Report on Drainage Strategy to Accompany Planning Application for Land East of Chipping Lane, Longridge

by

Barratt Manchester

Revision	Date	Prepared By	Revision Notes
Α	21.09.21	CD	Calculations revised to suit planning layout PL06 Revision -
В	12.01.22	CD	Inclusion of Phase 1 to model site as a whole
С	30.05.22	CD	Urban Creep section revised

Contents

- 1. Introduction
- 2. Site Details
- 3. Pre-Development Greenfield Runoff Rates (Phase 1)
- 4. Pre-Development Greenfield Runoff Rates (Phases 2 & 3)
- 5. Soakaway Testing
- 6. Post-Development Surface Water Allowable Discharge Rates (All Phases)
- 7. Design Parameters
- 8. Summary of Drainage Design
- 9. Urban Creep
- **10. Design For Exceedance**
- 11. Maintenance
- **12. Defect Reporting**
- 13. Response Times
- 14. Compliance with DEFRA's Non-statutory technical standards for sustainable drainage systems

Drawings

- 1. Topographical Survey Survey & Design; SDL 2062; January 2013
- 2. Engineering Layout
 - a. 459/ED/02
 - b. 459/ED/105
- 3. Developable Areas Plan 459/ED/146
- 4. Surface Water Drainage Area Plan
 - a. 459/ED/04
 - b. 459/ED/103
- 5. Longsections Omitted
 - a. 459/ED/10
 - b. 459/ED/11
 - c. 459/ED/12
 - d. 459/ED/13
 - e. 459/ED/108
 - f. 459/ED/109
 - g. 459/ED/110
 - h. 459/ED/111
- 6. Flood Route Plan Omitted
 - a. 459/ED/34
 - b. 459/ED/115
- 7. Plot Drainage Omitted
 - a. 459/ED/30
 - b. 459/ED/31
 - c. 459/ED/32
 - d. 459/ED/128
 - e. 459/ED/129
 - f. 459/ED/130
 - g. 459/ED/131
- 8. Overflow Pond Details Omitted

- a. 459/ED/35
- b. 459/ED/127

Appendices

- A. FRA Phase 1 Betts Hydro HYD068 March 2016
- B. FRA Phases 2 & 3 Betts Hydro HYD371 November 2021
- C. Hydraulic Assessment Betts Hydro HYD068_HA July 2016
- D. Site Investigation soiltechnics Omitted
 - a. STN3505NM-G01 Phase 1 February 2016
 - b. STN3505NM-G02 Phase 2 April 2016
- E. Microdrainage Simulations
 - a. 1 in 2 Year
 - b. 1 in 30 Year
 - c. 1 in 30 Year (Surcharged Outfall)
 - d. 1 in 100 Year + 30% Climate Change
 - e. Foul Water Design

1. Introduction

The following document has been prepared to assist the designer's preparation and the readers understanding of the drainage theory and calculations in one reference document.

This document covers all Phases 1, 2 & 3 of the Chipping Lane development, in order to demonstrate how the full site drains; supporting evidence has been provided.

2. Site Details

Chipping Lane
Land off Chipping Lane,
Longridge,
Preston,
PR3 2NA
360321; 437929
7 No. open grassed fields separated by mature
hedgerows and sporadic trees. Currently used
by livestock for grazing.
14.41Ha approx.
10.52Ha approx.
This excludes large areas of open spaces
ОНа
Yes
1:30

Table 1

3. Pre-Development Greenfield Runoff Rates (Phase 1)

A flood risk assessment which covers Phase 1 only, was carried out by Betts Hydro, dated March 2016. This document states that the surface water discharge rate should be restricted to 8.3 l/s/Ha, calculated using the ICP SUDS method within MicroDrainage. This FRA and discharge rate was approved under the planning application 3/2017/0232. See Appendix A for the Full Phase 1 report.

Return Period	Greenfield Rate (I/s/Ha)
1 in 1 year (l/s)	7.2
Qbar	8.3
1 in 30 year (l/s)	14.0
1 in 100 year (l/s)	17.2

Table 2

4. Pre-Development Greenfield Runoff Rates (Phases 2 & 3)

A flood risk assessment which covers Phase 2 & 3, was carried out by Betts Hydro, dated December 2018. This document states that the surface water discharge rate should be restricted to 13.6 l/s/Ha, calculated using the HR Wallingford tool for greenfield runoff rates on uksuds.com. This FRA and discharge rate was approved under the planning application 3/2018/0975.

This FRA was revised in November 2021 to include for the new planning layout amendments, for the replan application 3/2021/1134. The drainage strategy and discharge rates emulates the previously approved rate of 13.6 l/s/Ha. See Appendix B for the latest revision of the Full Phases 2 & 3 report.

Return Period	Greenfield Rate (I/s/Ha)
1 in 1 year (l/s)	11.8
Qbar	13.6
1 in 30 year (l/s)	23.1
1 in 100 year (l/s)	28.3
1 in 100 year (l/s)	28.3

Table 3

5. Soakaway Testing

A site specific site investigation was carried out by soiltechnics dated February 2016. A copy of the site investigation is presented in Appendix D.

Ground conditions are typically 0.3m of topsoil overlaying cohesive Devensian Till to beyond depths of 4.7m. The Till is comprised of initially 1-1.5m of low to high strength clay, below which the shear strength increases. Varying amounts of silt, sand and gravel were also found.

2 No. soakway tests were carried out as part of the site investigation. It was considered that the Devensian Till is impermeable and therefore indicates that infiltration drainage is NOT a feasible option.

6. Post-Development Surface Water Allowable Discharge Rates (All

Phases)

Discharge rates have been limited to existing greenfield runoff rates of Qbar for all storm return periods. Please refer to the phase specific FRA, and Tables 2 and 3 above for details of the greenfield runoff rates.

Phase	Developable Area (Ha)	Greenfield Rate (I/s/Ha)	Allowable Discharge Rate (I/s)
1	4.32	8.3	35.9
2A	1.80	13.6	24.5
2B	2.69	13.6	36.6
3	1.71	13.6	23.2
		TOTAL	120.2

For the Development Area refer to drawing 459/ED/146.

Table 4

Phase 2A is to drain into the existing sewers of Phase 1, these have now been combined into one Network 1, so that they can be modelled together.

Surface Water	Developable Area	Allowable Discharge
Networ	(Ha)	Rate (I/s)
Network 1	6.12	60.4
Network 3	2.69	36.6
Network 4	1.71	23.2
	TOTAL	120.2

Table 5

7. Design Parameters

M5-60	18.800
Ratio R	0.282
MADD Factor	2.0
Climate Change Allowance	30%
Urban Creep	10%

Table 6

Point of Connection	S14	S325	S415
Engineering Layout Drg No	459/ED/02	459/ED/105	459/ED/105
Proposed Impermeable Areas Drg No	459/ED/04	459/ED/103	459/ED/103
Lowest FFLs	105.175	107.400	111.900
Maximum TWL for Design (Lowest FFL – 0.6m)	104.575	106.800	111.300
Discharge Location Minimum Levels	102.040	106.860	111.120
Surcharge Outfall Levels	102.560	104.400	109.370
Point of Connection	Watercourse		
Point of Connection approved by UU (Y/N)	Yes		

Ta<mark>ble 7</mark>

8. Summary of Drainage Design

The drainage has been designed in accordance with the site specific FRAs produced by Betts Hydro dated March 2016 & November 2021.

The drainage has also been designed to comply with DEFRA's non-statutory technical standard for sustainable drainage systems dated March 2015. Compliance to such is demonstrated within Section 14.

All surface water networks will drain to the adjacent watercourse named Higgin Brook. Discharge rates have been limited to existing greenfield runoff rates of Qbar for all storm return periods.

Attenuation storage is provided in the form of oversized pipes under highways and public open spaces. Attenuation storage in the highways is sized to provide attenuation for all flows up to and including 1 in 30 year storm events.

For storm events exceeding 1 in 30 year events, long term storage is provided in above ground storage areas to ensure no flooding to properties occurs for all storm events up to and including 1 in 100 year 6 hour storm events plus a 30% allowance for climate change.

An allowance of 30% climate change was approved within the FRAs for planning applications 3/2017/0232 and 3/2018/0975, therefore has been adopted for this small replan application.

MicroDrainage simulations are available in Appendix E and demonstrate the Actual Discharge Rates.

Drainage Network	Allowable Discharge Rate (I/s)	Actual Discharge Rate (I/s)	Difference (I/s)
1	60.3	49.9	-10.4
3	36.6	41.8	5.2
4	23.3	26.4	3.1
Total	120.2	118.1	-2.1

Table 8

9. Urban Creep

When calculating the proposed impermeable areas for the development, an additional 10% has been added to the areas of domestic properties to represent Urban Creep. This 10% has been applied for all phases; and is shown on the impermeable area plans. These increased areas have been used on all pipe codes within MicroDrainage, in order to design and model the system with greater areas of impermeability. The MicroDrainage calculations are found in Appendix E.

10. Design for Exceedance

All surface water drainage models have been modelled for storm events greater than the 1 in 100 year event to determine the impact of flooding. The flood locations are shown on the attached Flood Routing and over land flow drawings. Any exceedance flooding have been demonstrated to be managed within the site where reasonable practicable.

This demonstrates that properties are unlikely to flood during extreme flood events.

11. Maintenance

All surface water (coloured blue) on the attached plans, 459/ED/02 and 459/ED/105, will be put forward for adoption under a Section 104 Agreement with United Utilities. Prior to issue of the Vesting Declaration by United Utilities, the drainage shown on the included plan will be maintainable by Barratt Manchester at the expense of Barratt Manchester.

All areas of public open space will be transferred to the management company for adoption and maintenance. This includes the overflow areas/ponds and culverts to the watercourse on the attached plans 459/ED/02 and 459/ED/105. The management and maintenance will be funded by the purchasers/owners of the development by way of an annual fee levied on the owner. In order to ensure the long term operation of the swales, the maintenance contract will stipulate regular maintenance of the SuDS network, in accordance with the management plan.

All highway gullies and highway drains on the attached plan will be put forward for adoption under a Section 38 agreement with Lancashire County Council. After issue of the highway final certificate, the highways and highway drains, gullies and gully pipes on the attached plans 459/ED/02 and 459/ED/105, will be maintainable by the Local Highway Authority at public expense. Prior to the issue of the final certificate by LCC, the roads and drainage will be maintainable by Barratt Manchester at the expense of Barratt Manchester.

All foul drainage (coloured brown) on the attached plans 459/ED/02 and 459/ED/105 will be put forward for adoption under a S104 agreement with United Utilities. Prior to issue of the Vesting Declaration by United Utilities, the drainage shown on the included plan will be maintainable by Barratt Manchester and at the expense of Barratt Manchester.

A draft inspection & maintenance schedule for elements of the SuDS/Drainage infrastructure is shown in Table 9.

Drainage Element	Maintenance Requirement	Frequency
Surface Water Pipes and	Inspect. Remove excess silt &	Inspect Annually. CCTV if
Manholes (prior to adoption)	debris, Clear Blockage	required. Silt & debris
		removed as necessary.
Catchpits	Inspect. Remove excess silt &	Inspected every 3 months. Silt
	debris, Clear Blockage	& debris removed as
		necessary.
Ditches/Swales	Inspect. Remove excess	Inspected every 1 Month.
	vegetation. Clear blockages,	Blockages, silt & debris
	silt & debris.	removed as necessary.
Flow Controls	Inspect. Remove excess silt &	Inspect Annually Silt & debris
	debris, clear blockage. Test	removed as necessary. Flow
	functionality of Bypass doors.	control repaired, maintained as necessary.
Overflow Ponds (and POS)	Inspect. Remove excess	Inspected monthly, or after
	vegetation. Clear blockages,	significant storm events.
	silt & debris.	Blockages, silt & debris
		removed as necessary.

Table 9

Culverting sections of the existing watercourse may create or exacerbate upstream or downstream bank and bed erosion as well as sediment deposition, as a result of altered water velocities and disruption to the natural transport of sediment. In order to reduce the effects of erosion we plan to do the following:

- The culvert base matches the existing bed to allow a naturalised culvert bed during high velocity flows
- The culvert width is the same width as the natural channel
- The soffit of the culvert is greater than the 1 in 1000 year water levels
- Culvert alignment matches the alignment of the watercourse
- The slope of the culvert base matched the slope of the existing bed of the watercourse
- No steps provided between end of headwall and the existing bed of the watercourse

Additional headwalls onto existing watercourse can also create or exacerbate bank and bed erosion as well as sediment deposition. In order to reduce the effects of erosion we plan to do the following:

- Flows have been restricted to mimic Qbar greenfield runoff rates, flows will not be increased
- Outfall structure sits flush with the existing bank to prevent turbulent flows
- Headwalls to be located on straight sections of watercourse
- Headwall alignment to be at angle of 45° to minimise change of flow direction
- Outflow pipes of velocity less than 1.2 m/s
- Height between outlet invert and watercourse bed minimised

Screens/grilles are fitted on all headwalls with pipes 375mm or greater. Screens serve two purposes: a trash screen to prevent floating debris and a security screen to restrict access from unauthorised people. Screens are fitted with 100mm spacings between bars so as not to hinder passage of fish and other fauna. The maintenance of screens is safer and easier than clearing potential blockages within the culverts themselves. Maintenance will be in line with that described in Table 6.

