |                           |
| Heating System    | a) Hea            | t Source Generator Type     | ASHP                      |
| Zones with VRF    | b) Fue            | l Type                      | Grid Supplied Electricity |
|                   | c) Ger            | nerator Seasonal Efficiency | 300%                      |
|                   | d) Hea            | t Recovery Effectiveness    | N/A                       |
|                   | e) Deli           | ivery Efficiency            | 100%                      |
|                   | ·                 |                             |                           |
| Cooling System    | a) Hea            | It Source Generator Type    | ASHP                      |
| VRF/VRV           | b) Fue            | l Type                      | Grid Supplied Electricity |
|                   | c) Ger            | nerator Seasonal Efficiency | 4.0                       |
|                   | d) Hea            | t Recovery Effectiveness    | N/A                       |
|                   | f) Deli           | ivery Efficiency            | 100%                      |
|                   | ·                 |                             |                           |
| Cooling System    | a) Hea            | t Source Generator Type     | ASHP                      |
| HP                | b) Fue            | I Туре                      | Grid Supplied Electricity |
|                   | c) Ger            | erator Seasonal Efficiency  | 7%                        |
|                   | d) Hea            | t Recovery Effectiveness    | N/A                       |
|                   | e) Deli           | ivery Efficiency            | 100%                      |
|                   |                   |                             |                           |

| DHW          | a) | Method of DHW generation, i.e.      | Air Source Heat Pump      |
|--------------|----|-------------------------------------|---------------------------|
|              |    | combi boilers, cylinder, etc.       |                           |
|              | b) | Size and type of DHW cylinder       | 2000L                     |
|              | c) | DHW delivery efficiency             | 95%                       |
|              | d) | Fuel Type                           | Grid Supplied Electricity |
|              | e) | Generator Seasonal Efficiency       | N/A                       |
| Mechanical   | a) | Details of all AHUs and which areas | HRU                       |
| Ventilation  |    | served by AHU                       |                           |
| HRU          | b) | Specific fan power of AHUs (W/I/s)  | 1.8W/I/s                  |
|              | c) | Efficiency of heat recovery         | 80%                       |
|              |    |                                     |                           |
| Mechanical   | a) | Details of all AHUs and which areas | Kitchen S&E               |
| Ventilation  |    | served by AHU                       |                           |
| Kitchen S&E  | b) | Specific fan power of AHUs (W/I/s)  | 0.6 + 0.6 W/I/s           |
|              | c) | Efficiency of heat recovery         | N/A                       |
|              |    |                                     |                           |
| Mechanical   | d) | Details of all AHUs and which areas | Extract Only              |
| Ventilation  |    | served by AHU                       |                           |
| Extract Only | e) | Specific fan power of AHUs (W/I/s)  | 0.5 W/I/s                 |
| Laundry,     | f) | Efficiency of heat recovery         | N/A                       |
| Cleaners,    |    |                                     |                           |
| Bathrooms    |    |                                     |                           |
| Control      | a) | Are there system provisions for     | Yes                       |
| Corrections  |    | metering?                           |                           |
|              | b) | Does the system warn of 'out of     | No                        |
|              |    | range' values?                      | Following controls are    |
|              |    |                                     | installed on HVAC         |
|              |    |                                     | systems                   |
|              |    |                                     | a) Room                   |
|              |    |                                     | Temperature               |
|              |    |                                     | Control                   |
|              |    |                                     | b)                        |
|              |    |                                     |                           |
|              |    |                                     |                           |

# 5.0 Electrical Services Design Criteria

The modelled services systems, configurations and efficiencies are all based on the current TACE design. Any deviations need to be carefully considered to ensure the minimum efficiencies are achieved.

It is the responsibility of the contractor as part of his plant selection and installation to implement these measures. Should the contractor deviate from these assumptions he will be responsible for producing a revised Part L calculation and report to demonstrate compliance.

In the absence of the lighting calculation standard luminaire efficacy of 95 lm/W has been applied to the remaining zones throughout.

