RCD

Residential Development Nova Primrose Road Clitheroe BB7 1DR

Drainage Strategy Report

14th July 2023

Rev	Date	Purpose/Status	Document Ref.	QA
А	14.03.2023	For approval	First issue	RAC/STC
В				
С				
D				
E				

Disclaimer

This report is for the use of the Client only and is not for the use of any other parties without the express permission of the Client. All calculations and related quantified assumptions are indicative for planning purposes only and are based solely on the available design proposals and must be reassessed during detailed design with the appropriate compliance methodology.

Table of Contents

Execu	utive Summary4
1.0	Fluvial and pluvial flooding
2.0	Existing Drainage/geology6
3.0	Proposed Drainage Strategy7
3.1	Surface Water Drainage7
3.2	Foul Water Drainage9
4.0	Surface Water Flows
4.1	Existing and proposed site run-off flows10
5.0	Attenuation
6.0	Sustainable Urban Drainage Systems (SUDS)11
6.1	Infiltration Devices
6.2	Brown/Green Roofs
6.3	Rainwater Harvesting14
6.4	Porous Paving15
6.5	Below Ground Attenuation16
6.6	Wetlands17
6.7	Swales 17
6.8	Ponds/Rain gardens17
7.0	Proposed SUDS solution
8.0	Management and Maintenance of SUDS18
9.0	Implementation of SUDS

Executive Summary

RCD Consultants Ltd has been appointed by Roman Summer Associates Ltd to design the surface water and foul water drainage aspects of the proposed development at Nova, Primrose Road, Clitheroe, BB7 1DR.

The report outlines the strategy for the surface water drainage for the proposed development with reference to Ciria 753, the SUDS manual, the NPPF, the National Planning Policy Framework and the Local Flood Risk Management Strategy for Lancashire 2021-2027.

The site area is 0.18Ha and is and elevated part of Primrose House gardens. The site is covered with trees and shrubs and is 100% permeable.

Infiltration testing completed on 25^{th} May 2023 confirmed worst case infiltration rates of 1.67×10^{-5} m/s.

The proposed development consists of the construction of a single storey dwelling with a roof area of $520m^2$ and a permeable drive area with an area of $147m^2$.

It is proposed that surface water from the roof will discharge to a cellular storage tank soakaway.

Foul drainage will discharge under gravity to the public foul sewer running though the site.

The flood warning information services website confirms that the site is in Flood Zone 1 and that there is no risk of surface water flooding. The mapping shows that the garden of Primrose house is in flood zone 3 and that there is a risk of flooding but the proposed site is in an elevated position some 7.0m higher than the garden.

Construction will commence shortly after planning has been granted and it is expected that all construction, including SUDs features will be completed within three years.

1.0 Fluvial and pluvial flooding

The flood warning information services website confirms that the site is in Flood Zone 1 and that there is no risk of surface water flooding. The mapping shows that the garden of Primrose house is in flood zone 3 and that there is a risk of flooding but the proposed site is in an elevated position some 7.0m higher than the garden.

2.0 Existing Drainage/geology

The site area is 0.18Ha and is and elevated part of Primrose House gardens. The site is covered with trees and shrubs and is 100% permeable.

A copy of the existing site is shown in Appendix A.

There are surface water and foul water sewers crossing the site.

The nearest watercourse is the Pendleton Brook that is 90m due south of the site.

The Greenfield discharge rates are shown in Appendix B.

The British Geological Survey website indicates that the site is underlain by Alluvium superficial deposits over bedrock of the Clitheroe Limestone Formation and Hodder Mudstone Formation.

Infiltration testing completed on 25^{th} May 2023 confirmed worst case infiltration rates of 1.67×10^{-5} m/s.

A copy of the infiltration testing results are shown in Appendix C.

3.0 **Proposed Drainage Strategy**

The proposed development consists of the construction of a single storey dwelling with a roof area of $520m^2$ and a permeable drive area with an area of $147m^2$.

It is proposed that surface water from the roof will discharge to a cellular storage tank soakaway.

The Drainage Layout 1165-2301-CIV-10 is shown in Appendix D.

3.1 Surface Water Drainage

In accordance with Ciria 753, SUDS Manual, flooding is permitted above ground during the 1 in 100 year storm event + 40% climate change allowance but all flood water is to be contained within the site boundaries. No flooding is permitted during the 1 in 30 year storm event.

1, 30 and 100 year surface water calculations are shown in Appendix F and 1 in 100 year surface water calculations with a 20% climate change allowance are shown in Appendix E.

The 1 in 100 year + 40% climate change calculations show that a small volume of flooding occurred. This will flow onto the soft landscaped area an infiltrate in a similar way to current Greenfield conditions.

SUDS techniques will be included where local ground conditions permit. In conjunction with the surface water management requirements, consideration of green roofs, infiltration devices, and rainwater harvesting techniques will be made. These methods are further detailed in Section 6.

3.1.1 **Proposed Infrastructure**

It is proposed that surface water from the roof will discharge to a cellular storage tank soakaway.

The drive will be constructed in permeable materials to mimic existing Greenfield conditions.

3.1.2 Standards

The performance of the surface water drainage system will be designed to BS EN 752 Parts 3 and 4, and the most current issue of Part H of the Building Regulations.

In accordance with the Local Water Authority guidance a flood exceedance plan shown in Appendix F indicates the routes water will take in the unlikely event of SUDS failure.

The materials specification for the scheme will be in accordance with the Highways Agency Specification for Highway Works. For the purposes of the indicative design, the following material types have been assumed:

- Drainage pipes up to 300mm diameter Vitrified clayware, plastic pipes will be permitted subject to ground conditions.
- Manholes and chambers Precast concrete with concrete surround or PPIC
- Chamber covers Class D400 infill type in hard paved areas.
- Pipe bedding Imported granular material.
- Pipe Trench backfill Selected as dug or imported material.
- Manholes should be located at every change of alignment or gradient; at the head of all sewers; at every junction of a public sewer.

The drainage shall be designed utilizing the following criteria:

- Minimum flow velocity 1.0m/s for self-cleansing
- Standard pipe roughness "Ks" of 0.6.

3.2.1 **Proposed Infrastructure**

Foul drainage from the building will be collected via pipes and discharge to the existing public foul sewer running through the site.

In accordance with sewers for adoption the average flow rate will be 0.05l/s.

3.2.2 Standards

The performance of the foul drainage system has been designed to Sewers for Adoption current Edition, BS EN 752 Parts 3 and 4, and the most current issue of Part H of the Building Regulations. The main criteria used are as follows.

- Drainage pipes up to 100mm diameter Vitrified clayware, plastic pipes will be permitted subject to ground conditions.
- Manholes and chambers Precast concrete with concrete surround or PPIC
- Chamber covers Class D400 infill type in higher quality paved areas.
- Class D400 standard type in all other road / parking areas
- Class C250 standard type in all footpath areas
- Pipe bedding Imported granular material.
- Pipe Trench backfill Selected as dug or imported material.
- Manholes should be located at every change of alignment or gradient; at the head of all sewers; at every junction of a public sewer.

The drainage shall be designed utilizing the following criteria:

- Minimum flow velocity 0.75m/s for self-cleansing
- Standard pipe roughness "Ks" of 1.5.

4.0 Surface Water Flows

4.1 Existing and proposed site run-off flows

There are surface water and foul water sewers crossing the site.

The pre-development site is a field where rainfall infiltrates to the ground below.

Infiltration testing results shown in Appendix C confirm that a soakaway will be the preferred method of disposal of surface water runoff from the roof. The permeable drive will mimic existing Greenfield conditions.

The pre-development surface water calculations are shown in Appendix B and the post-development surface water calculations are shown in Appendix D.

As we are disposing of surface water via infiltration flow rate and water volume tables are not shown as we are not increasing the volume of rainfall landing on the site.

The 1 in 100 year + 40% climate change calculations confirm that a small volume of flooding occurs, and should this storm ever occur then such flood water will flow down the embankment towards the Pendleton Brook.