12. Defect Reporting

Prior to adoption of the highway drains, foul drains, surface water drains, SuDS and culverts, defects may be reported to Barratt Manchester by the local authority, local residents or members of the public.

All defects can be reported to Barratt Manchester Customer Care line using the following details:

Email: <u>manchester@newhomecare.co.uk</u> Phone: 0161 872 0161 Option 3

Phone (Out-of-Hours): 0345 601 6084

The customer care line's normal working hours are Monday to Friday 9:00 to 17:30, excluding bank holidays. The out-of-hours line is a 24-hour call service.

After adoption, the following numbers may be useful:

Management Company POS Landcare Ltd Hillhouse Business Park, Thornton Cleveleys, Lancashire FY5 4QD Tel: 01253 897 824

Lancashire County Council Highways www.lancashire.gov.uk/roads-parking-and-travel/report-it/ Tel: 0300 123 6780 (Mon-Fri 8:00 to 17:00, exc. Bank Holidays)

United Utilities Tel: 0345 672 3723

Environment Agency Tel: 0800 80 70 60 (24 Hours)

13. Response Times

All non-urgent defects will be repaired within 10 weeks of being reported.

All urgent defects will be made safe within 48 hours, or sooner if practicable. Any works to 'Make Safe' may be a temporary measure in order to protect the public, and allow sufficient time to procure the permanent remedial works. This may include temporary 'fencing off' of the hazard until permanent remedial works can be completed.

United Utilities, Local Authority, Environment Agency, and the Management Company may operate to alternative response times.

Refer to the site landscape maintenance schedule for further details on the site wide schedule.

14. Compliance with DEFRA's Non-Statutory Technical Standards for Sustainable Drainage Systems dated March 2015 Flood risk outside the development

Criteria	Designers Comments
S1 Where the drainage system discharges to a surface water body that can accommodate uncontrolled surface water discharges without any impact on flood risk from that surface water body (e.g. the sea or a large estuary) the peak flow control standards (S2 and S3 below) and volume control technical standards (S4 and S6 below) need not apply.	The surface water discharges to existing watercourse/sewer, therefore this criteria does not apply.

Peak flow control

Criteria	Designers Comments
S2 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.	All proposed discharge rates are less than or equal to Qbar. Therefore this criteria is deemed to comply.
S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.	The site is greenfield therefore not applicable. Therefore, this criteria is deemed to comply.

Volume control

Criteria	Designers Comments
S4 Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event.	As the infiltration test results do not allow infiltration drainage, it is not possible to reduce the run-off volume to the greenfield volume, therefore Criteria S6 will apply.

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.	The site is Greenfield therefore not applicable.
 S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with S4 or S5 above, the runoff volume must be discharged at a rate that does not adversely affect flood risk. 	As the infiltration test results do not allow infiltration drainage, it is not possible to reduce the run-off volume to the greenfield volume, therefore the discharge rate has been reduced to a maximum of Qbar for all rainfall events up to and including 1 in 100 year 6 hour event.

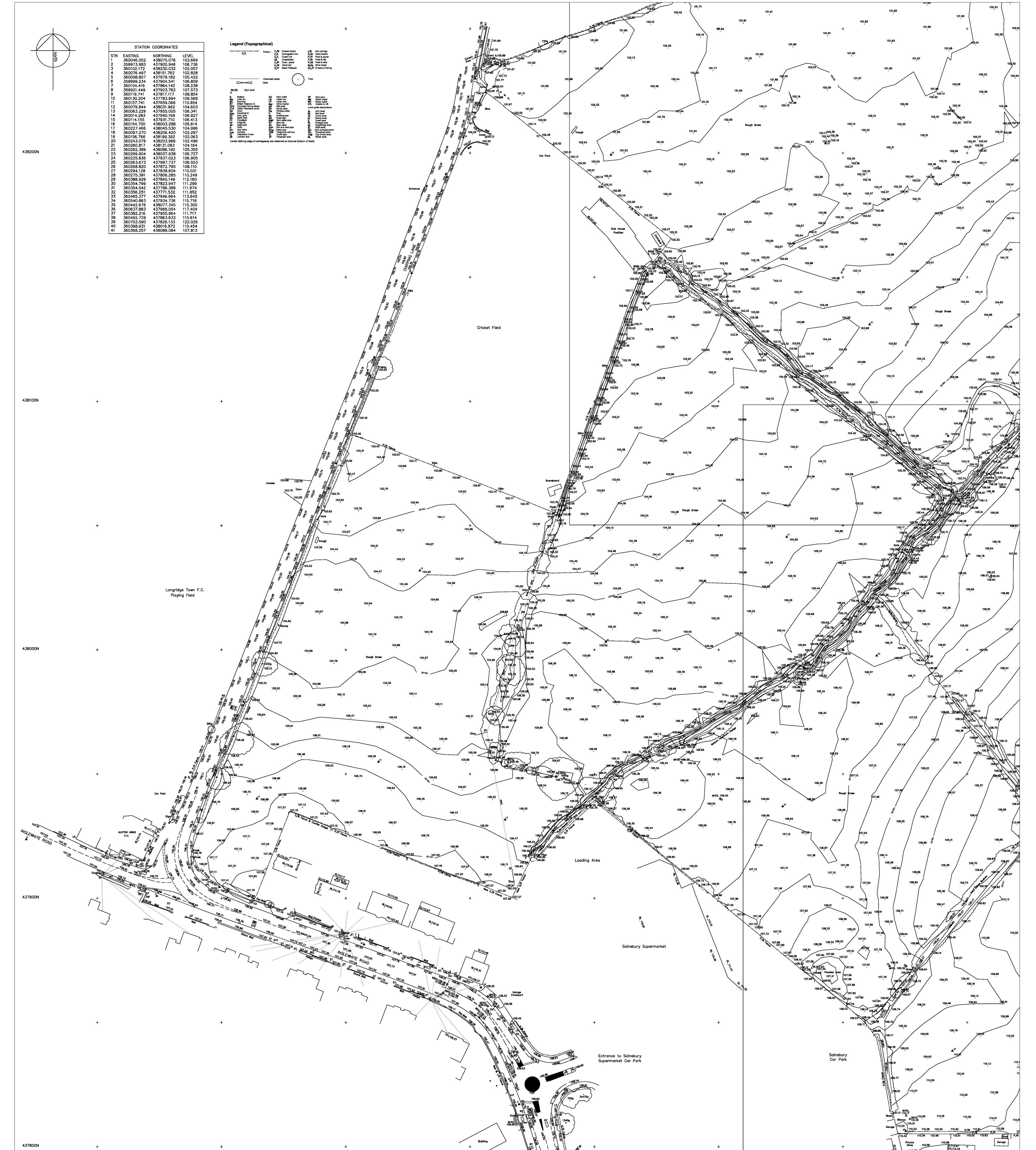
Flood risk within the development

S7 The drainage system must be designed so The	ne drainage system has been designed to
and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30 year rainfall event.site sim in AS8 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.Son for only that forforonly that only that the <br< td=""><td>asure no flooding occurs for any part of the ce for a 1 in 30 year event. Micro drainage mulation for a 1 in 30 year event are attached <u>Appendix D</u> be drainage system has been designed to asure no flooding to properties occurs for any art of the site for a 1 in 100 year 6 Hour event. or flows in excess of the 1 in 30 year event, bws are allowed to overflow into Long Term orage areas located in public open spaces. Ome minor flooding to highways is accepted r the 1 in 100 year 6 hour event. Flooding is ally permitted where it can be demonstrated at minor flooded is contained wholly within e adopted highway and will not flood toperties. The location and flood extent are nown on the Flood Routing and Overland Flow awing. icro drainage simulation for a 1 in 100 year yent are attached in Appendix D</td></br<>	asure no flooding occurs for any part of the ce for a 1 in 30 year event. Micro drainage mulation for a 1 in 30 year event are attached <u>Appendix D</u> be drainage system has been designed to asure no flooding to properties occurs for any art of the site for a 1 in 100 year 6 Hour event. or flows in excess of the 1 in 30 year event, bws are allowed to overflow into Long Term orage areas located in public open spaces. Ome minor flooding to highways is accepted r the 1 in 100 year 6 hour event. Flooding is ally permitted where it can be demonstrated at minor flooded is contained wholly within e adopted highway and will not flood toperties. The location and flood extent are nown on the Flood Routing and Overland Flow awing. icro drainage simulation for a 1 in 100 year yent are attached in Appendix D

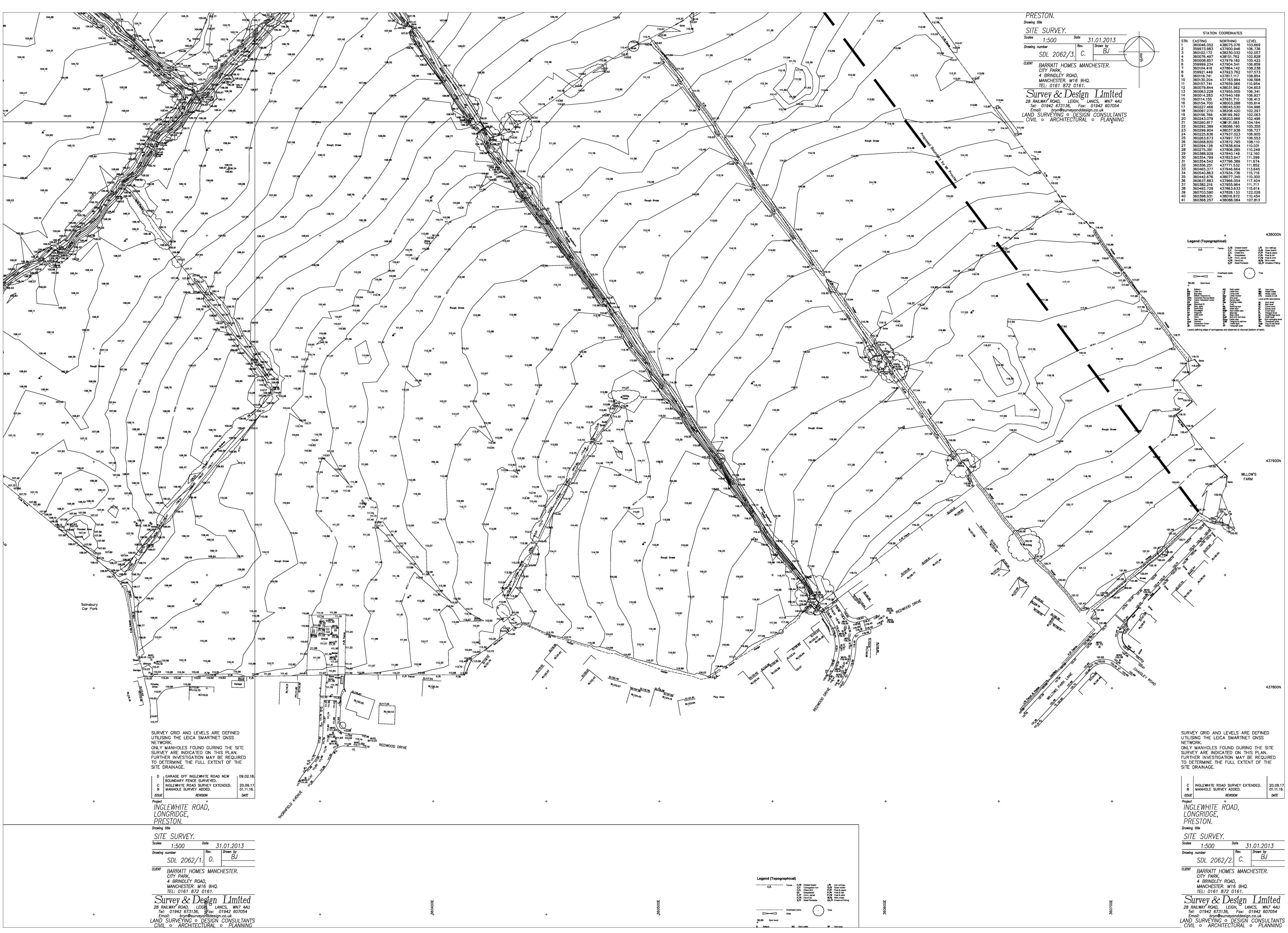
S9 The design of the site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100 year rainfall event are managed	All surface water drainage models have been modelled for storm events greater than the 1 in 100 Year event to determine the impact of flooding. The Flood locations are shown on the attached Flood Routing and over land flow drawing. Any exceedance flooding has been demonstrated to be managed within the site where reasonably practicable.
--	--

Structural integrity

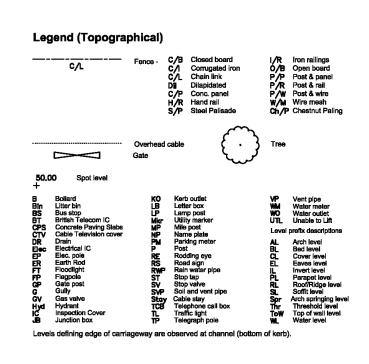
Criteria	Designers Comments
S10 Components must be designed to ensure structural integrity of the drainage system and any adjacent structures or infrastructure under anticipated loading conditions over the design life of the development taking into account the requirement for reasonable levels of maintenance.	All Sewers are to be covered under a S104 agreement with United Utilities for future adoption. All sewers to be built to UU adoptable standards. A 12 month maintenance period is standard with all S104 sewers
S11 The materials, including products, components, fittings or naturally occurring materials, which are specified by the designer	All main sewers to be constructed to adoptable standards.
must be of a suitable nature and quality for	All SUDS to be constructed in accordance with
their intended use.	the Typical details as provided.