| Spaces        | Power<br>correction<br>factor | Lighting level<br>(Lux) | Day light<br>dimming | Local manual<br>switching |
|---------------|-------------------------------|-------------------------|----------------------|---------------------------|
| Circulation   | 0.95                          | 150                     | No                   | Presence                  |
|               |                               |                         |                      | Detection                 |
| Stairs        | 0.95                          | 150                     | No                   | Presence                  |
|               | 0.00                          |                         |                      | Detection                 |
| Plantroom     | 0.95                          | 200                     | No                   | Manual                    |
| Offices       | 0.95                          | 350                     | No                   | Presence                  |
|               | 0.00                          |                         |                      | Detection                 |
| Lounge        | 0.95                          | 300                     | No                   | Manual                    |
| Activity Room | 0.95                          | 350                     | No                   | Presence                  |
|               | 0.55                          |                         |                      | Detection                 |
| Staff Room    | 0.95                          | 350                     | No                   | Presence                  |
|               | 0.55                          | 330                     | 110                  | Detection                 |
| Laundry       | 0.95                          | 400                     | No                   | Manual                    |
| Cinema        | 0.95                          | 350                     | No                   | Manual                    |
| Kitchen       | 0.95                          | 500                     | No                   | Manual                    |
| Dining        | 0.05                          | 200                     | No                   | Presence                  |
| Dining        | 0.95                          | 200                     | NO                   | Detection                 |
| Stores        | 0.95                          | 100                     | No                   | Presence                  |
| 510165        | 0.95                          | 100                     | NO                   | Detection                 |
| Meds          | 0.95                          | 100                     | No                   | Presence                  |
| Ivieus        | 0.95                          | 100                     | NO                   | Detection                 |
| Toilets       | 0.95                          | 200                     | No                   | Presence                  |
| Tollets       | 0.95                          | 200                     | NO                   | Detection                 |
| Pecentian     | 0.95                          | 500                     | No                   | Presence                  |
| месерион      | 0.95                          | 500                     | NO                   | Detection                 |
| Bedroom       | 0.95                          | 100                     | No                   | Manual                    |
| Server        | 0.95                          | 100                     | No                   | Presence                  |
| Jerver        | 0.95                          | 100                     | NO                   | Detection                 |
| Bathroom      | 0.95                          | 200                     | No                   | Presence                  |
| Bathroom      | 0.95                          | 200                     | NO                   | Detection                 |
| Secting/Bor   | 0.95                          | 250                     | No                   | Presence                  |
| Seating/ Bai  | 0.95                          | 330                     | NO                   | Detection                 |
| Hair Salon    | 0 95                          | 350                     | No                   | Presence                  |
|               | 0.95                          | 330                     | NU                   | Detection                 |
| Comms         | 0.95                          | 100                     | No                   | Manual                    |
| Library       | 0 95                          | 350                     | No                   | Presence                  |
| LIDI di y     | 0.95                          | 330                     | INU                  | Detection                 |

The following table summarises the assumptions made to the electrical services installation:

### 6.0 Conclusion

From this report, with the design parameters used within Part L2A compliance analysis, calculation performed exceeds the requirements set out in Building Regulation Part L 2021.

From the results in Appendix I it can be noted that with the passive measures and high efficiency mechanical and electrical systems in conjunction with photovoltaic cells as renewable energy source, the Care Home at Clitheroe complies with Building Regulation Part L2A analysis.

It should be noted that the calculation and subsequent results outlined within this report have been produced from TACE stage 3 information.

# Appendix I – BRUKL Report



The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

| Fabric element                                                                                                                        | Ua-Limit                  | Ua-Calc      | Ui-Calc       | First surface with maximum value                        |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|---------------|---------------------------------------------------------|
| Walls*                                                                                                                                | 0.26                      | 0.22         | 0.22          | External Wall 375mm                                     |
| Floors                                                                                                                                | 0.18                      | 0.12         | 0.12          | Ground Floor                                            |
| Pitched roofs                                                                                                                         | 0.16                      | 0.16         | 0.16          | Roof                                                    |
| Flat roofs                                                                                                                            | 0.18                      | -            | -             | No flat roofs in project                                |
| Windows** and roof windows                                                                                                            | 1.6                       | 1.38         | 1.56          | W8A Openable                                            |
| Rooflights***                                                                                                                         | 2.2                       | -            | -             | No rooflights in project                                |
| Personnel doors^                                                                                                                      | 1.6                       | 1.35         | 1.61          | D1 Louvre Door                                          |
| Vehicle access & similar large doors                                                                                                  | 1.3                       | -            | -             | No vehicle access or similar large doors in pro         |
| High usage entrance doors                                                                                                             | 3                         | -            | -             | No high usage entrance doors in project                 |
| U activit = Limiting area-weighted average U-values [W/(m <sup>2</sup> )<br>U active = Calculated area-weighted average U-values [W/( | ()]<br>m <sup>1</sup> K)] |              | U i Cato = Cá | alculated maximum individual element U-values [W/(m/K)] |
| * Automatic U-value check by the tool does not apply to c                                                                             | urtain walls w            | hose limitin | g standard i  | s similar to that for windows.                          |
| ** Display windows and similar glazing are excluded from                                                                              | the U-value o             | heck.        | *** Values    | for rooflights refer to the horizontal position.        |
| ^ For fire doors, limiting U-value is 1.8 W/m <sup>2</sup> K                                                                          |                           |              |               |                                                         |
| N.B.: Neither roof ventilators (inc. smoke vents) nor swim                                                                            | ning pool bas             | ins are mod  | felled or ch  | acked against the limiting standards by the tool.       |

| Air permeability   | Limiting standard | This building |
|--------------------|-------------------|---------------|
| m³/(h.m²) at 50 Pa | 8                 | 5             |

# TACE

#### Appendix II – EPC



# TACE