The flood exceedance plan shown in Appendix E shows the route flood water will take in the unlikely event of SUDs failure.

5.0 Attenuation

It is proposed that Sustainable Urban Drainage Systems (SUDS) will be the primary consideration for surface water management. There are several different methods that may be used to provide sufficient attenuation of the surface water described in Section 6 below.

Attenuation should be positioned as close to the outfall as possible and would control the surface water discharge from the site. Implementation of one or all of the SUDS methods outlined in Section 6 of this report is highly recommended to reduce the requirement for below ground storage.

The proposed drainage design includes a suitably sized cellular storage tank soakaway.

The drive will be constructed using permeable materials to mimic existing Greenfield conditions.

6.0 Sustainable Urban Drainage Systems (SUDS)

The objective of SUDS is to minimise the impacts of the development on the quantity and quality of site runoff and maximise amenity and biodiversity opportunities. Surface water SUDS will be designed and installed in accordance with NPPF and associated technical guidance March 2012 and associated CIRIA documents.

The mix of SUDS to be used is determined by the conditions on site, in this case a development with areas of external space which can be utilised for SUDS. The methodology of surface water control is to slow the entry of the surface water into the system by using flow control devices (in this instance infiltration), then retain the runoff which will release surface water into the existing groundwater table or aquifer below and preventing flooding within and beyond the site boundaries.

6.1 Infiltration Devices

Infiltration devices drain water directly into the ground. Infiltration trenches and soakaways are more practicable for urban sites with limited space available. Infiltration devices can be integrated into and form part of the landscaped areas.

Infiltration trenches are completely below ground, and water should not occur on the surface.

Figure 1 – Typical cross section through infiltration trench

Advantages – Reduces the volume of runoff, effective at pollutant removal, contributes to ground water recharge, simple and cost effective.

Disadvantages – Potentially high failure rates, comprehensive ground investigations required, offset from foundations (min. 5m away), risk of ground water pollution, reduced performance during prolonged wet periods.

Suitable for use – Yes, infiltration testing results confirmed that soakaways will work for soakaways.

6.2 Brown/Green Roofs

Green roofs comprise a multi-layered system that covers the roof of a building or podium structure with vegetation cover/landscaping over a drainage layer. They are designed to intercept and retain precipitation, increasing the time of concentration and reducing the volume of runoff and attenuation peak flows. Green roofs can be anything from a thin growing layer of sedums and mosses to plants, shrubs and large trees.

These roofs vary in specification and can be designed to attract bird and invertebrate species. Referring to CIRIA document C644, green and brown roofs also participate in attenuating rainwater. This would reduce the requirement for below ground storage attenuation on the site.

Figure 2 – Typical section through green roof build up

Advantages – Mimic greenfield state of building footprint, good removal of pollutants, ecological and amenity benefits, improve air quality, insulates building.

Disadvantages – Costs, increased structural loading, roof height, design, maintenance and exposure may preclude use.

Suitable for use – **No**, the types of property proposed have pitched roofs that are not suitable to support Green Roofs.

6.3 Rainwater Harvesting

These tanks act as mini-storage chambers for surface water, reducing the extent of underground storage required. They provide a source of water for plant irrigation, washing machines and for flushing toilets.

Harvested rainwater is stored below ground and pumped to provide a substitute for potable mains water reducing both the site discharge and water consumption.

Figure 4 – Rainwater Harvesting

Advantages – Provided source control of storm water runoff, reduces demand on mains water.

Disadvantages – Costs, Risk to public health, use dependant on demand requirements and seasonal rainfall characteristics, maintenance of pumps & control systems.

Suitable for use – **No,** there is no space available and the cost of installing is not viable for a project of this type.

6.4 Porous Paving

Porous pavement is an alternative to conventional paving in which water permeates through the paved structure rather than draining off it. The surface water will be held in a reservoir structure (high void content sub-base) under the pavement for subsequent delayed discharge or infiltration into the sub-strata below.

The porous paving can be materials such as gravel, grasscrete, porous (no fines) concrete, concrete blocks or porous asphalt. Pollutant removal rates have been shown to be high, as the majority of the removal occurs as a result of the filtration of the water through the aggregate sub-base.

Figure 3 – Typical section through porous paving

Advantages – Effective in removing pollutants, lined systems can be used to avoid infiltration, reduces volume and rate of surface water runoff, suitable for high density developments. Mimics existing Greenfield conditions by filtering into the surrounding soft landscaped areas.

Disadvantages – Costs, used for low traffic volumes, low axel loads and speeds, risk of long term clogging due to poor maintenance.

Suitable for use – Yes, a permeable drive is proposed to mimic existing Greenfield conditions.

6.5 Below Ground Attenuation

Attenuation involves the storing of surface water within pipework or underground tanks prior to controlled discharge into the public system. Attenuation tanks can also provide off-line storage.

Figure 5 – Typical section through below ground attenuation chamber (cellular storage)

Advantages – Effective storage of surface water, can be used below trafficked areas, can be used below public open areas, minimum maintenance.

Disadvantages – No water quality treatment.

Suitable for use – Yes, a cellular storage tank soakaway is proposed.

6.6 Wetlands

Wetlands provide both stormwater attenuation and treatment. They comprise shallow ponds and marshy areas, covered in aquatic vegetation. Wetlands provide settlement of sediment and remove contaminants.

Advantages – Effective storage of surface water, good pollutant removal, ecological and amenity benefits.

Disadvantages – Requires large surface area. Health & Safety issues associated with large bodies of water.

Suitable for use – No, there is no space available.

6.7 Swales

Swales are vegetated drainage structures up to 500mm deep and used to provide flow control through attenuation. They can be used for infiltration, where possible.

Advantages – Can be incorporated into landscaping, good removal of contaminants, reduces discharge rates. Low costs.

Disadvantages – Requires large surface area. Limits extent of trees used in landscaping. Health & Safety issues associated with large bodies of water following heavy rainfall.

Suitable for use – No, there is no space available.

6.8 Ponds/Rain gardens

Ponds or rain gardens are irregular shaped vegetated drainage structures used to provide flow control through attenuation. They can be used for infiltration, where possible.

Advantages – Can be incorporated into landscaping, good removal of contaminants, reduces discharge rates. Low costs.

Disadvantages – Requires large surface area. Limits extent of trees used in landscaping. Health & Safety issues associated with large bodies of water following heavy rainfall.

Suitable for use – Yes, an above ground water collection feature is proposed, however this is not included in the design drawing.

It is advised that a combination of Sustainable Drainage Systems (SUDS) is used to increase the time of concentration of the water before it discharges from the development.

This can be achieved by using a soakaway and a permeable drive.

8.0 Management and Maintenance of SUDS

The owner will complete routine maintenance of the development including all SUDs elements.

The manholes and catchpits are to be inspected and cleaned out on an annual basis.

The soakaway chamber shall be inspected annually and all silt removed.

The porous paving shall be swept clean and weeded every month.

Every twenty-five years or at a period recommended by the manufacturer the porous paving shall be lifted and the laying course cleaned or replaced to ensure that the paving operates correctly.

9.0 Implementation of SUDS

Construction will commence shortly after planning has been granted and it is expected that all construction, including SUDs features will be completed within one year.