Designing for maintenance considerations

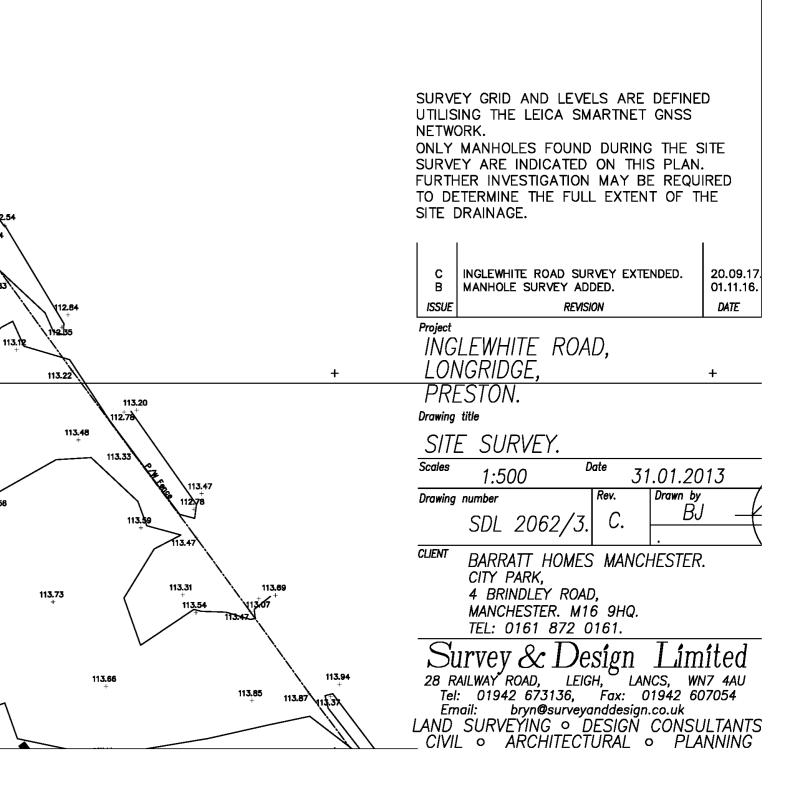
Criteria	Designers Comments	
S12 Pumping should only be used to facilitate drainage for those parts of the site where it is not reasonably practicable to drain water by	Surface Water Pump Stations are not proposed on this development.	
gravity.	A Foul ONLY Pump Stations is provided only where it is not possible to drain foul by gravity.	

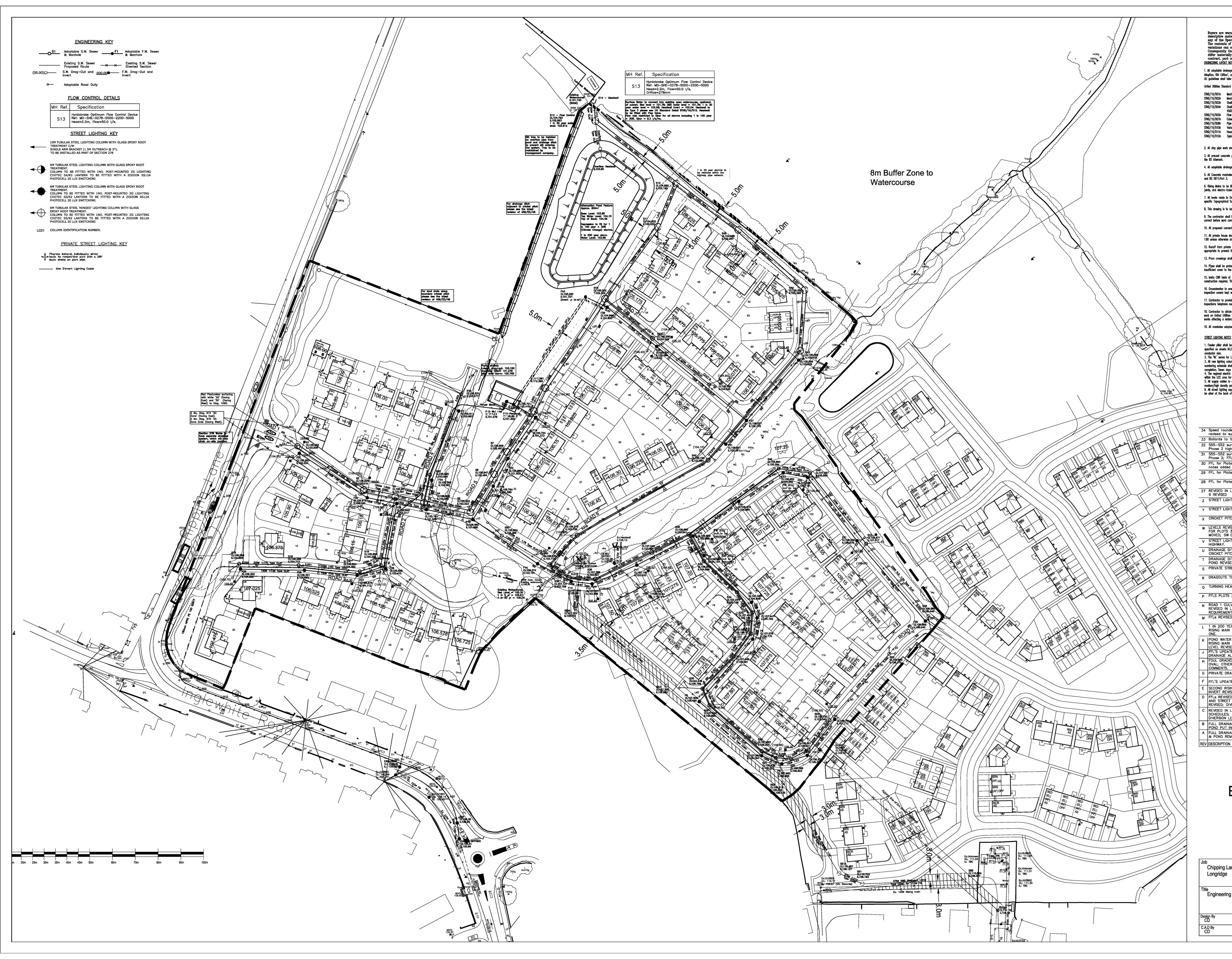

Construction


Criteria	Designers Comments
S13 The mode of construction of any communication with an existing sewer or drainage system must be such that the making of the communication would not be prejudicial to the structural integrity and functionality of	All Sewers are to be covered under a S104 agreement with United Utilities for future adoption. All sewers to be built to UU adoptable standards.
the sewerage or drainage system.	Connection to the ordinary watercourse will require LLFA land drainage consent. Details of the works have been submitted to the LLFA and subsequently approved. No works to within 8m of an ordinary watercourse will be permitted without LLFA approval.


S14 Damage to the drainage system resulting	All Sewers are to be covered under a S104
from associated construction activities must be	agreement with United Utilities for future
minimised and must be rectified before the	adoption. All sewers to be built to UU
drainage system is considered to be completed.	adoptable standards. A 12 month maintenance
	period is standard with all S104 sewers.
	Connection to the ordinary watercourse will
	require LLFA land drainage consent. Details of
	the works have been submitted to the LLFA and
	subsequently approved. No works to within 8m
	of an ordinary watercourse will be permitted
	without LLFA consent.

+37800N +	+	+	HHCL 109-55 RS 109-20 HHCL 109-55 RS 109-20	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100		+
+	+	+	+	Υ ν ασ +	+	D GARAGE OFF INGLEWHITE ROAD NEW 09.02.18. BOUNDARY FENCE SURVEYED. 20.09.17. C INGLEWHITE ROAD SURVEY EXTENDED. 20.09.17. H Project + Project + + INGLEWHITE ROAD, DATE H Project + Project + INGLEWHITE ROAD, DATE INGLEWHITE ROAD, DATE PRESTON. DATE
	360000E	437700N +	437700E	+	-360200E	+ Drawing title Scales Scales 1:500 Date 31.01.2013 Drawing number BJ D. BJ D. BJ CLIENT BARRATT HOMES MANCHESTER. CITY PARK, 4 BRINDLEY ROAD, MANCHESTER. M16 9HQ. TEL: 0161 872 0161. SURVEY & Design Limited 28 RAILWAY ROAD, LEIGH LANCS, WN7 4AU Tel: 01942 673136, Fax: 01942 607054 Email: bryn@surveyanddesign.co.uk LAND SURVEYING o DESIGN CONSULTANTS CIVIL o ARCHITECTURAL o PLANNING





+

+

	STATION	COORDINATES	
STN	EASTING	NORTHING	LEVEL
1	360046.052	438075.076	103.669
2	359973.983	437900.946	106.736
3	360102.172	438230.032	102.057
4	360076.497	438151.762	102.828
5 6	360008.857	437979.182	105.422
о 7	359999.234 360104.416	437904.541 437864.142	106.859 108.238
8	359921.449	437923.762	106.236
9	360119.741	437817.117	107.575
j 10	360130.204	437783.994	109.568
11	360157.741	437659.066	110.954
12	360079.844	438031.962	104.603
13	360063.229	437955.005	106.341
14	360014.283	437940.169	106.927
15	360114,155	437931.710	106.413
16	360154.700	438003.288	105.614
17	360227.466	438045.530	104.996
18	360097.270	438206.420	102.297
19	360156.766	438199.392	102.063
20	360243.079	438203.966	102.496
21	360260.817	438131.083	104.164
22	360292.389	438086.190	105.355
23	360299.904	438037.938	106.727
24	360225.836	437937.023	106.905
25	360263.673	437997.737	106.553
26	360268.820	437872.795	108.110
27	360294.128	437838.604	110.031
28	360275.391	437806.285	110.249
29 30	360388.929 360354.799	437840.149 437823.947	112.160 111.299
30 31	360354.799	437796.389	111.299 111.674
31 32	360356.251	437796.389	111.852
33	360465.377	437946.664	113.645
34	360540.863	437934.736	115.716
35	360442.676	438077.345	110.300
36	360637.883	437966.054	117.404
37	360382.216	437955.964	111.717
38	360492.729	437863.633	115.614
39	360703.590	437826.133	122.026
40	360398.931	438016.872	110.454
41	360368.257	438088.084	107.813

WARNING TO HOUSE-PURCHASERS Property Misdescriptions Act 1991

Buyers are warned that this is a working drawing and is not intended to be treated as descriptive material describing, in relation to any particular property or development, any of the Specified matters prescribed by any Order made under the above Act. The contents of this drawing may be subject to change at any time and alterations and variations can occur during the progress of the works without revision of the drawing. Consequently the layout, form, content and dimensions of the finished construction may differ materially fron those shown. Nor do the contents of this drawing constitute a contract, part of any contract or warranty.

ENGINEERING LAYOUT NOTES

1. All adoptable drainage works have been designed and are to be constructed in accordance with 'Sewers for Adoption, 6th Edition', and United Utilities 'Guidelines for Sewer for adoption 6th Edition'. Where specification conflicts, UU guidelines shall take presidence.

United Utilities Standard details to be used are: STND/19/001A Manhole Type 1

STND/19/002A Manhole Type 2 and Invert Access Detail STND/19/003A Shallow Manhole Detail for Small Diameter Pipes (Type 4) STND/19/004A Shallow Surface Water Manhole Detail - Restricted Headroom (less than 2.0m) - For Pipe Sizes

450Dia and Above

STND/19/005A Flow Control Manhole Detail STND/19/007A External Backdrop Detail STND/19/008A Pipe Bedding Detail STND/19/010A Variable Manhole — Guidance Notes STND/19/011A Headwall Type 1 and Typical Outlet Grille Detail

2. All clay pipe work shall be Extra Strength Clayware to BS 295 and BS 65 (SW pipes only).

3. All precast concrete pipework shall be to Class 120 in accordance with BS5911 Part 1, BS EN 1916 and bear the BS kitemark.

STND/19/012A Typical Outfall Details Type 2 & Type 3

4. All adoptable drainage to be bedded in Class S granular surround unless otherwise stated. 5. All Concrete manholes and Soakaways rings, Concrete cover slabs and Con to be manufactured to BS EN 1917

and BS 5911:Part 3. 6. Rising Mains to be Black Polyethylene Pipes complying to BS EN 13244—2. Polyethylene fittings, including fusion joints, and electro—fusion fittings shall comply with BS EN 13244—2.

7. All levels relate to Ordnance Daturn. Contractor to ensure that this drawing is read in conjuction with the site specific Topographical Survey provided by Barratt Manchester and the Benchmark information provided.

8. This drawing is to be read in accordance with all other relevant drawings.

9. The contractor shall be responsible for ensuring that any existing invert levels indicated on the drawings are correct before work commences.

10. All proposed connections to the sewer shall be 1500 unless stated otherwise.

11. All private house drainage shall be 100% and all drag-out connections shall be 150% at a minimum gradient of 1:80 unless otherwise stated and laid in accordance with Part H of the the Building Regulations. 12. Runoff from private surfaces shall not discharge across the highway. Gullies or channels shall be provided as appropriate to prevent this.