Appendix A

Existing Site plan

TEL: 07950 754564 EMAIL: info@studio-perfectus.co.uk WEB: www.studio-perfectus.co.uk

PROJECT:

DOCUMENT DATE:

CLIENT:

DOCUMENT STAGE:

DRAWN BY: CHECKED BY:

PRIMROSE MILL

EXISTING SITE PLAN

Wastewater Symbology

Abandoned	Foul	Surface Water	Combined	
-	+	·	-	Public Sewer
				- Private Sewer
		. •		Section 104
		· · · · · · · · · · · · · · · · · · ·		- Rising Main
·	.			Sludge Main
		•		- Overflow
				Water Course
· · · · • • • · · · · · · · · · · · · ·			. .	Highway Drain

All point assets follow the standard colour convention: red – combined brown - foul િત્યુલ – surface water purple - overflow Manhole Side Entry Manhole • Head of System Oulfall 📆 Screen Chamber Extent of Survey Inspection Chamber ¹ Rodding Eye • Inlet **Bifurcation Chamber** Discharge Point Lamp Hole Vortex T Junction / Saddle Penstock Catchpit 🐬 Valve Chamber Washout Chamber Valve Vent Column Air Valve Vortex Chamber Penstock Chamber Non Return Valve Network Storage Tank. Soakaway Gully Sewer Overflow • Cascade Ww Treatment Works Flow Meter ▲ Ww Pumping Station Hatch Box 📺 Septic Tank Oil Interceptor EE Control Kiosk

- Summit
- Drop Shaft
- Orifice Plate

Change of Characteristic

Water for the North West

SEWER RECORDS

Address or Site Reference

PRIMROSE HOUSE PRIMROSE ROAD, CLITHEROE, BB7 1DR

> Scale: Date:

1:1250 26/05/2023

Printed by:

Property Searches

The position of the underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. United Utilities Water will not accept liability for any loss or damage caused by the actual position being different from those shown.

Crown copyright and database rights 2017 Ordnance Survey 100022432. Unauthorised reproduction will infringe these copyrights.

Appendix B

Pre-development surface water flow calculations

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:		Site Details	
Site name:	Nova	Latitude:	53.86208° N
Site location:	Primrose Road, Clitheroe	Longitude:	2.40185° W
This is an estimation of Agency guidance "Rai	of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment nfall runoff management for developments". SC030219 (2013) . the SuDS Manual C753 (Ciria. 2015) and the non-	Reference:	2117536317
statutory standards f drainage of surface w	or SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the rater runoff from sites.	Date:	Jul 14 2023 20:48

Runoff estimation approach ^{IH124}

Site characteristics

Total site area (ha): 0.18

Methodology

Q _{BAR} estimation method:	Calculate from SPR and SAAR		
SPR estimation method:	Calculate from SOIL type		

Soil characteristics	Default	Editeo
SOIL type:	4	4
HOST class:	N/A	N/A
SPR/SPRHOST:	0.47	0.47
Hydrological characteristics	Default	Edited
SAAR (mm):	1183	1183
Hydrological region:	10	10
Growth curve factor 1 year:	0.87	0.87
Growth curve factor 30 years:	1.7	1.7
Growth curve factor 100 years:	2.08	2.08
Growth curve factor 200 years:	2.37	2.37

Notes

(1) Is Q_{BAR} < 2.0 I/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST \leq 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	1.61	1.61
1 in 1 year (l/s):	1.4	1.4
1 in 30 years (I/s):	2.73	2.73
1 in 100 year (l/s):	3.34	3.34
1 in 200 years (I/s):	3.81	3.81

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix C

Infiltration Testing results

Ground Drainage test

Primrose Hill

Test date 26th May 2023 (19.00 hrs) & 27th May 2023 (14.00 hrs)

Tester: RS

The instructions required 2 holes $300 \times 300 \times 500$ deep. Water was filled to 300mm mark in each hole and the elapsed time measured at the 200mm, 100mm and 0mm marks. Given the delta between Hole 1 and Hole 2 and third hold was dug and tested. Hole 1 and 3 are considered representative of the site.

(Hole 2 is likely to be an anomaly as seems to have been the location of an old collapsed culvert.)

Level	Hole 1 -Elapsed Time		Hole 2 Elapsed Time		Hole 3 Elapsed Time	
30 cm		0		0		0
20 cm	08:19		03:17		09:05	
10 cm	20:44		05:15		22:01	
0 cm	27:26		07:11		29:02	
Total Time	56:30		15:44		1:00:08	

Results

1165-2301, NONA, PRIMEDSE ROAD, CLITHERDE. 0.3 03 V=0.33=0.027~3 $A = 5 \times 0.3^2 = 0.45 \times 2^2$ WORST TIME = 1 HOUSE = 3600 SECOND $F = \frac{v}{\Delta T} = \frac{v \cdot o 2}{0 - 45 \times 3600}$ = 1.67 x10 4/5 $= 0.06 \, \text{m/hr}$

Appendix D

Drainage Layout

EXMH CL64.00 IL63.00-TBC

NOTES

CONTRACTORS MUST VERIFY ALL DIMENSIONS ON SITE BEFORE COMMENCING ANY WORK ON SHOP DRAWINGS

DO NOT SCALE FROM THIS DRAWING

RCD CONSULTANTS LTD COPYRIGHT

NOTES

1. ALL DIMENSIONS IN MILLIMETERS UNLESS NOTED OTHERWISE. 2. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL OTHER ENGINEERING DRAWINGS AND CALCULATIONS ASSOCIATED WITH THIS PROJECT.

3. ALL COMPONENTS AND MATERIALS ARE TO BE MANUFACTURED AND SUPPLIED IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, AND LAID AND BACKFILLED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS AND THE RELEVANT BRITISH STANDARDS.

4. THE CONTRACTOR SHALL, BEFORE COMMENCING THE WORKS, VERIFY ALL SITE AND SETTING OUT DIMENSIONS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE TRUE AND PROPER SETTING OUT OF THE WORKS AND FOR THE CORRECTNESS OF THE POSITION, LEVELS, DIMENSIONS, AND ALIGNMENT OF ALL PARTS OF THE WORKS.

5. ALL BUILDING DRAINAGE TO BE INSTALLED AND TESTED IN COMPLIANCE WITH THE BUILDING REGULATIONS 2000 DRAINAGE AND WASTE DISPOSAL APPROVED DOCUMENT H 2002 EDITION.