13. Pram crossings shall be provided at the inner tangent points of all junctions.

14. Pipes shall be protected from concentrated loading by construction traffic during the construction period when insufficient cover to the pipe may make them vulnerable to damage.

15. Insitu CBR tests of the road formation level are to be carried out to determine the depth of pavement construction required. This is to be approved by the adopting authority prior to construction of the road pavements. 16. Groundworker to ensure that plot drainage be within the curtilage of the plot they serve where possible and inspection covers kept within hardstandings where possible.

17. Contractor to provide United Utilities with sufficient notice prior to commencement of Sewer works on their Inspections telephone number. Tel 0845 602 0406.

18. Contractor to obtain all necessary Highway opening notices from the relevant Local Authority, obtain approval to work on United Utilities Sewerage System, obtain approval to method statement from the Environment Agency for any works affecting a watercourse.

19. All manholes adopted by TMBC to have a minimum 150mm ST4 concrete surround to full depth. STREET LIGHTING NOTES

1. Feeder pillar shall be factory supplied and include a compliance test certificate. Lighting Special Details are specified on sheets NL2, NL4 and NL5, if required. Maximum cable size with feeder pillars shall be 16mm² conductor size 2. The 'NL' series for Lighting Special Details shall be used in conjunction with this drawing.

The NL series for Lighting Special becaus shall be used in conjunction with this drawing.
 All new lighting columns and illuminated signs/bollards number specifications shall be in accordance with NL12. A numbering schedule shall be obtained for all new columns from Lancashire County Council (01772 531202) upon completion. Seven days notice is required following submission of an as-built plan.
 The regional electric company is Electricity North West Ltd. An Independent Connections Provider can be used within the LCC area for signle phase connections, transfers and disconnections.
 All supply cables to new or existing lighting columns shall be enclosed in 50/100mm internal diameter orange, medium/high density polyethylene service duct, unless otherwise stated.
 All street lighting equipment shall be sited within the specified adoptable footpath or verge. Lighting columns shall be sited at the back of the footway with the door facing across the road.

34	Speed roundels moved; F14 & S40 cover levels revised to suit raised table revision	18.06.20	CD
33	Bollards to the front of plots 59–62 amended.	19.12.19	FB
32	S55—S52 surface water diversion revised to suit Phase 2 highway levels	08.11.19	CD
31	S55—S52 surface water diversion revised to suit Phase 2; FFL for Plots 79 & 93—94 revised	09.10.19	CD
30	FFL for Plots 71—124 revised; Drag outs revised and notes added	12.07.19	CD
	FFL for Plots 71-85 revised	19.06.19	CD
28	FFL for Plots 88-92 revised	04.04.19	CD
27	9 REVISED	21.11.18	CD
Z	STREET LIGHTING BOLLARD ADDED TO PLOT 3.	29.10.18	FB
Y	STREET LIGHT LCO4 AMENDED TO LC35.	24.05.18	FB
X	CRICKET PITCH DRAINAGE DITCH REVISED	23.05.18	CD
W	LEVELS REVISED FOR ROADS 1 & 6; FFLS REVISED FOR PLOTS 35-36; 52-57; 76-80 & 86-87; S39 MOVED; SW DIVERSION CONNECTION REVISED	24.04.18	CD
V	STREET LIGHTING AMENDED TO SIT WITHIN ADOPTABLE HIGHWAY.	21.02.18	FB
U	DRAINAGE DITCH ALONG SOUTHERN BOUNDARY OF CRICKET PITCH REVISED TO LAND DRAIN	05.02.18	CD
Т	DRAINAGE DITCH AROUND CRICKET PITCH DESIGNED; POND REVISED TO SUIT.	31.01.18	CD
S	PRIVATE STREET LIGHTING BOLLARDS ADDED.	12.01.18	FB
R	DRAGOUTS TO PLOTS 37-46 REVISED	05.01.18	CD
Q	TURNING HEADS FOR ROADS 3-5 REVISED	29.11.17	CD
Ρ	FFLS PLOTS 24-28 REVISED	13.11.17	CD
N	ROAD 1 CULVERT DETAILS ADDED; TURNING HEADS REVISED IN LINE WITH VEHICLE TRACKING REQUIREMENTS	25.10.17	CD
М	FFLs REVISED TO SUIT NEW EXTERNAL LEVELS PLANS	19.09.17	CD
L	1 IN 200 YEAR WATER LEVEL NOTE ADDED TO POND; RISING MAIN SIZE REVISED, AND REDUCED DOWN TO ONE.	08.02.17	CD
ĸ	POND WATER LEVEL AND TOP BANK LEVEL REDUCED; RISING MAIN ROUTE AND SIZE REVISED; F44 INVERT LEVEL REVISED	10.01.17	CD
J	FFL'S UPDATED TO SUIT EXTERNAL LEVELS. PRIVATE DRAINAGE ALSO UPDATED.	07.12.16	FB
н	FOUL GRADIENTS REVISED; F43-F19 PIPE REVISED TO OVAL; OTHER AMENDMENTS IN LINE WITH UU COMMENTS.	21.11.16	CD
G	PRIVATE DRAINAGE ADDED.	24.10.16	FB
F	FFL'S UPDATED TO SUIT EXTERNAL LEVELS.	20.10.16	FB
E	SECOND RISING MAIN & DIAMETERS ADDED; INCOMING INVERT REVISED.	18.10.16	CD
D	FFLs REVISED; NAME PLATES, TACTILE CROSSINGS AND STREET LIGHTS ADDED; F40 REMOVED; F39-F42 REVISED; DIVERSION ROUTE REVISED	07.10.16	FB/CD
С	REVISED IN LINE WITH NEW 1:20 MANHOLE SCHEDULES; FOUL ONLINE STORAGE ADDED; DIVERSION LEVELS ADDED	11.08.16	CD
В	FULL DRAINAGE DESIGN DUE TO OUTFALL CHANGES & POND PUT IN	06.04.16	CD
A	FULL DRAINAGE DESIGN DUE TO FLOW RATE CHANGES & POND REMOVED	23.03.16	CD
1			

DATE DRAWN

BARRATT

MANCHESTER Barratt Homes Manchester (A division of BDW Trading Ltd) 4 Brindley Road City Park Manchester

M16 9HQ Tel: 0161 872 0161 Fax: 0161 855 2828

Chipping Lane Longridge

Job

Engineering Layout

Design By CD	Date Feb 2016	Drawing Number	Rev
C.A.D By CD	Scale 1:500 @ A0	459/ED/02	34

WARNING TO HOUSE-PURCHASERS Property Misdescriptions Act 1991 Street Lighting Key Buyers are warned that this is a working drawing and is not intended to be treated as descriptive material describing, in relation to any particular property or development, any of the Specified matters prescribed by any Order made under the above Act. The contents of this drawing may be subject to change at any time and alterations and variations can occur during the progress of the works without revision of the drawing. Consequently the layout, form, content and dimensions of the finished construction may differ materially fron those shown. Nor do the contents of this drawing constitute a contract, part of any contract or warranty. 6M TUBULAR STEEL LIGHTING COLUMN WITH GLASS EPOXY ROOT TREATMENT. COLUMN TO BE FITTED WITH 1NO. POST-MOUNTED URBIS SCHREDER AXIA 3.1 16LED OLSON SQUARE GIANT 160mA 55/R2 FITTED WITH LUCY ZODION CBFSS5DR 10/10 SWITCHING FACTORY SET TO DIM @ 50% FROM 19-00HRS TO 07-00HRS. 5M TUBULAR STEEL LIGHTING COLUMN WITH GLASS EPOXY ROOT TREATMENT. SM TUBULAR STEEL LIGHTING COLUMN WITH GLACE LIGHTING COLUMN WITH GLACE LIGHTING COLUMN WITH GLACE LIGHTING COLUMN TO BE FITTED WITH 100. POST-MOUNTED URBIS SCHREDER AXIA 3.1 16LED OLSON SQUARE GIANT 160mA S5/R2 FITTED WITH LUCY ZODION CBFSS5DR 10/10 SWITCHING FACTORY SET TO DIM @ 50% FROM 19-00HRS TO 07-00HRS. ENGINEERING LAYOUT NOTES 1. All adoptable drainage works have been designed and are to be constructed in accordance with 'Sewers for 6M HINGED TUBULAR STEEL LIGHTING COLUMN WITH GLASS EPOXY ROOT TREATMENT. COLUMN TO BE FITTED WITH 1NO. POST-MOUNTED URBIS SCHREDER AXIA 3.1 8LED OLSON SQUARE GIANT 212mA 55/R1 FITTED WITH LUCY ZODION CBFSS5DR 10/10 SWITCHING FACTORY SET TO DIM @ 50% FROM 19-00HRS TO 07-00HRS. United Utilities Standard details to be used are: Manhole Type 1 Manhole Type 2 and Invert Access Detail 6M HINGED TUBULAR STEEL LIGHTING COLUMN WITH GLASS EPOXY ROOT TREATMENT. Shallow Manhole Detail for Small Diameter Pipes (Type 4)

COLUMN TO BE FITTED WITH 1NO. POST-MOUNTED URBIS SCHREDER AXIA 3.1 16LED OLSON SQUARE GIANT 160mA 55/R2 FITTED WITH LUCY ZODION CBFSS5DR 10/10 SWITCHING FACTORY SET TO DIM @ 50% FROM 19-00HRS TO 07-00HRS.

EXISTING COLUMN AS PER PHASE 1 DESIGN.

LC36 COLUMN IDENTIFICATION NUMBER.

Adoption, 6th Edition', and United Utilities 'Guidelines for Sewer for adoption 6th Edition'. Where specification conflicts, UU guidelines shall take presidence.

United United Standard details to be used are;				
STND/19/001A	Manhole Type 1			
STND/19/002A	Manhole Type 2 and Invert Access Detail			
STND/19/003A	Shallow Manhole Detail for Small Diameter Pipes (Type 4)			
STND/19/004A	Shallow Surface Water Manhole Detail — Restricted Headroom (less than 2.0m) — For Pipe Sizes 450Dia and Above			
STND/19/005A	Flow Control Manhole Detail			
STND/19/007A	External Backdrop Detail			

450Dia and Above Flow Control Manhole Detail External Backdrop Detail STND/19/008A Pipe Bedding Detail STND/19/010A Variable Manhole — Guidance Notes

STND/19/011AHeadwall Type 1 and Typical Outlet Grille DetailSTND/19/012ATypical Outfall Details Type 2 & Type 3

2. All clay pipe work shall be Extra Strength Clayware to BS 295 and BS 65 (SW pipes only).

3. All precast concrete pipework shall be to Class 120 in accordance with BS5911 Part 1, BS EN 1916 and bear the BS kitemark.

4. All adoptable drainage to be bedded in Class S granular surround unless otherwise stated.

5. All Concrete manholes and Soakaways rings, Concrete cover slabs and Con to be manufactured to BS EN 1917 and BS 5911:Part 3. 6. Rising Mains to be Black Polyethylene Pipes complying to BS EN 13244-2. Polyethylene fittings, including fusion joints, and electro-fusion fittings shall comply with BS EN 13244-2.

7. All levels relate to Ordnance Datum. Contractor to ensure that this drawing is read in conjuction with the site specific Topographical Survey provided by Barratt Manchester and the Benchmark information provided. 8. This drawing is to be read in accordance with all other relevant drawings.

9. The contractor shall be responsible for ensuring that any existing invert levels indicated on the drawings are correct before work commences. 10. All proposed connections to the sewer shall be 150# unless stated otherwise.

11. All private house drainage shall be 100ø and all drag—out connections shall be 150ø at a minimum gradient of 1:80 unless otherwise stated and laid in accordance with Part H of the the Building Regulations.

12. Runoff from private surfaces shall not discharge across the highway. Gullies or channels shall be provided as appropriate to prevent this. 13. Pram crossings shall be provided at the inner tangent points of all junctions.

14. Pipes shall be protected from concentrated loading by construction traffic during the construction period when insufficient cover to the pipe may make them vulnerable to damage.

15. Insitu CBR tests of the road formation level are to be carried out to determine the depth of pavement construction required. This is to be approved by the adopting authority prior to construction of the road pavements. 16. Groundworker to ensure that plot drainage be within the curtilage of the plot they serve where possible and inspection covers kept within hardstandings where possible.

17. Contractor to provide United Utilities with sufficient notice prior to commencement of Sewer works on their Inspections telephone number. Tel 0845 602 0406.

18. Contractor to obtain all necessary Highway opening notices from the relevant Local Authority, obtain approval to work on United Utilities Sewerage System, obtain approval to method statement from the Environment Agency for any works affecting a watercourse.

ENGINEERING KEY

—o ^{si}	Adoptable S.W. Sewer F1 & Manhole	Adoptable F.W. Sewer & Manhole
	Silt Trap Manhole at S1 Overflow Basins	Adoptable S.W. Sewer Headwall
(10.25) □	S. Water Drag—Out and Invert	Foul Drag—Out and Invert
□	Adoptable Road Gully 😽	Street Name Plate

FLOW CONTROL DETAILS

MH Ref.	Specification
S110	ACO Orifice Plate to be Supplied by ACO Technologies. Tel 01462 8166666. Ref: SL20190923 1No. 247mm Q-Plate-RW
S324	Crown Flow Control Device to be Supplied by Crown Water Systems. Tel 01344 886 996. Ref: 4280619 1No. 230mm QR5 Type Vortex Flow Control Unit. Head=3.20m, Flow=42.4 I/s.
S414	Crown Flow Control Device to be Supplied by Crown Water Systems. Tel 01344 886 996. Ref: 4280619 1No. 192mm QR5 Type Vortex Flow Control Unit. Head=2.6m, Flow=26.6 I/s.

S	Plots 118-159 & 194-198 revised to suit groundworks	25.10.21	CD
R	Plots 52-53 handed; Plots 118-156 revised; Plots 194-198 added	27.09.21	CD
Q	Revised to Planning Layout Rev 10	07.06.21	CD
Р	S107-S109A revised; F102-F105 revised	26.10.20	CD
Ν	Housetypes, FFLs, and plot drainage revised to suit Planning Layout Rev 09, and new external levels (Sept 2020)	25.09.20	CD
М	SW downpipes revised to suit deep	01.09.20	CD

gutters L Road 10 chainage revised to suit 24.06.20 CD longsection; Road 10 raised table split into two, gullies and cover levels revised to suit; Street lighting revised K S109-S110, F104-F105 revised, S109A 27.02.20 CD & F104A added; S415 split into 2 |headwalls, S508 added J S501—S502 revised; Cover levels revised 09.12.19 CD within raised tables; Tactiles revised

H Site lifted to reduce soil leaving site. 01.11.19 CD FFLs and cover levels revised G Easement from S201-S49 & F321-F23 06.09.19 CD added; Flow control units updated to Crown spec. & S110 revised to orifice plate; Pond water levels revised to suit new calcs; Existing sewer in Road 19 revised; S109 & F104 revised Street lighting and plot drainage added 25.06.19 CD Gradients of SW network 2 revised; S403, S406 & F304 removed 17.04.19 CD Updated to planning layout revision 5 04.03.19 CD C Full drainage and level designs revised 11.02.19 CD

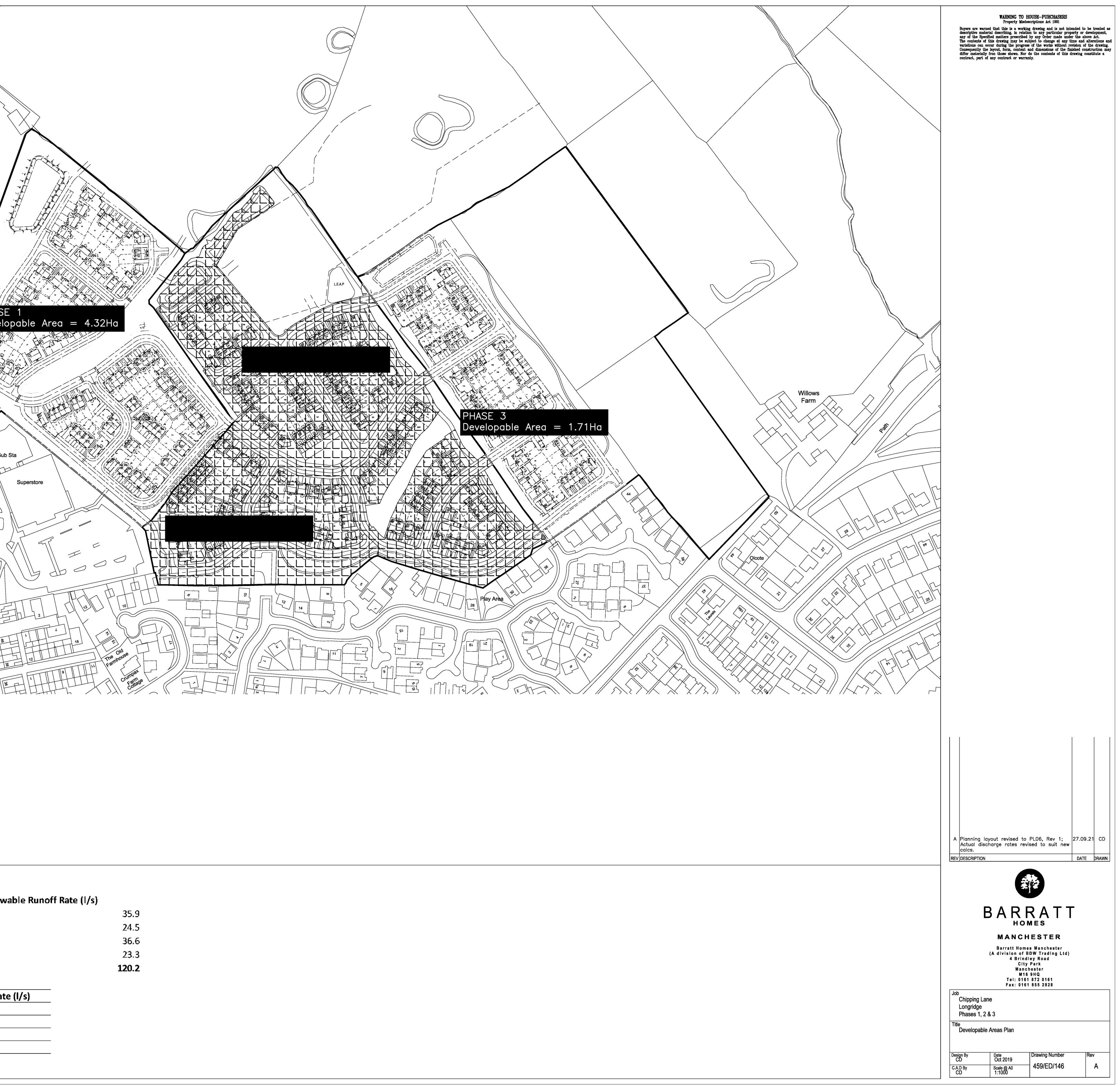
A Revised from Proposed FFL dwg to Engineering Layout REV DESCRIPTION DATE DRAWN

HOMES MANCHESTER Barratt Homes Manchester (A division of BDW Trading Ltd) 4 Brindley Road City Park Manchester M16 9HQ Tel: 0161 872 0161 Fax: 0161 855 2828

Chipping Lane Longridge

Phases 2 & 3

Engineering Layout


C.A.D By FB

15.10.18 Scale @ A0 1:500

Drawing Number 459/ED/102

S

			W. A.
	Track	CHIPPING	
			PHASE Develo
G	Alston Arms SP (PH)		
	LB Guide Post Greystocks	59 59 59 59	El Sub Garage
	Scale Bar		62 69 69
		Primary School	
Phase	Developable Area	(Ha) Greenfield Runoff Rate pe 4.32	r Hectare (I/s/Ha) Allowa 8.3
2			
Draina	1 2A 2B	4.32 1.80 2.69 1.71 Allowable Discharge Rate (I/	8.3 13.6 13.6 13.6 TOTAL 's) Actual Discharge Rate
	1 2A 2B 3	4.32 1.80 2.69 1.71	8.3 13.6 13.6 13.6 TOTAL

35.9
24.
36.0
23.
120 .2

				WARNING TO HOUSE-PURCHASERS Property Wisdescriptions Act 1991
3 LE A	Ha	IMPERMEABLE AI inc. URBAN CR 1.000 = 0.185	EEP	Buyers are warned that this is a working drawing and is not intended to be treated as descriptive material describing, in relation to any particular property or development, any of the Specified matters prescribed by any Order made under the above Act. The contents of this drawing may be subject to change at any time and alterations and variations can occur during the progress of the works without revision of the drawing. Consequently the layout, form, content and dimensions of the finished construction may differ materially fron those shown. Nor do the contents of this drawing constitute a contract, part of any contract or warranty.
				ENGINEERING LAYOUT NOTES
D	Ha	1.005 = 0	Ha	1. All adoptable drainage works have been designed and are to be constructed in accordance with 'Sewers for Adoption, 6th Edition', and United Utilities 'Guidelines for Sewer for adoption 6th Edition'. Where specification conflicts,
D	Ha	1.006 = 0	Ha	UU guidelines shall take presidence.
				United Utilities Standard details to be used are:
0.022	Ha	1.009 = 0.024	На	STND/00/006B Typical Outfall Details D, E and F STND/00/007C Typical Details G & H Outlet Grille and safety grille to materials access shaft STND/01/001E Standard Detail No 4 (Type 1 Manhole)
0	Ha	1.011 = 0	Ha	Standard Detail No 5 (Type 2 Manhole) Standard Detail No 6 (Manhole Accesses) STMD (01 (0025 Standard Details 7 8 0, and 10
D	Ha	1.012 = 0	Ha	STND/01/002E Standard Details 7, 8, 9 and 10 Ladders, Safety Chains and Handrailing. STND/01/003D Typical Details A, B, and C
				External and Internal Backdrops and Connection Details STND/01/004B Manhole and French Drain Details
				MH3, MH4, MH5 and PS6 STND/01/006B Typical Details and J - Segmental Shafts STND/05/001B Pipe Embedment Details STND/01/013B Manhole Access Details STND/01/013B Manhole Access Details STND/01/015A Shallow Large Diameter Sewer
				 All clay pipe work shall be Extra Strength Clayware to BS 295 and BS 65 (SW pipes only). All precast concrete pipework shall be to Class 120 in accordance with BS5911 Part 1, BS EN 1916 and bear
				the BS kitemark.
				4. All adoptable drainage to be bedded in Class S granular surround unless otherwise stated.
D	Ha	5.002 = 0	Ha	5. All Concrete manholes and Soakaways rings, Concrete cover slabs and Con to be manufactured to BS EN 1917 and BS 5911:Part 3.
D	Ha	5.003 = 0	На	6. Rising Mains to be Black Polyethylene Pipes complying to BS EN 13244—2. Polyethylene fittings, including fusion joints, and electro-fusion fittings shall comply with BS EN 13244—2.
				7. All levels relate to Ordnance Daturn. Contractor to ensure that this drawing is read in conjuction with the site specific Topographical Survey provided by Barratt Manchester and the Benchmark information provided.
				8. This drawing is to be read in accordance with all other relevant drawings.
0	Ha	5.008 = 0	На	The contractor shall be responsible for ensuring that any existing invert levels indicated on the drawings are correct before work commences.
				10. All proposed connections to the sewer shall be 150% unless stated otherwise.
0	Ha	5.010 = 0	Ha	11. All private house drainage shall be 100\$ and all drag—out connections shall be 150\$ at a minimum gradient of 1:80 unless otherwise stated and laid in accordance with Part H of the the Building Regulations.
				12. Runoff from private surfaces shall not discharge across the highway. Gullies or channels shall be provided as appropriate to prevent this.
				13. Pram crossings shall be provided at the inner tangent points of all junctions.
				14. Pipes shall be protected from concentrated loading by construction traffic during the construction period when insufficient cover to the pipe may make them vulnerable to damage.
				15. Insitu CBR tests of the road formation level are to be carried out to determine the depth of pavement construction required. This is to be approved by the adopting authority prior to construction of the road pavements.
				16. Groundworker to ensure that plot drainage be within the curtilage of the plot they serve where possible and inspection covers kept within hardstandings where possible.
				17. Contractor to provide United Utilities with sufficient notice prior to commencement of Sewer works on their Inspections telephone number. Tel 0845 602 0406.
D	Ha	5.021 = 0	Ha	18. Contractor to obtain all necessary Highway opening notices from the relevant Local Authority, obtain approval to work on United Utilities Sewerage System, obtain approval to method statement from the Environment Agency for any works affecting a watercourse.
				19. All manholes adopted by TMBC to have a minimum 150mm ST4 concrete surround to full depth.
0.265	Ha	6.003 = 0.291	На	

40

С	URBAN CREEP ADDED TO DRAINAGE AREAS	04.12.19	CD
В	REVISED IN LINE WITH ENGINEERING LAYOUT REV C	18.07.16	CD
A	FULL DRAINAGE DESIGN DUE TO FLOW RATE CHANGES & POND REMOVED	24.03.16	CD
REV		DATE	DRAWN
	BARRATT	-	
	MANCHESTER		
	Barratt Homes Manchester		

Barratt Homes Manchester (A division of BDW Trading Ltd) 4 Brindley Road City Park Manchester M16 9HQ Tel: 0161 872 0161 Fax: 0161 855 2828

Chipping Lane Longridge

Job

Surface Water Drainage Area Plan

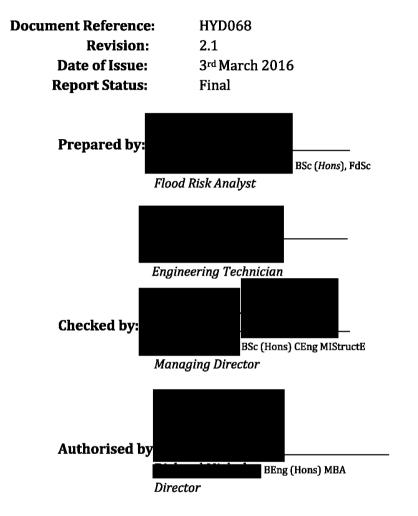

Design By CD	Date Feb 2016	Drawing Number	Rev
C.A.D By CD	Scale 1:500 @ A0	459/ED/04	C

Chipping Lane, Longridge

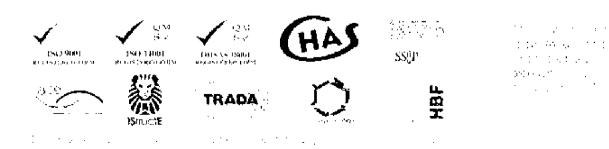
FLOOD RISK ASSESSMENT & SUSTAINABLE DRAINAGE ASSESSMENT

For

Barratt Homes BDW Trading Limited Barratt House, Cartwright Way, Forest Business Park, Bardon Hill, Coalville, Leicestershire, LE67 1UF


March 2016

CONSULTING ENGINEERS


Chipping Lane, Longridge FLOOD RISK ASSESSMENT & SUSTAINABLE DRAINAGE ASSESSMENT

Document Tracking Sheet

Revision History:

Rev:	Date:	Status:	Prepared by:	Checked by:	Issued by:
1.0	09/02/2016	Draft	HJ/CP	RDN/RMF	HJ
1.1	22/02/2016	Draft	HJ/CP	RDN/RMF	HJ
2.0	03/03/2016	Final	HJ/CP	RDN/RMF	HJ
2.1	03/03/2016	Final	HJ/CP	RDN/RMF	HJ

EXECUTIVE SUMMARY

CONSULTING ENGINEERS

This Flood Risk Assessment (FRA) & Sustainable Drainage Assessment has been prepared for a proposed **residential development** and associated infrastructure located at **Chipping Lane**, **Longridge**. The site is located within **Flood Zone 1** according to the Environment Agency's (EA's) online flood maps. The National Planning Policy Framework (NPPF) requires a FRA for sites greater than 1 ha. The proposals are 'residential' in nature, classified as 'more vulnerable' in Table 2 within the Technical Guidance to the NPPF. This type of development is appropriate in Flood Zone 1.