6. SMALL LIGHTWEIGHT ACCESS COVERS SHOULD BE SECURED (FOR EXAMPLE WITH SCREWS) TO DETER UNAUTHORISED ACCESS.

7. ALL ABOVE GROUND DRAINAGE TO INCORPORATE RODDING ACCESS FACILITIES.

8. INSITU CONCRETE FOR USE IN GENERAL DRAINAGE WORKS, GRADE TO BS: 5328.

9. FOR INTERNAL DRAINAGE POSITIONS REFER TO ARCHITECT'S CURRENT WORKING DRAWINGS.

10. FOR LANDSCAPING SURFACE MATERIAL FINISHES REFER TO ARCHITECT'S CURRENT WORKING DRAWINGS.

11. ALL PIPES TO BE 100mm DIAMETER UNLESS NOTED OTHERWISE.

Appendix E

1, 30 and 100 year surface water calculations

RCD					Page 1
9 Birchtree Way	NOVA				
Maidstone	PRIMROS	SE ROAD			
$K_{OD} + ME15 7PP$					
Date 14/0//2023 16:29	Designe	ed by RAC			ៅដោទផ្នែរចំនាំផ្ទ
File 1165-2301 NOVA.SRCX	Checked	i by			
Micro Drainage	Source	Control 2	2020.1.3		
Summary of Resul	ts for	1 vear Re	eturn Pe	riod	
		<u>-</u>			
Half Drai	in Time :	1446 minut	es.		
Storm Max	Маж	Мах	Маж	Status	
Event Leve	l Depth	Infiltratio	on Volume		
(m)	(m)	(l/s)	(m³)		
15 min Summer 66 50	aa n naa	0	0 2 6	OK	
30 min Summer 66.6	37 0.137	0.	0 2.0	OK	
60 min Summer 66.66	B6 0.186	0.	.0 4.9	0 K	
120 min Summer 66.74	47 0.247	0.	1 6.6	0 K	
180 min Summer 66.79	90 0.290	0.	1 7.7	οĸ	
240 min Summer 66.82	20 0.320	0.	1 8.5	ок	
360 min Summer 66.80	66 0.366	0.	.1 9.7	ОК	
480 min Summer 66.89	99 0.399	0.	1 10.6	ок	
600 min Summer 66.92	25 0.425	0.	1 11.3	ок	
720 min Summer 66.94	44 0.444	0.	1 11.8	ОК	
960 min Summer 66.9	72 0.472	0.	1 12.6	ок	
1440 min Summer 67.01	13 0.513	0.	1 13.7	ок	
2160 min Summer 67.05	54 0.554	0.	.1 14.7	ОК	
2880 min Summer 67.0	76 0.576	0.	1 15.3	ок	
4320 min Summer 67.09	96 0.596	0.	1 15.8	OK	
5760 min Summer 67.09	9/ 0.59/	0.	1 15.9	OK	
8640 min Summer 67.03	77 0 577	0.	1 15 3	OK	
10080 min Summer 67.0	64 0 564	0.	1 15.5	OK	
15 min Winter 66.61	10 0.110	0.	.0 2.9	0 K	
	_		_		
Storm	Rain	Flooded 7	Cime-Peak		
LVent	(mm/nr) VOLUME	(mins)		
		(
15 min Summe	er 27.14	9 0.0	23		
30 min Summe	er 18.88	9 0.0	38		
60 min Summe	er 12.94	4 0.0	68		
120 min Summe	er 8.75	7 0.0	126		
180 min Summe	er 6.94	4 0.0	186		
240 min Summe	er 5.84	2 0.0	246		
360 min Summe	er 4.57	9 0.0	364		
480 min Summe	er 3.85	4 0.0	482		
600 min Summe	er 3.3/	3 0.0	602		
20 min Summe	=1 3.02 =r 9.54	4 0.0	120 202		
	⊃⊥ 2.04 ⊃r 1.00		070 1129		
2160 min Summe	er 1.56	S 0.0	1516		
2880 min Summe	er 1.31	4 0.0	1932		
4320 min Summe	er 1.02	4 0.0	2768		
5760 min Summe	er 0.85	5 0.0	3576		
7200 min Summe	er 0.74	0.0	4392		
8640 min Summe	er 0.65	7 0.0	5184		
10080 min Summe	er 0.59	5 0.0	5952		
15 min Winte	er 27.14	9 0.0	23		
©198	2-2020	Innovyze			

RCD							Page 2	
9 Birchtree Way	,		NOVA					
Maidstone			PRIMROS	E ROAD				
Kent ME15 7RP			CLITHER	OE				
Date 14/07/2023	16.29		Designe	d by RAC				
$F_{10} = 1165 - 2301$	NOVA SPCY		Chockod	hu				
Migro Drainago	NOVA. BILCA		Checked	Control	2020 1 2	>		
MICIO DIAINAGE			Source	CONCLOT	2020.1.3)		
Summary of Pogulta for 1 year Daturn Daried								
	<u>Summary Or Re</u>	:5U11		<u>year</u> Ke	sturn re	1100		
	Storm	Max	Max	Max	Мах	Status		
	Event	Leve	1 Depth :	Infiltratio	on Volume			
		(m)	(m)	(1/s)	(m³)			
	30 min Winter (66.65	3 0.153	0	.0 4.1	ОК		
	60 min Winter (66.70	8 0.208	0	.1 5.5	ок		
	120 min Winter (66.77	8 0.278	0	.1 7.4	ОК		
	180 min Winter (66.82	6 0.326	0	.1 8.7	ок		
	240 min Winter (66.86	0.360	0	.1 9.6	ОК		
	480 min Winter (00.91 66 95	.2 0.412	0	1 12 0	OK		
	600 min Winter (66.97	9 0.479	0	.1 12.7	ок		
	720 min Winter (67.00	3 0.503	0	.1 13.4	ОК		
	960 min Winter (67.03	6 0.536	0	.1 14.3	ок		
	1440 min Winter (67.07		0	.1 15.4	ОК		
	2160 min Winter (2880 min Winter (67.12 67.13	1 0.621	0	.I 10.5	ОК		
	4320 min Winter (67.14	7 0.647	0	.1 17.2	ок		
	5760 min Winter	67.13	5 0.635	0	.1 16.9	ОК		
	7200 min Winter 0	67.11	5 0.615	0	.1 16.4	ок		
-	8640 min Winter (67.09	0.593	0	.1 15.8	ОК		
L	10080 min winter (07.07	1 0.5/1	U	.1 15.2	ΟK		
	Storm	L	Rain	Flooded '	Time-Peak			
	Event		(mm/hr)	Volume	(mins)			
				(m³)				
	30 min 1	₩inte	er 18.889	9 0.0	37			
	60 min 1	Winte	er 12.944	0.0	66			
	120 min W	Winte	er 8.757	0.0	124			
	180 min V	Winte	er 6.944	1 0.0	182			
	240 min 1 360 min 1	winte Winto	er 5.842 ar 4.570	2 U.U A NO	240			
	480 min 1	Winte	er 3.854	1 0.0	472			
	600 min 1	Winte	er 3.373	3 0.0	586			
	720 min 1	∛inte	er 3.026	5 0.0	698			
	960 min 1	Winte	er 2.544	1 0.0	914			
	1440 min V 2160 min V	Winte	er 1.995 er 1.568		1608			
	2880 min 1	Winte	er 1.314	i 0.0	2076			
	4320 min W	Winte	er 1.024	1 0.0	2980			
	5760 min W	∛inte	er 0.855	5 0.0	3808			
	7200 min W	Winte	r 0.740		4680			
	10080 min V	Winte	er 0.595	, 0.0	5456 6264			
	Toopo with a		0.000		0204			
	Ć	1982	2-2020 1	Innovvze				
L		• •						

RCD		Page 3						
9 Birchtree Way	NOVA	-						
Maidstone	PRIMROSE ROAD							
Kent ME15 7RP	CLITHEBOE							
Date 14/07/2023 16:29	Designed by BAC							
File $1165-2301$ NOVA SECX	Checked by							
Micro Drainage	Source Control 2020 1 3							
	bouice control 2020.1.5							
<u>Ra:</u>	<u>Rainfall Details</u>							
Rainfall Model	FSR Winter Storms Yes	3						
Return Period (years)	1 Cv (Summer) 0.750)						
Region Engla	and and Wales Cv (Winter) 0.840)						
MS-80 (MMR) Ratio R	0.260 Longest Storm (mins) 1008)						
Summer Storms	Yes Climate Change % +()						
Tim	e Area Diagram							
Tota	al Area (ha) 0.052							
Time (mins) From: To:	Area Time (mins) Area (ha) From: To: (ha)							
0 4	0.026 4 8 0.028							
©198	2-2020 Innovyze							

RCD		Page 4
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROE	
Date 14/07/2023 16:29	Designed by RAC	ានផ្លែងស្ថិន
File 1165-2301 NOVA.SRCX	Checked by	
Micro Drainage	Source Control 2020.1.3	L

Storage is Online Cover Level (m) 69.000

Cellular Storage Structure

Invert Level (m) 66.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00360 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.06000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	28.0	28.0	2.001	0.0	70.3
2.000	28.0	70.3			

RCD						Page 1
9 Birchtree Way		NOVA				
Maidstone		PRIMRO	SE ROAD			
Kent ME15 7RP		CLITHE	ROE			
$D_{2} = 14/07/2023 + 6.29$		Dogian	nd by PA	7		
Date 14/0//2023 10.29		Design	EU DY NAG	~		
File 1165-2301 NOVA.SRC.	X	Checke	а ру			
Micro Drainage		Source	Control	2020.1.3	3	
Summary	of Result	<u>ts for</u>	<u>10 year 1</u>	<u>Return Pe</u>	eriod	
	Half Dra:	in Time :	1525 minu	tes.		
Storm	Man	Maw	May	Maw	Statue	
Event	Leve	l Depth	Infiltrati	ion Volume	blacus	
	(m)	(m)	(1/s)	(m ³)		
15 min S	ummer 66.6	91 0.191	(5.0 5.1	ОК	
30 min S	ummer 66.7	04 U.204	().I /.U	OK	
120 min S	ummer 66.9	48 0.448	().1 11.9	OK	
180 min S	ummer 67.0	10 0.510	(0.1 13.6	οĸ	
240 min S	ummer 67.0	56 0.556	(0.1 14.8	ОК	
360 min S	ummer 67.1	23 0.623	(0.1 16.6	ОК	
480 min S	ummer 67.1	69 0.669	(0.1 17.8	ок	
600 min S	ummer 67.2	03 0.703	(0.1 18.7	ок	
/20 min S	ummer 67.2	29 0.729	l l).1 19.4	OK	
1440 min S	1000000000000000000000000000000000000	06 0 806	(20.3	0 K	
2160 min S	ummer 67.3	46 0.846	(22.5	0 K	
2880 min S	ummer 67.3	67 0.867	(0.2 23.1	ок	
4320 min S	ummer 67.3	81 0.881	(23.4	ок	
5760 min S	ummer 67.3	75 0.875	(0.2 23.3	ОК	
7200 min S	ummer 67.3	62 0.862	(22.9	ОК	
8640 min S	ummer 67.3	45 0.845	l l	1.2 22.5	OK	
15 min W	inter 66.7	14 0.214	(0.2 22.0	O K	
	Storm	Rain	Flooded	Time-Peak		
	Event	(mm/h)	:) Volume	(mins)		
			(m³)			
1	5 min Summ	er 52.59	97 0.0	23		
3	0 min Summ	er 36.30	50 0.0	38		
6	0 min Summ	er 24.24	4 0.0	68		
12	0 min Summ	er 15.76	56 0.0	126		
18	0 min Summ	er 12.14		186		
24	0 min Summ	r 10.0		246		
48	0 min Summ	er 6.39		484		
60	0 min Summ	er 5.52	21 0.0	602		
72	0 min Summ	er 4.89	93 0.0	722		
96	0 min Summ	er 4.04	13 0.0	932		
144	0 min Summ	er 3.08	35 0.0	1142		
216	0 min Summ	er 2.35	0.0	1520		
288	0 min Summ	er 1.94 1.94		1936		
432 576	0 min Summ	er 1.40 er 1.20	2 0.0	∠/08 3576		
720	0 min Summ	er 1.05	53 0.0	4392		
864	0 min Summ	er 0.93	33 0.0	5184		
1008	0 min Summ	er 0.84	13 0.0	5952		
1	5 min Wint	er 52.59	0.0	23		
	©198	2-2020	Innovyze	2		

RCD						Page 2
9 Birchtree Way]	NOVA				
Maidstone		PRIMROS	E ROAD			
Kent ME15 7RP		CLITHER	OE			
Date 14/07/2023 16:29		Designe	d by RAC			
File 1165-2301 NOVA SECX		Checked	by			
Micro Drainage		Source	$\frac{2}{Control}$	2020 1 3	2	
Micro Diainage		Source	CONCLUZ 2	2020.1.2)	
Summary	f Pegult	s for 1	A vear Pe	sturn De	riod	
<u>Summary C</u>	<u>I KESUIL</u>	<u>5 IUI I</u>	U year Ke	<u>sturn re</u>	errou	
Storm	Мах	Max	Мах	Max	Status	
Event	Level	L Depth	Infiltratio	n Volume		
	(m)	(m)	(1/s)	(m³)		
30 min Wi	nter 66 79	5 0 295	0	1 7 9	ОК	
60 min Wi	nter 66.89	1 0.391	0.	1 10.4	ок	
120 min Wi	nter 67.00	2 0.502	0.	1 13.4	ОК	
180 min Wi	nter 67.07	2 0.572	0.	1 15.2	ОК	
240 min Wi	nter 67.12	5 0.625	0.	1 16.6	ОК	
360 min Wi 480 min Wi	nter 67.20 nter 67.25	0 0.700 4 0 754	0.	1 20 0	OK	
600 min Wi	nter 67.29	3 0.793	0.	2 21.1	0 K	
720 min Wi	nter 67.32	3 0.823	0.	2 21.9	ОК	
960 min Wi	nter 67.36	4 0.864	0.	2 23.0	ОК	
1440 min Wi	nter 67.40	8 0.908	0.	2 24.1	ОК	
2160 min Wi 2880 min Wi	nter 67.44	1 0 947	0.	2 25.2	OK	
4320 min Wi	nter 67.45	6 0.956	0.	2 25.4	ОК	
5760 min Wi	nter 67.43	2 0.932	0.	2 24.8	ОК	
7200 min Wi	nter 67.40	2 0.902	0.	2 24.0	ОК	
8640 min Wi	nter 67.36	9 0.869	0.	2 23.1	ОК	
10080 min Wi	nter 67.33	7 0.837	0.	2 22.3	ОК	
	Storm	Rain	Flooded T	'ime-Peak		
	Event	(mm/hr)	Volume	(mins)		
			(m³)			
31) min Winte	r 36 361) 0 0	37		
60) min Winte	r 24.24	4 0.0	66		
120) min Winte	r 15.76	6 0.0	124		
180) min Winte	r 12.14	1 0.0	182		
240) min Winte	r 10.07	5 0.0	242		
360) min Winte) min Winte	r 7.72	9 U.U 7 A A	358 472		
600) min Winte	r 5.52	1 0.0	588		
720) min Winte	r 4.89	3 0.0	700		
960) min Winte	r 4.043	3 0.0	916		
1440) min Winte	r 3.08	5 0.0	1170		
2160) min Winte) min Winte	r 2.352		2080		
4320) min Winte	r 1.480	0.0	2980		
5760) min Winte	r 1.22	2 0.0	3816		
7200) min Winte	r 1.05	3 0.0	4680		
8640) min Winte	r 0.93	3 0.0	5528		
10080	min winte	r 0.84	5 0.0	6344		
	@1 ^ ^ ^		T m m c			
	©1982	2-2020 .	innovyze			

RCD		Page 3
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROF	
Date 14/07/2023 16:29	Designed by RAC	the set of the set
File 1165-2301 NOVA SPCY	Charked by	मितिमितिनि
Migno Dupinago	Checked by	
	Source Control 2020.1.5	
<u>Ra:</u>	infall Details	
Rainfall Model	FSR Winter Storms Yes	3
Return Period (years)	10 Cv (Summer) 0.750)
Region Engla	and and Wales Cv (Winter) 0.840)
M5-60 (mm)	20.200 Shortest Storm (mins) 19	5
Summer Storms	Yes Climate Change % +()
Tir	e Area Diagram	
Tota	al Area (ha) 0.052	
Time (mins) From: To:	Area Time (mins) Area (ha) From: To: (ha)	
0 4	4 8 0.026	
	2. 2020. The office -	
©198	2-2020 Innovyze	

RCD		Page 4
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROE	
Date 14/07/2023 16:29	Designed by RAC	ាក់ពិតិតាំង
File 1165-2301 NOVA.SRCX	Checked by	
Micro Drainage	Source Control 2020.1.3	L

Storage is Online Cover Level (m) 69.000

Cellular Storage Structure

Invert Level (m) 66.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00360 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.06000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	28.0	28.0	2.001	0.0	70.3
2.000	28.0	70.3			