This FRA has identified the site to be at **low risk** from all sources of flooding including; fluvial, tidal, pluvial, groundwater, sewer related and flooding from artificial sources. The development is accessible during times of extreme flooding as the site is within Flood Zone 1.

The development proposal was granted outline planning application (N° 3/2014/0764) on the 29th October 2015. This FRA has built upon the FRA submitted with the application completed by RSK (March 2015, Ref: 880500-R1). The previous FRA proposed that run-off rates will be restricted to QBar. In this report, **QBar** is calculated as **8.3 1/s/ha**. See Appendix C for Hydrological Calculations. Any discrepancy between this QBar and the previous figure is due to refined FEH catchment characteristics being utilised within the ICP SuDS method.

The existing site is classed as greenfield. Surface water runoff from the existing site flows overland in a north-westerly direction before outfalling to a land drainage ditch/ordinary watercourse situated along the northern border. This ditch flows west before outfalling via a 600mm dia pipe to contribute to the Higgin Brook catchment.

The ground investigation report carried out by Soiltechnics (Feb 2016, Ref: STN3505NM-G01) indicates that infiltration is **not viable** at this site.

Surface water will outfall via the existing pathways (i.e. to the on-site ordinary watercourse) at a maximum rate of QBar (l/s). The restriction of runoff rates on increased impermeable areas will create storm water storage volumes. These will be retained on-site for events up to and including the 1 in 100 year event plus an allowance for climate change. Sustainable Drainage Systems (SuDS) could be incorporated into the planning layout which will assist in the reduction of surface water runoff from areas of hardstanding.

The nearest public foul sewers are located within Inglewhite Road to the south-east of the site. The conveyance route of foul flows will be determined during detailed design. A pumped solution will likely be required and early liaisons with UU regarding adoptable pump design are recommended. **CONTENTS**

Docum	Document Tracking Sheeti			
Figure: Special	EXECUTIVE SUMMARY			
1.0	INTRODUCTION	1		
2.0 2.1 2.2 2.3	EXISTING SITE LOCATION Location Existing and Historical Land Use Topography	1 1		
3.0 3.1	DEVELOPMENT PROPOSALS			
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7	SOURCES OF FLOOD RISK	2 2 3 4 5		
5.0 5.1 5.2 5.3 5.4 5.5 5.6	SURFACE WATER MANAGEMENT	5 5 7 7		
	SUMMARY	8 9		

Appendix A:	Site Plans
Appendix B:	Sewer Records
Appendix C:	Hydrological Calculations
Appendix D:	Notes of Limitations

Figures & Tables

CONSULTING ENGINEERS

Figure 1: EA Flood Map for Planning (Rivers and Sea).	2
	2
Figure 2: The EA's Indicative Surface Water Flood Risk Map.	3
Table 1: Greenfield Run-off Rates (ICP SuDS)	5
Table 2: Quick Storage Estimates	6

Specialist Software

- Flood Estimation Handbook FEH CD-ROM (v.3.0) Determination of Catchment Descriptors and depths of rainfall.
- MicroDrainage WinDES (v.14.1) Calculation of Greenfield run-off rates IH124/ICP-SUDS, Greenfield run-off volumes, rates of rainfall and stormwater storage estimates.

Abbreviations & Acronyms

AEP	Annual Exceedance Probability	mAOD	Metres Above Ordnance Datum
BGL	Below Ground Level	NGR	National Grid Reference
BGS	British Geological Survey	NPPF	National Planning Policy Framework
CC	Climate Change	NSRI	National Soil Resources Institute
EA	Environment Agency	OS	Ordnance Survey
FEH	Flood Estimation Handbook	PFRA	Preliminary Flood Risk Assessment
FRA	Flood Risk Assessment	PPS	Planning Policy Statement
FZ	Flood Zone	QSE	Quick Storage Estimate
На	Hectare	QBAR	Mean Annual Flood
IDB	Internal Drainage Board	SFRA	Strategic Flood Risk Assessment
LLFA	Lead Local Flood Authority	SuDS	Sustainable Drainage Systems
LPA	Local Planning Authority	UU	United Utilities

CONSULTING ENGINEERS

1.0 INTRODUCTION

- **1.1.1** The impact of flooding on the natural and built environment are material planning considerations. The NPPF sets out the Government's objectives for the planning system, how planning should facilitate and promote sustainable patterns of development, avoiding flood risk and accommodating the impacts of climate change. Government policy with respect to development in flood risk areas is contained within the NPPF and the supporting Technical Guidance.
- **1.1.2** The NPPF requires a FRA for sites greater than 1 ha. The proposals are 'residential' in nature, classified as 'more vulnerable' in Table 2 within the Technical Guidance to the NPPF. This type of development is appropriate in Flood Zone 1.
- 1.1.3 The development proposal was granted outline planning application (N° 3/2014/0764) on the 29th October 2015. This FRA has built upon the FRA submitted with the application completed by RSK (March 2015, Ref: 880500-R1).
- **1.1.4** The NPPF advises that the LPA should consult with the EA for advice on flood issues at a strategic level and in relation to planning applications.

2.0 EXISTING SITE LOCATION

2.1 Location

- 2.1.1 The site is located on land off Chipping Lane, Longridge, PR3 2NA. The OS NGR is 360073E, 437980N.
- 2.1.2 The site is surrounded by greenfield land to the north, east and west and by residential areas to the south. Chipping Lane forms the western site boundary.

2.2 Existing and Historical Land Use

2.2.1 The site is currently classed as greenfield. No other land uses have been identified as part of this report.

2.3 Topography

2.3.1 The site slopes in a north-westerly direction with levels ranging from around 121m AOD near the eastern border to 102m AOD in the north-west.

3.1 Nature of the development

3.1.1 The nature of the development is residential and comprises of residential units associated infrastructure. A copy of the development layout for Phase I is included in Appendix A.

4.0 SOURCES OF FLOOD RISK

4.1 Fluvial Flood Risk

4.1.1 The flood risk of the site has been assessed using EA online Flood Maps.

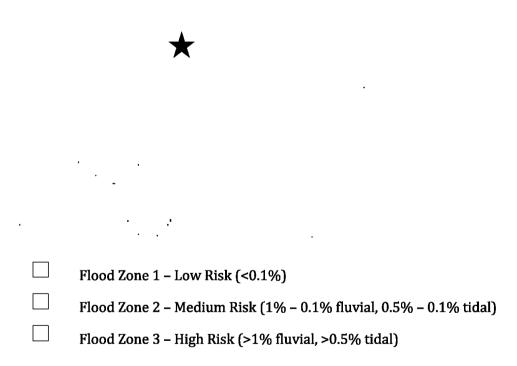


Figure 1: EA Flood Map for Planning (Rivers and Sea).

4.1.2 Figure 1 shows that the site is within Flood Zone 1, which would indicate a **low risk** from fluvial flooding.

4.2 Tidal Flooding

4.2.1 As there is no coastline or tidal river near to the site, tidal flood risk is deemed **low**.

4.3 Pluvial Flood Risk

- 4.3.1 Pluvial (surface water) flooding occurs when rainwater is unable to drain away through the normal drainage systems or soak into the ground, but lies on or flows over the ground instead.
- 4.3.2 Pluvial flood risk as indicated by the EA map (Figure 2) shows that the site is predominantly at **very low** to **low** risk.

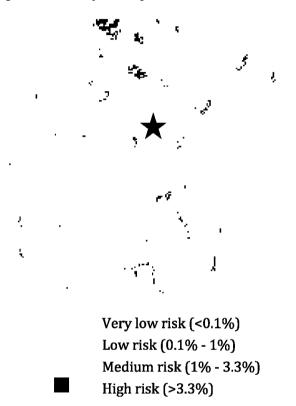


Figure 2: The EA's Indicative Surface Water Flood Risk Map.

- 4.3.3 There are some areas of low to medium risk that appear to follow the direction of overland flow. There is a singular area of medium to high risk located centrally to the site that is indicative of a topographic low point.
- 4.3.4 The development proposals, although increasing the impermeable area of the site, will provide a betterment on the pre-existing scenario in that any exceedance flows for storm events up to and including the 100 year event plus 30% climate change, will be attenuated on-site prior to a restricted outfall.
- 4.3.5 Finished floor levels will be raised at least 150mm above the external levels and external areas of hardstanding will comply with building regulations and divert water away from the proposed dwellings. This will further mitigate pluvial flood risk.
- 4.3.6 Therefore the pluvial flood risk to the development is overall considered to be **low.**

4.4 Sewer Related Flood Risk

- 4.4.1 Rainwater is sometimes drained into combined sewers. Foul water flooding can occur in areas prone to overland flow when the sewer is overwhelmed by heavy rainfall and will continue until the water drains away. It can also occur when the sewer becomes blocked or is of inadequate capacity, this could lead to there being a high risk of internal property flooding with contaminated water.
- 4.4.2 United Utilities records indicate that there is a 375mm diameter surface water pipe from the eastern site boundary which cuts through the site before outfalling to Higgin Brook near the centre of the site. A 3m easement will apply from this SWS in accordance with UU guidelines.
- 4.4.3 New sewers will be designed and constructed in accordance with Sewers for Adoption and put up for adoption by United Utilities as part of the detailed design (stc).
- 4.4.4 Flood Risk from sewer related sources is considered to be **low**. See Appendix B for UU sewer records.

4.5 Groundwater Flood Risk

- 4.5.1 In general terms groundwater flooding can occur from three main sources: raised water tables, seepage and percolation and groundwater recovery or rebound.
 - If groundwater levels are naturally close to the surface then this can present a flood risk during times of intense rainfall.
 - Seepage and percolation occur where embankments above ground level hold water. In these cases water travels through the embankment material and emerges on the opposite side of the embankment.
 - Groundwater recovery/rebound occurs where the water table has been artificially depressed by abstraction. When the abstraction stops the water table makes a recovery to its original level. There is the potential for groundwater flooding in low lying areas where groundwater levels have been depressed below their prepumping conditions, where these were at or close to ground level.
- 4.5.2 The online BGS maps show that the underlying geology consists of the Bowland Shale Formation, whilst the Soilscapes online Map indicates that the soil has impeded drainage. The presence of surface water flood lines in the direction of overland flow in Figure 2 is also indicative of the presence of poorly permeable underlying clay soils.
- **4.5.3** Groundwater flood risk is therefore considered to be '**low'**, this will be further mitigated by the increase in Finished Floor Levels by at least 150mm above existing external levels.

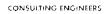
4.6.1 The site is partially at risk of flooding from the 'Dilworth Upper' reservoir, yet the risk designation is yet 'to be determined' according to the EA online maps and information. Reservoir flooding is extremely rare, therefore the flood risk from artificial sources is deemed **low**.

4.7 Flood Risk Mitigation Measures & Residual Risks

- 4.7.1 Finished Floor Levels will be a minimum of 150mm above the external levels (following any re-grade). External levels within proximity will fall away from proposed dwellings in accordance with building regulations.
- 4.7.2 Surface water run-off rates will be restricted through the use of vortex flow control devices. The increased volume of run-off for storms greater than the 30 year event can be mitigated through the use of SuDS (evapotranspiration/bio-retention/rainwater re-use).
- 4.7.3 The development is considered accessible during the extreme storm events as the site is within Flood Zone 1.