RCD						Page 1
9 Birchtree Way	N	IOVA				
Maidstone	E	RIMROS	E ROAD			
Kent ME15 7RP		LITHER	ROE			
Date 14/07/2023 16:28	Г) esigne	d by RAC	n.		
$F_{1} = 1165 - 2301$ NOVA SPCX		'hecked	hy			
Migno Drainago		Course	Control	2020 1 2	2	
Micro Drainage	2	source	CONCLOT	2020.1.3	2	
Cummary of Do	a]+.	- for 3		Octure D	ariad	
<u>Summary or Re</u> :	SULLS	5 101 .	ov year r		errou	
Half	Drain	Time :	1545 minu	tes.		
Storm	Маж	Маж	Max	Max	Status	
Event	Level	Depth	Infiltrati	on Volume		
	(m)	(m)	(1/5)	(m³)		
15 min Summer (66.742	2 0.242	C	.1 6.4	ОК	
30 min Summer (66.837	7 0.337	C	.1 9.0	ОК	
60 min Summer 6	66.948	3 0.448	C	.1 11.9	ОК	
120 min Summer (67.074	1 0.574	C).1 15.3	ОК	
180 min Summer (6/.145 67 20/	0.649).L 1/.3	OK	
360 min Summer 6	67.204 67.283	3 0.783	0	1.2 20.8	0 K	
480 min Summer (67.336	5 0.836	C	.2 22.3	οĸ	
600 min Summer 6	67.375	5 0.875	C	.2 23.3	ОК	
720 min Summer (67.403	3 0.903	C	.2 24.0	ОК	
960 min Summer 6	67.438	8 0.938	C	.2 24.9	ОК	
1440 min Summer (67.480	0.980	C	0.2 26.1	ОК	
2160 min Summer (67.510 67 533	0 1.016 8 1.033		1.2 27.0	ОК	
4320 min Summer 6	67.539) 1.033	0	227.5	OK	
5760 min Summer (67.525	5 1.025	Č	.2 27.3	ОК	
7200 min Summer (67.504	1.004	C	.2 26.7	ОК	
8640 min Summer (67.480	0.980	C	26.1	ОК	
10080 min Summer 6	67.456	6 0.956	C	.2 25.4	ОК	
15 min Winter (66.771	1 0.271	ŭ).1 7.2	ОК	
Storm		Pain	Flooded	Time-Deak		
Event		(mm/hr) Volume	(mins)		
	-	••	(m³)	, <i>,</i>		
15 min (a		1 0 0	0.2		
15 min 30 min 9	Summer	c 66.43	1 0.0 4 0.0	23		
60 min 3	Summer	31.12	4 0.0	68		
120 min \$	Summer	20.18	3 0.0	126		
180 min \$	Summer	15.42	3 0.0	186		
240 min 8	Summer	12.73	0.0	246		
360 min 5	Summer	e 9.68	7 0.0	364		
480 min 5	Summer	c /.96	/ U.U 9 0.0	484		
720 min 5	Summer	- 6.03	4 0.0	722		
960 min s	Summer	4.94	7 0.0	936		
1440 min \$	Summer	3.73	1 0.0	1144		
2160 min 5	Summer	2.80	8 0.0	1536		
2880 min 8	Summer	2.29	7 0.0	1936		
4320 min 8	Summer	c 1.73	1 0.0	2768		
5/6U min 3	Summer	L ⊥.4⊥ r 1.21	o U,U 5 0.0	7202 72/P		
8640 min 5	Summer	c 1.07	2 0.0	5192		
10080 min \$	Summer	0.96	5 0.0	5952		
15 min V	Winter	66.43	1 0.0	23		
C	01982	-2020	Innovyze			

RCD					Page 2
9 Birchtree Way	NOVA				
Maidstone	PRIMROS	SE ROAD			
Kent ME15 7BP	СТ.Т.Т.НЕВ	ROE			
Date 14/07/2022 16:28	Dogiana	d by DAC			te a transferra
Date 14/07/2023 10:28	Designe	ed by RAC			្រៀវដែលតែដោយ
File 1165-2301 NOVA.SRCX	Checked	д ру			
Micro Drainage	Source	Control 20	020.1.3	3	
Summary of Resu	lts for 3	<u>30 year Ret</u>	turn Pe	eriod	
Storm B	lax Max	Max	Max	Status	
Event Le	vel Depth	Infiltration	Volume		
	(m) (m)	(1/8)	(m-)		
30 min Winter 66	.877 0.377	0.1	10.0	ок	
60 min Winter 67	.003 0.503	0.1	13.4	ОК	
120 min Winter 67	.143 0.643	0.1	17.1	ОК	
180 min Winter 67	.228 0.728	0.1	19.4	ОК	
240 min Winter 67	.291 0.791	0.2	21.0	ОК	
360 min Winter 67	.380 0.880	0.2	23.4	ОК	
480 min Winter 67	.441 0.941	0.2	25.0	ОК	
600 min Winter 67	.486 0.986	0.2	26.2	ОК	
720 min Winter 67	.519 1.019	0.2	27.1	ок	
960 min Winter 67	.562 1.062	0.2	28.3	OK	
2160 min Winter 67	.003 1.103	0.2	29.3	OK	
2880 min Winter 67	645 1 145	0.2	30.2	OK	
4320 min Winter 67	.627 1.127	0.2	30.0	0 K	
5760 min Winter 67	.591 1.091	0.2	29.0	ок	
7200 min Winter 67	.550 1.050	0.2	27.9	ΟK	
8640 min Winter 67	.509 1.009	0.2	26.8	ОК	
10080 min Winter 67	.469 0.969	0.2	25.8	ОК	
Storm	Rain	Flooded Ti	me-Peak		
Event	(mm/hr) Volume	(mins)		
		(m³)			
30 min Wi	nter 46.40	4 0.0	37		
60 min Wi	nter 31.12	4 0.0	66		
120 min Wi	nter 20.18	3 0.0	124		
180 min Wi	nter 15.42	3 0.0	182		
240 min Wi	nter 12.73	0.0	242		
360 min Wi	nter 9.68	0.0	358		
480 min Wi	nter 7.96	0.0	474		
600 min Wi	nter 6.83	0.0	588		
720 min Wi	nter 6.03	4 0.0	700		
960 min Wi	nter 4.94	0.0	918		
1440 min Wi	nter 3.73		1624		
2100 min Wi 2880 min Wi	$\frac{1}{2.00}$	0.0 07 0.0	2024		
4320 min Wi	nter 173	1 0.0	2000		
5760 min Wi	nter 1.41	.8 0.0	3856		
7200 min Wi	nter 1.21	.5 0.0	4680		
8640 min Wi	nter 1.07	2 0.0	5528		
10080 min Wi	nter 0.96	5 0.0	6344		
		_			

RCD		Page 3
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROE	
Date 14/07/2023 16:28	Designed by RAC	test s
File 1165-2301 NOVA SPCY	Charled by MC	<u> Mender</u>
Migno Dupinago	Checked by	
	Source Control 2020.1.3	
<u>Ra:</u>	infall Details	
Rainfall Model	FSR Winter Storms Yes	3
Return Period (years)	30 Cv (Summer) 0.750)
Region Engla	and and Wales Cv (Winter) 0.840)
M5-60 (mm)	20.200 Shortest Storm (mins) 15 0.260 Longost Storm (mins) 1008(5
Summer Storms	Yes Climate Change % +()
Tir	e Area Diagram	
Tota	al Area (ha) 0.052	
Time (mins) From: To:	Area Time (mins) Area (ha) From: To: (ha)	
0 4	4 8 0.026	
	0.0000	
©198	2-2020 Innovyze	

RCD		Page 4
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROE	
Date 14/07/2023 16:28	Designed by RAC	
File 1165-2301 NOVA.SRCX	Checked by	
Micro Drainage	Source Control 2020.1.3	•

Storage is Online Cover Level (m) 69.000

Cellular Storage Structure

Invert Level (m) 66.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00360 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.06000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	28.0	28.0	2.001	0.0	70.3
2.000	28.0	70.3			

RCD					Page 1
9 Birchtree Way	NOVA				
Maidstone	PRIMROS	SE ROAD			
Kent ME15 7RP	CLITHE	NOE			
D_{2} = 14/07/2022 16:28	Dogiana	d by DAC			the second secon
Date 14/0//2023 18:28	Designe	a by RAC			ារាជាជារាជ
File 1165-2301 NOVA.SRCX	Checked	і бу			
Micro Drainage	Source	Control 3	2020.1.3	3	
<u>Summary of Result</u>	<u>s for 1</u>	<u>00 year F</u>	<u>Return P</u>	eriod	
Half Dra	in Time :	1557 minut	es.		
		No-	No	Chabas	
Event Leve	al Depth	Infiltratic	nax Nolume	Status	
(m)) (m)	(1/s)	(m ³)		
15 min Summer 66.8	13 0.313	0.	.1 8.3	ОК	
30 min Summer 66.9	40 0.440	0.	.1 11.7	OK	
60 min Summer 67.0	90 0.590	0.	.1 15.7	OK	
120 min Summer 67.2	53 U.753	0.	.1 20.0	OK	
180 min Summer 67.3	45 0.845	0.	.2 22.5	OK	
240 min Summer 67.4	12 0.912	0.	2 24.3	OK	
180 min Summer 67.5	67 1 067	0.	2 28 1	OK	
480 min Summer 67.5	10 1 110	0.	2 20.4	OK	
720 min Summer 67.6	40 1 140	0.	2 30 3	OK	
960 min Summer 67.6	75 1 175	0.	2 31 3	OK	
1440 min Summer 67.7	14 1.214	0.	.2 32.3	0 K	
2160 min Summer 67.7	41 1.241	0.	.2 33.0	0 K	
2880 min Summer 67.7	51 1.251	0.	.2 33.3	0 K	
4320 min Summer 67.7	42 1.242	0.	.2 33.0	οĸ	
5760 min Summer 67.7	16 1.216	0.	.2 32.4	ок	
7200 min Summer 67.6	85 1.185	0.	.2 31.5	ок	
8640 min Summer 67.6	53 1.153	0.	.2 30.7	ок	
10080 min Summer 67.6	21 1.121	0.	.2 29.8	ОК	
15 min Winter 66.8	50 0.350	0.	.1 9.3	ок	
Storm	Rain	Flooded !	Time-Peak		
Event	(mm/hr) Volume	(mins)		
		(m³)			
15 min Summ	er 85.80	3 0.0	23		
30 min Summ	er 60.62	4 0.0	38		
60 min Summ	er 40.92	6 0.0	68		
120 min Summ	er 26.45	7 0.0	126		
180 min Summ	er 20.04	7 0.0	186		
240 min Summ	er 16.45	1 0.0	246		
360 min Summ	er 12.40	7 0.0	364		
480 min Summ	er 10.13	2 0.0	484		
600 min Summ	er 8.64	8 0.0	602		
720 min Summ	er 7.59	2 0.0	722		
960 min Summ	er 6.17	2 0.0	938		
1440 min Summ	er 4.59	·5 0.0	1154		
2160 min Summ	er 3.40	9 U.U	1536		
	er 2./6	5 U.U	1940		
4320 min Summ	$\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 &$		∠/bö 2576		
	וכיד 1,00 וסיד 1,10	2 0.0	1300 23/0		
8640 min Summ	r = 1.42	2 0.0 9 0.0	4J92 51 Q9		
10080 min Summ	er 1.12	1 0.0	5952		
15 min Wint	er 85.80	3 0.0	23		
	22_2020	Theorem			
	2-2020	rmovyze			

RCD								Page 2	
9 Birchtree Way		N	IOVA						
Maidstone		P	RIMROS	E ROAD					
Kent ME15 7RP		c	TITTHER	OE					
Date $14/07/2023$ 16	• 28		Agiano	d by RA	~				
Et a 1165 2201 NOV			beeled	h	0				i(ii)
FILE 1165-2301 NOV	A.SRCX		пескеа	yd r		00 1 0			
Micro Drainage		S	ource	Control	20	20.1.3			
	_	_							
Sumr	<u>nary of Resu</u>	lts	for 10	<u>)0 year</u>	Ret	<u>turn P</u>	eriod		
	<u>.</u>						. .		
	Storm M	lax	Max Depth	Max Tofiltrati	ion	Max	Status		
		(m)	(m)	(1/s)		(m ³)			
		,	(_/	(=/-/		()			
30) min Winter 66	.993	0.493	(0.1	13.1	ОК		
60) min Winter 67	.161	0.661	(0.1	17.6	ОК		
120) min Winter 67	.344	0.844	(0.2	22.5	ОК		
180) min Winter 67	.448	0.948	(0.2	25.2	OK		
240	min Winter 67	.524	1 120	(0.2	27.2	υĸ		
360) min Winter 6/	.030	1 200	(0.2	3U.L 31 0	ΟVK		
400) min Winter 67	.750	1.250		0.2	33.2	0 K		
720) min Winter 67	.786	1.286		0.2	34.2	OK		
960) min Winter 67	.831	1.331	(0.2	35.4	ок		
1440) min Winter 67	.865	1.365	(0.3	36.3	ок		
2160) min Winter 67	.887	1.387	(0.3	36.9	ОК		
2880) min Winter 67	.886	1.386	(0.3	36.9	ОК		
4320) min Winter 67	.848	1.348	(0.3	35.9	ОК		
5760) min Winter 67	.794	1.294	(0.2	34.4	ОК		
7200) min Winter 67	.739	1.239	(0.2	33.0	ОК		
8640) min Winter 67	.686	1.186	(0.2	31.5	ок		
10080) min Winter 67	.636	1.136	(0.2	30.2	ОК		
	-								
	Storm		Rain	Flooded	Tin	ne-Peak			
	Event		(1111/112)	(m ³)	Q	mins)			
				(
	30 min Wi	nter	60.624	0.0		37			
	60 min Wi	nter	40.926	5 0.0		66			
	120 min Wi	nter	26.45	0.0		124			
	180 min Wi	nter	20.04	7 0.0		184			
	240 min Wi	nter	16.451	L 0.0		242			
	360 min Wi	nter	12.40	0.0		358			
	480 min Wi	nter	10.132	2 0.0		474			
	600 min Wi.	nter	0.048			588			
	7∠0 IIIII W1. 960 min ™i	nter	6 173	. U.U > n n		00 01 p			
	1440 min Wi	nter	4.595	5 0.0		1184			
	2160 min Wi	nter	3.409	9 0.0		1624			
	2880 min Wi	nter	2.763	3 0.0		2080			
	4320 min Wi	nter	2.055	5 0.0		2984			
	5760 min Wi	nter	1.669	9 0.0		3856			
	7200 min Wi	nter	1.422	2 0.0		4680			
	8640 min Wi	nter	1.249	0.0		5528			
	10080 min Wi	nter	1.121	L 0.0		6344			
	<u></u> @1	ago.	-2020 -	Innovire	`				

RCD		Page 3
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROE	
Dato 14/07/2023 16:28	Designed by BAC	te e tra c
File 1165-2301 NOVA SPCY	Charled by MC	मितिमितिनि
Migno Dupinago	Checked by	
	Source Control 2020.1.3	
<u>Ra:</u>	infall Details	
Rainfall Model	FSR Winter Storms Yes	3
Return Period (years)	100 Cv (Summer) 0.750)
Region Engla	and and Wales Cv (Winter) 0.840)
M5-60 (mm)	20.200 Shortest Storm (mins) 15 0.260 Longost Storm (mins) 1008(5
Summer Storms	Yes Climate Change % +(5
Tir	e Area Diagram	
Tota	al Area (ha) 0.052	
mine (nine)	Area Time (ming) Area	
From: To:	(ha) From: To: (ha)	
0 4	0.026 4 8 0.026	
©198	2-2020 Innovyze	
0190		

RCD		Page 4
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROE	
Date 14/07/2023 16:28	Designed by RAC	
File 1165-2301 NOVA.SRCX	Checked by	
Micro Drainage	Source Control 2020.1.3	•

Storage is Online Cover Level (m) 69.000

Cellular Storage Structure

Invert Level (m) 66.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00360 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.06000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	28.0	28.0	2.001	0.0	70.3
2.000	28.0	70.3			