5.0 SURFACE WATER MANAGEMENT

5.1 Pre-Development Surface Water Run-off


- 5.1.1 The previous FRA completed by RSK (March 2015, Ref: 880500-R1) proposed that runoff rates will be restricted to QBar. In this report, QBar is calculated as 8.3 l/s/ha. See Appendix C for Hydrological Calculations. Any discrepancy between this QBar and the previous figure is due to refined FEH catchment characteristics being utilised within the ICP SuDS method.
- 5.1.2 The pre-development (greenfield) runoff rates are shown in Table 1. The ICP SuDS method was utilised using FEH catchment characteristics.

Storm Event	Greenfield Rate (l/s/ha)
Q1 year	7.2
QBar	8.3
Q30 years	14.0
Q100 years	17.2

 Table 1: Greenfield Run-off Rates (ICP SuDS)

5.2 Post-Development Surface Water Run-off

5.2.1 The impermeable area will increase as a result of the development and increased run-off rates will be restricted to QBar (l/s/ha) thereby providing **significant betterment** to the downstream catchment for all storm events greater than the average annual event.

- 5.2.2 Rates will be restricted through the use of a vortex flow control device. Increased run-off volumes for storms greater than the 30 year event can be reduced through the use of SuDS (evapotranspiration/bio-retention/rainwater reuse).
- 5.2.3 Storm-water storage volumes will be attenuated on-site prior to outfall. Table 2 indicates the estimated volumes of storm-water storage that will be required if flows are restricted to variable discharge rates.
- 5.2.4 The impermeable area is estimated to be 60% of the total site area. This is a conservative estimation that considers gardens, permeable driveways and landscaped areas.

Storm Event	Storage Estimate (m³/ha)
Q1 year	32 – 73
QBar (~ 2.3 years)	45 - 96
Q30 years	141 – 249
Q100 years + cc	327 - 507

 Table 2: Quick Storage Estimates

5.2.5 Hydrological Calculations are included within Appendix C. The above figures are estimates only and will be recalculated during detailed design.

5.3 Sustainable Drainage Systems (SuDS)

- 5.3.1 In accordance with the NPPF, SuDS should be used wherever possible to manage surface water and reduce the impact on downstream watercourses and sewers.
- 5.3.2 SuDS have the ability to address four core objectives; water quantity, water quality, amenity and biodiversity. With the appropriate system specified, all four core objectives can be satisfied. Where possible, peak surface water discharge rates to watercourses and sewers should be reduced.
- 5.3.3 Preference should always be given to practical SuDS over conventional pipe systems. Opportunities should be taken to provide soft landscaping on site to minimise surface water run-off, improve bio-diversity and increase visual enhancement.
- 5.3.4 The ground investigation report carried out by Soiltechnics (Feb 2016, Ref: STN3505NM-G01) indicates that infiltration is **not viable** at this site.
- 5.3.5 There is potential to utilise SuDS on this site, with large areas of POS provided within the layout at the lowest points of the site. Due to the level gradient of the site, shallow SuDS would be preferable to systems such as deep ponds or detention basins. Suitable SuDS would include the use of swales and bio-retention areas.

5.3.7 It is important that SuDS is seen as a multi-use commodity, and that areas that benefit from SuDS, and the additional environmental and aesthetic enhancement they can bring if designed properly, are open to the public.

5.4 Methods of Surface Water Management

- 5.4.1 There are three methods that have been reviewed for the management and discharge of surface water detailed below; these may be applied individually or collectively to form a complete strategy. They should be applied in the order of priority listed below.
- 5.4.2 **Discharge via Infiltration** The ground investigation report carried out by Soiltechnics (Feb 2016, Ref: STN3505NM-G01) indicates that infiltration is **not viable** at this site.
- 5.4.3 **Discharge to Watercourse** There are several on-site watercourses which the site currently drains to. These are designated 'ordinary watercourses' and ordinary watercourse consent should be applied for with Lancashire County Council prior to any on-site works. As the watercourses are not designated as 'Main River', a 3-5m easement is considered appropriate.
- 5.4.4 **Discharge to Public Sewer** Surface water will not outfall to a public sewer.

5.5 Climate Change

- 5.5.1 The UK climate is changing significantly will vary greatly by region with more short duration and high intensity rainfall events as well as more periods of long duration rainfall.
- 5.5.2 The NPPF Technical Guidance states that the recommended national precautionary sensitivity ranges for increase of peak rainfall intensity is 30% until 2115. The impact of climate change means there is likely to be a long term increase in average sea levels.
- 5.5.3 An increase in flood water levels means that flooding events will occur more frequently and have a greater impact. Any increase flood risk to the site from climate change is likely to be related to the increase in rainfall intensity and duration.
- 5.5.4 An additional 30% to accommodate climate change will be incorporated into the design of the stormwater storage attenuation.

5.6 Foul Water Management

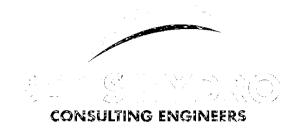
5.6.1 The nearest public foul sewers are located within Inglewhite Road to the south-east of the site. The conveyance route of foul flows will be determined during detailed design. A pumped solution will likely be required and early liaisons with UU regarding adoptable pump design are recommended. Sewers will be designed and constructed in accordance with Sewers for Adoption.

6.0 SUMMARY

6.1 Conclusion and Recommendations

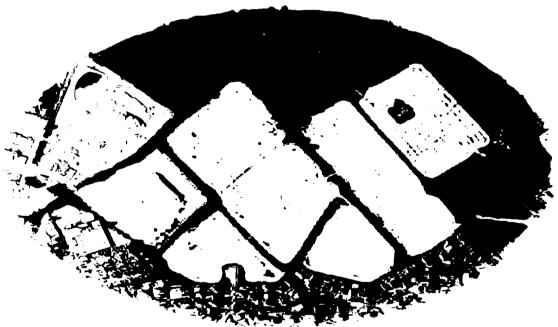
- 6.1.1 This report has been prepared for a development proposal of residential dwellings and associated infrastructure. The site lies within Flood Zone 1. The residential proposals are classified as 'more vulnerable'. This type of development is considered to be appropriate in accordance with the NPPF.
- 6.1.2 The report has indicated that the site is at **low** risk of flooding from fluvial, tidal, sewer related and artificial sources. There is some medium indicative risk of pluvial flooding which will be reduced and mitigated by the implementation of the development proposal. Flood risk to the surrounding area as a result of the development will be significantly reduced due to the restriction of proposed run-off rates to mimic the existing rate for the average annual event (QBar).
- 6.1.3 Attenuation will be provided on-site for storm events up to and including the 1 in 100 year event + 30% climate change.
- 6.1.4 Any residual or unforeseen flood risk to the proposed development will be further mitigated by raising finished floor levels to at least 150mm above external levels. External levels will fall away from dwellings in accordance with Building Regulations.
- 6.1.5 Applications for sewer adoption will be discussed and submitted during detailed design.

BIBLIOGRAPHY & REFERENCES



CIRIA 522: Sustainable urban drainage systems – design manual for England and Wales (2000). CIRIA 523: Sustainable urban drainage systems – best practice manual (2001). CIRIA 609: Sustainable drainage systems. Hydraulic, structural and water quality advice (2004). CIRIA 624: Development and flood risk – guidance for the construction industry (2004). CIRIA 635: Designing for Exceedance in urban drainage: Good practice (2006). CIRIA 644: Building Greener (2007). CIRIA 753: The SUDS manual (2015). Flood Risk to People – Phase 2 (FD2321/TR2), DEFRA and the Environment Agency (2006). Flood estimation for small catchments: Institute of Hydrology Report No.124, NERC (1994). Flood Estimation Handbook, Centre for Ecology and Hydrology (1999). Planning Policy Statement 25: Development and Flood Risk (2006). Sewers for Adoption 7th Edition, WRc (2012). Technical Guidance to the National Planning Policy Framework, CLG (2012).

Web-based References


Bingmaps –www.bing.com/Maps British Geological Survey – www.bgs.ac.uk/opengeoscience/home.html CIRIA –www.ciria.org Cranfield University – www.landis.org.uk/soilscapes Environment Agency – www.environment-agency.gov.uk Flood Forum –www.floodforum.org.uk Google Maps – www.maps.google.co.uk Streetmap – www.streetmap.co.uk

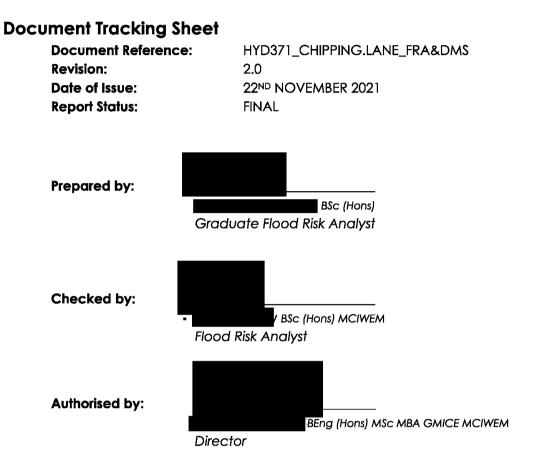
Appendix B Flood Risk Assessment Phase 2 & 3

LAND OFF CHIPPING LANE PHASE 2 & 3 LONGRIDGE

FLOOD RISK ASSESSMENT AND DRAINAGE MANAGEMENT STRATEGY

For

Barratt Homes Manchester 4 Brindley Road, City Park, Manchester, M16 9HQ



NOVEMBER 2021

LAND OFF CHIPPING LANE PHASE 2 & 3 LONGRIDGE

FLOOD RISK ASSESSMENT AND DRAINAGE MANAGEMENT STRATEGY

Rev:	Date:	Status:	Prepared by:	Checked by:	Issued by:
2.0	22.11.2021	FINAL	НВ	MB	НВ
1.0	05.12.2018	FINAL	MB	DK	мв
0	20.11.2018	DRAFT	MB	DK	MB
					• •
1 - A - A - A - A - A - A - A - A - A -					

www.consectores.co.uk

HYD371_CHIPPING.LANE_FRA&DMS

EXECUTIVE SUMMARY

This Flood Risk Assessment and Drainage Management Strategy was commissioned by Barratt Homes referred to hereafter as 'the client'. This report has been prepared to support a full planning application for the construction of residential development on land to the east of Chipping Lane in Longridge. Phase 1 has planning approval (Ref: 3/2014/0764) and is supported by a separate, approved Flood Risk Assessment and Drainage Management Strategy (HYD068_CHIPPING.LANE_FRA&DMS).

This assessment therefore focuses on the residential development proposed as part of Phase 2 & 3 only. Phase 2 & 3 collectively cover 10.66ha, although the proposed development area covers a smaller portion at 6.24ha.

Flood Risk

The site is located wholly within Flood Zone 1 based on the Environment Agency Flood Map for Planning. The proposals are for a residential-led development, which is considered 'More Vulnerable' in Table 2: Flood Risk Vulnerability Classification within Planning Practice Guidance. This 'More Vulnerable' development is confirmed to be appropriate within Flood Zone 1, providing there is no increase in flood risk elsewhere due to the proposals.

Consultations with the Environment Agency, Ribble Valley Borough Council, Lancashire County Council and United Utilities have been undertaken and did not identify any historical incidents of flooding to the site or within the neighbouring areas. This assessment has considered all sources of flood risk. As part of Phase 1, hydraulic modelling of the Ordinary Watercourse was undertaken to determine the potential flow risks associated with the proposed culverting the Ordinary Watercourse for vehicular crossing as part of Phase 1. The full Hydraulic Assessment has been appended to this assessment for full details. To summarise the proposed Phase 2 & 3 development area will, following the implementation of mitigation measures remain flood free in all key storm events, including the 1 in 100-year (1% AEP) plus Climate Change event without having any impact on the neighbouring land/properties.

The primary source of flood risk is considered to be from surface water where the risk varies across the site from 'very low' to 'high' within the natural low-lying areas of site. The risks postdevelopment from surface water will be effectively managed through implementation of the mitigation measures proposed within this assessment. To minimise flood risk from surface water it would also be recommended that natural drainage routes through the site be maintained within the proposals, including the existing Ordinary Watercourse, crossing the site from the southern boundary to the north.

Drainage Strategy

To ensure surface water flood risk to others does not increase, it is important to ensure surface water run-off is appropriately managed in accordance with the sustainable drainage hierarchy. Based on the ground conditions identified by the published online datasets, infiltration is not considered to provide a viable drainage solution for the development due to the impermeable strata. A ground investigation report (Ref: STN3505NM-G01) was also undertaken for Phase 1 and identified soakaways were not suitable to be used as a method for managing surface water run-off.

Assuming infiltration is not feasible, the next method in the drainage hierarchy should be discharge to a watercourse. Most of the site naturally drains to the Ordinary Watercourse

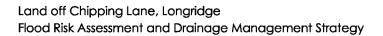
crossing the site at present and the proposals are therefore to mimic the existing situation, discharging surface water run-off from the site to the watercourse using the existing onsite features where practical. Detailed design will need to confirm feasibility of a site wide gravity solution, although this is anticipated as most of the site naturally drains in this manner at present.

In accordance with the SuDS Manual and the Non-Statutory Technical Standards for Sustainable Drainage Systems, all sites should endeavour to achieve as close to predevelopment greenfield rates as viable. The proposals are to therefore discharge to the watercourse crossing the site mimicking pre-development greenfield situation, QBar is calculated to be 84.91/s and will need to be proportioned between the multiple proposed points of outfall.