RCD					Page 1
9 Birchtree Way	NOVA				
Maidstone	PRIMROSI	E ROAD			
Kent ME15 7RP	CLITHER	ЭE			
Date 14/07/2023 16:27	Designe	d by RAC			-
File $1165-2301$ NOVA SECX	Checked	hy			
Migro Drainago	Source	Control	2020 1 3	2	
MICIO DIainage	Source		2020.1)	
<u>Summary of Results f</u>	<u>or 100 y</u>	<u>ear Retu</u>	rn Perio	od (+40%)	-
Half Dra	in Time :	1608 minut	es.		
Storm Max	k Max	Max	Маж	Status	
Event Leve	al Depth 1	Infiltratio	on Volume		
(m,) (m)	(1/5)	(m ³)		
15 min Summer 66.9	38 0.438	0.	.1 11.6	ОК	
30 min Summer 67.1	17 0.617	0.	.1 16.4	ок	
60 min Summer 67.3	27 0.827	0.	.2 22.0	ОК	
120 min Summer 67.5	55 1.055	0.	.2 28.1	OK	
180 min Summer 67.6	84 1,184	0.	2 31.5	ок	
240 min Summer 67.7	80 1.280	0.	.2 34.0	ОК	
400 min Summer 67.9	12 1.412	0.	3 3/.3	OK	
400 min Summer 68 0	60 1 560	0.	3 41 5	OK	
720 min Summer 68 1	00 1.500	0.	3 42 6	OK	
960 min Summer 68.1	55 1.655	Ŭ. 0.	.3 44.0	0 K	
1440 min Summer 68.2	10 1.710	0.	3 45.5	ок	
2160 min Summer 68.2	50 1.750	0.	.3 46.6	ок	
2880 min Summer 68.2	67 1.767	0.	.3 47.0	ок	
4320 min Summer 68.2	59 1.759	0.	3 46.8	ОК	
5760 min Summer 68.2	26 1.726	0.	.3 45.9	ОК	
7200 min Summer 68.1	84 1.684	0.	.3 44.8	ОК	
8640 min Summer 68.1	40 1.640	0.	.3 43.6	ок	
10080 min Summer 68.0	97 1.597	0.	.3 42.5	ОК	
15 min Winter 66.9	90 0.490	0.	.1 13.0	ОК	
2 to any	D -da	-			
Storm Ever+	Kain (mm/br)	Volume	(mine)		
A Vent	((m ³)	(11113)		
15 min Summ	er 120.124	0.0	23		
30 min Summ	er 84.873	0.0	38		
60 min Summ	er 57.296	0.0	68		
120 min Summ	er 37.040	0.0	126		
180 min Summ	er 28.065	0.0	186		
240 min Summ	17 23.032		246		
480 min Summ	ιστ 1/.3/0 μοτ 1/.3/0	, 0.0	204 281		
600 min Summ	12.103	0.0	404 602		
720 min Summ	er 10.628	0.0	722		
960 min Summ	er 8.640	0.0	952		
1440 min Summ	er 6.433	0.0	1158		
2160 min Summ	er 4.773	0.0	1536		
2880 min Summ	er 3.868	0.0	1956		
4320 min Summ	er 2.878	0.0	2768		
5760 min Summ	er 2.336	0.0	3576		
7200 min Summ	er 1.990	0.0	4392		
8640 min Summ	er 1.748	0.0	5192		
10080 min Summ	er 1.569	0.0	5952		
15 min Wint	er 120.124	0.0	23		
©198	32-2020 1	Innovyze			

RCD					Page 2
9 Birchtree Way	NOVA				
Maidstone	PRIMROSE	ROAD			
Kent ME15 7RP	CLITHERC	E			
Date 14/07/2023 16:27	Designed	bv RAC			-
File 1165-2301 NOVA SBCX	Checked	by			
Micro Drainage	Source ($\frac{2}{2}$	20 1 3		
hield blainage	bource c	Sinci 20	20.1.3		
Summary of Results for	or 100 ve	ar Return	Peric	od (+40%)	
	<u> </u>				-
Storm Max	. Max	Max	Max	Status	
Event Leve	al Depth I:	nfiltration	Volume		
(m)	(m)	(1/5)	(m-)		
30 min Winter 67.1	91 0.691	0.1	18.4	ОК	
60 min Winter 67.4	27 0.927	0.2	24.6	ОК	
120 min Winter 67.6	83 1.183	0.2	31.5	OK	
180 min Winter 67.8 240 min Winter 67.9	28 1.328	0.2	33.3	OK	
360 min Winter 68.0	85 1.585	0.3	42.2	0 K	
480 min Winter 68.1	85 1.685	0.3	44.8	ок	
600 min Winter 68.2	56 1.756	0.3	46.7	ок	
720 min Winter 68.3	07 1.807	0.3	48.1	ок	
960 min Winter 68.3	72 1.872	0.3	49.8	ОК	
1440 min Winter 68.4	21 1.921	0.4	51.1	ок	
2160 min Winter 68.4 2880 min Winter 68.4	56 1.956	0.4	52.0	OK	
4320 min Winter 68.4	08 1.908	0.4	50.7	O K	
5760 min Winter 68.3	36 1.836	0.3	48.8	ок	
7200 min Winter 68.2	61 1.761	0.3	46.8	ок	
8640 min Winter 68.1	87 1.687	0.3	44.9	ОК	
10080 min Winter 68.1	19 1.619	0.3	43.1	ОК	
Storm	Rain	Flooded Tim	ne-Peak		
Event	(mm/hr)	Volume (mins)		
		(m³)			
30 min Wint	er 84.873	0.0	37		
60 min Wint	er 57.296	0.0	66		
120 min Wint	er 37.040	0.0	124		
180 min Wint	er 28.065	0.0	184		
240 min Wint	er 23.032	0.0	242		
360 min Wint	er 17.370	0.0	358		
400 min Wint 600 min Wint	e_1 14.105 er 12.107	0.0	474 588		
720 min Wint	er 10.628	0.0	700		
960 min Wint	er 8.640	0.0	918		
1440 min Wint	er 6.433	0.0	1190		
2160 min Wint	er 4.773	0.0	1624		
2880 min Wint	er 3.868	0.0	2080		
4320 min Wint	er 2.878	0.0	2984		
7200 min Wint	er 1,990	0.0	4680		
8640 min Wint	er 1.748	0.0	5528		
10080 min Wint	er 1.569	0.0	6344		
@100					
0190	2-2020 I	nnovyze			

RCD		Page 3
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 78P	CLITHEROE	
P_{2}	Designed by PAC	the state of the
File 1165-2301 NOVA SPCY	Charked by	DEDUISE
Migno Droinogo	Source Control 2020 1 2	
	Source control 2020.1.5	
<u>Rai</u>	nfall Details	
Rainfall Model	FSR Winter Storms Yes	
Return Period (years)	100 Cv (Summer) 0.750)
Region Engla	nd and Wales Cv (Winter) 0.840)
M5-60 (mm)	20.200 Shortest Storm (mins) 15	
Summer Storms	Yes Climate Change % +40)
Time	e Area Diagram	
Tota	l Area (ha) 0.052	
Time (mins)	Area Time (mins) Area	
From: To:	(ha) From: To: (ha)	
0 4	0.026 4 8 0.026	
©1982	2-2020 Innovyze	

RCD		Page 4
9 Birchtree Way	NOVA	
Maidstone	PRIMROSE ROAD	
Kent ME15 7RP	CLITHEROE	
Date 14/07/2023 16:27	Designed by RAC	្រោះជាតិសាច់សេ
File 1165-2301 NOVA.SRCX	Checked by	
Micro Drainage	Source Control 2020.1.3	

Storage is Online Cover Level (m) 69.000

Cellular Storage Structure

Invert Level (m) 66.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00360 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.06000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	28.0	28.0	2.001	0.0	70.3
2.000	28.0	70.3			

Appendix F

Flood exceedance plan