Restricting the discharge rates will generate a storage requirement during extreme storm events, this will need to be considered in terms of onsite attenuation as part of detailed design. It would be beneficial to implement SuDS features at the outfall location(s) such as ponds or basins for attenuation, conveyance and water quality benefits, although this will need to be considered during detailed design.

This Flood Risk Assessment and Drainage Management Strategy has been prepared in consultation with the relevant interested parties and incorporates their comments where possible. The report is considered to be commensurate with the scale and nature of the development proposals and in summary, the development can be considered appropriate in accordance with the Planning Practice Guidance.

CONTENTS


Docu	ment Tracking Sheet	iii
EXEC	UTIVE SUMMARY	v
Figure	es & Tables	viii
Speci	alist Software	ix
Abbre	eviations & Acronyms	ix
1. 0	INTRODUCTION	11
1.1	Planning Policy Context	11
1.2	Site Context	11
1.3	Consultation	11
2.0	EXISTING SITE LOCATION	12
2.1	Location	12
2.2	Existing and Historical Land Use	1 2
2.3	Topography	13
3.0	DEVELOPMENT PROPOSALS	14
3.1	Nature of the development	14
4.0	SOURCES OF FLOOD RISK	16
4.1	Fluvial Flood Risk	16
	Safe Access and Egress	17
4.2	Tidal Flood Risk	18
4.3	Flood Risk Vulnerability Classification and Flood Zone Compatibility	18
4.4	Surface Water Flood Risk	18
	Pluvial (Overland run-off) Flood Risk	19
	Sewer Flood Risk	19
4.5	Groundwater Flood Risk	
4.6	Artificial Sources of Flood Risk	
	Reservoirs	
	Canals	
4.7	Historical and Anecdotal Flooding Information	
4.8	Flood Risk Mitigation Measures & Residual Risks	
	Mitigation Measures Residual Risks	
5.0		
5.0	SURFACE WATER MANAGEMENT	
5.1 5.2	Pre-Development Surface Water Run-off Post Development Surface Water Run-Off	
э.∠ 5.3	Sustainable Drainage Systems (SuDS)	
5.4	Methods of Surface Water Management	
5.5	Discharge via Infiltration	
	-	-

	if Chipping Lane, Longridge isk Assessment and Drainage Management Strategy	
5.6	Discharge to Watercourse	CONSULTING ENGINEERS
5.7	Discharge to Public Sewer Network	27
5.8	Climate Change	27
6.0	FOUL WATER MANAGEMENT	28
7.0	SUMMARY AND CONCLUSIONS	29
8.0	RECOMMENDATIONS	31
BIBLIO	GRAPHY & REFERENCES	32
Web-b	ased References	32

Figures & Tables

Figure 1: Aerial Photograph of site (Bing Maps, 2018)	12
Figure 2: Illustrative Masterplan (2021)	14
Figure 3: Fluvial/Tidal Flood Zone Map for Planning Extract (GOV.UK 2021)	16
Figure 4: Surface Water Flood Map Extract (GOV.UK, 2021)	18
Table 1: Pre-Development Surface Water Run-Off Rates (Betts Hydro, 2021)	23
Table 2: Post-Development Un-Restricted Run-Off Rates (Betts Hydro, 2021)	23
Figure 5: SuDS Photographs (SusDrain, 2012)	24
Figure 6: Preliminary Proposed Drainage Plan extract (Betts Hydro, 2021)	26
Table 4: Estimated Stormwater Storage Requirements (Betts Hydro, 2021)	.26

APPENDIX A:	NPPF & PPG EXTRACTS
APPENDIX B:	EA INFORMATION & CORRESPONDENCE
APPENDIX C:	UU CORRESPONDENCE
APPENDIX D:	LPA/LLFA CORRESPONDENCE
APPENDIX E:	LOCATION PLAN
APPENDIX F:	TOPOGRAPHIC SURVEY
APPENDIX G:	PROPOSED PLANNING LAYOUT
APPENDIX H:	HYDRAULIC ASSESSMENT
APPENDIX I:	PFRA/SFRA PLANNING EXTRACTS
APPENDIX J:	SURFACE WATER RUN-OFF CALCULATIONS
APPENDIX K:	PRELIMINARY PROPOSED DRAINAGE PLANS
APPENDIX L:	STORMWATER STORAGE ESTIMATES
APPENDIX M:	TYPICAL SUDS DETAILS
APPENDIX N:	NOTES OF LIMITATIONS

Specialist Software

MicroDrainage WinDES (v.14.1) – Calculation of Greenfield run-off rates IH124/ICP-SUDS, Greenfield run-off volumes, rates of rainfall and stormwater storage estimates. Flood Estimation Handbook FEH – Determination of Catchment Descriptors and depths of rainfall.

Abbreviations & Acronyms

- AEP Annual Exceedance Probability
- BGL Below Ground Level
- BGS British Geological Survey
- CC Climate Change
- CSAI Cranfield Soil and Agrifood Institute
 - EA Environment Agency
- FEH Flood Estimation Handbook
- FRA Flood Risk Assessment
- LCC Lancashire County Council
- LLFA Lead Local Flood Authority
- LPA Local Planning Authority
- mAOD Metres Above Ordnance Datum
 - NGR National Grid Reference
 - NPPF National Planning Policy Framework
 - NSRI National Soil Resources Institute
 - **OS** Ordnance Survey
 - PFRA Preliminary Flood Risk Assessment
 - PPG Planning Practice Guidance
 - **QSE** Quick Storage Estimate
 - QBAR Mean Annual Flood
 - **RVBC** Ribble Valley Borough Council
 - SfA Sewers for Adoption
 - SFRA Strategic Flood Risk Assessment
 - **SuDS** Sustainable Drainage Systems
 - TWL Top Water Level
 - **UU** United Utilities

1.0 INTRODUCTION

1.1 Planning Policy Context

- 1.1.1 All forms of flooding and their impact on the natural and built environment are material planning considerations. The revised National Planning Policy Framework (NPPF) sets out the Government's objectives for the planning system, and how planning should facilitate and promote sustainable patterns of development, avoiding flood risk and accommodating the impacts of climate change. Government policy with respect to development in flood risk areas is contained within the revised NPPF and the supporting Planning Practice Guidance (PPG) (refer to extracts in **Appendix A**).
- 1.1.2 A Flood Risk Assessment and Drainage Management Strategy (FRA&DMS) has been completed in accordance with the revised NPPF and the PPG to review all sources of flood risk both to and from the proposed development. The report also considers the most appropriate drainage options including the implementation of Sustainable Drainage Systems (SuDS) in line with national policy.
- 1.1.3 The proposals are considered to be predominantly 'residential' in nature and as such is classified as 'More Vulnerable' in Table 2: Flood Risk Vulnerability Classification, within the Planning Practice Guidance. The PPG confirms that this type of land use is appropriate for Flood Zone 1, providing there is no increase in flood risk elsewhere due to the proposals.

1.2 Site Context

1.2.1 This FRA&DMS has been prepared to support a full planning application for Phase 2 & 3 of the residential-led development, on land to the east of Chipping Lane in Longridge. This assessment is to support Phase 2 & 3 of the wider/residential-led scheme, Phase 2 and 3 will comprise of 198no. residential dwellings collectively with some land allocated for a new school. Phase 1 (for 363no. residential dwellings) already has planning approval (Ref: 3/2014/0764) and is supported by a separate, approved FRA&DMS (Ref: HYD068_CHIPPING.LANE_FRA&DMS).

1.3 Consultation

1.3.1 The preparation of this report has been undertaken in consultations with the following interested parties; the Environment Agency (EA), United Utilities (UU), Lancashire County Council (LCC) and Ribble Valley Borough Council (RVBC). Consultation responses can be seen in **Appendix B**, **C** and **D**. The NPPF advises that the LPA should consult with the EA who will provide advice and guidance on flood issues at a strategic level and in relation to planning applications.

2.0 EXISTING SITE LOCATION

2.1 Location

- 2.1.1 The proposed development site will be access via the access road for Phase 1 from Chipping Lane to the west. The Ordnance Survey National Grid Reference (OS NGR) for the site is E: 360405, N: 437794 and the nearest postcode is PR3 3HB (see Location Plan in Appendix E). Phase 1 of the wider scheme already has planning approval and is highlighted by the green line in Figure 1. This assessment however focuses on Phase 2 & 3 only, which is referred to as 'the site' and is outlined in red in Figure 1.
- 2.1.2 The total site area covers 10.66ha, although when the proposed public open space, recreational areas and the land allocated for the new school are considered, the actual residential development area will cover 6.24ha. The site is bounded to the north and east by undeveloped agricultural land and to the south lies residential dwellings off Redwood Dive. Phase 1 is located to the west of the site with neighbouring residential development, the site will also be accessed from the west through Phase 1.

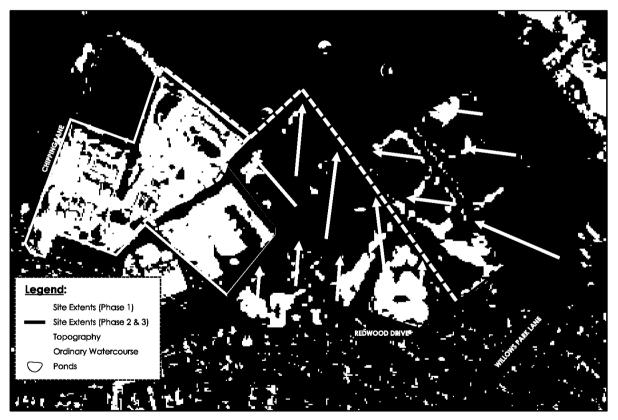


Figure 1: Aerial Photograph of site (Bing Maps, 2018)

2.2 Existing and Historical Land Use

2.2.1 The preparation of this report has identified that the site is currently undeveloped agricultural land to the east of Chipping Lane in Longridge. The site comprises of low-density vegetation with taller shrubs along some field boundaries. There are existing onsite drainage features present including the Ordinary Watercourse flowing north into Higgin Brook. Historically the site was utilised for agricultural purposes and no other historical land uses have been determined during the preparation of this report.

2.3 Topography

2.3.1 The topographic levels naturally vary onsite given the land-use. The site generally falls towards the Ordinary Watercourse flowing adjacent to the northern field boundary and to the Ordinary Watercourse crossing the site. There is an overall fall from 121.50mAOD in the south to 106.41mAOD in the north. A full topographical survey has been carried out and is included in **Appendix F.**

3.0 DEVELOPMENT PROPOSALS

3.1 Nature of the development

3.1.1 This planning application is for the construction of 198no. residential dwellings on undeveloped land located to the east of Chipping Lane in Longridge (outlined in red within **Figure 2**). The proposals will be complete with access via the approved Phase 1 scheme, footpaths, car parking, external works lighting, landscaping, boundary walls/fencing, external services and drainage as shown on the illustrative masterplan in **Figure 2** (full layout in **Appendix G**).

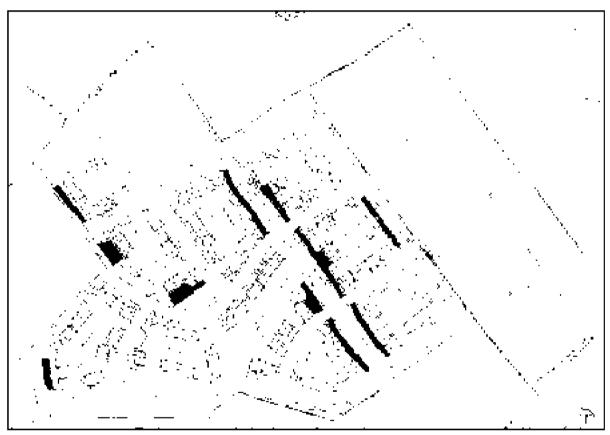


Figure 2: Illustrative Masterplan (2021)

- 3.1.2 The total site area covers 10.66ha and is considered to be 100% permeable at present. Due to the nature of the proposals, the proposed residential development area is smaller than the total site and covers 6.24ha. The development area excludes areas which are proposed to remain undeveloped, used for recreation and allocated for the new school. The post-development impermeable areas of the site will increase due to the nature of the development, to approximately 2.81ha which is 45% of the proposed development area.
- 3.1.3 There are Ordinary Watercourses present on and adjacent to the site which have been considered within the proposals. In accordance with Lancashire County Council (LLFA) there is a requirement to maintain easements from existing Ordinary Watercourses. LCC typically require an 8m easement to be maintained from the Top of Bank of the watercourses into the development area. The easement should provide clear and unimpeded access for future maintenance. This includes no fencing, walls or buildings should be present within the designated easement. Ordinary Watercourses are

required to remain open channel where possible however, culverting of the watercourse for crossing purposes is typically accepted by LCC. Culverting of the watercourse for vehicle crossing as with Phase 1 is allowed providing the culverting is kept to a minimum and follows LCC design requirements. Early discussion with LCC is advised to get approval of any culvert proposals.

- 3.1.4 In review of Untied Utilities (UU) sewer records, a foul water pumping station has been identified onsite adjacent to the southern boundary, this pumping station has been accounted for within the planning proposals. A public foul water sewer (375mm.dia) associated with the pumping station has also been identified onsite adjacent to the southern boundary. In addition, there is also a public surface water sewer (375mm.dia) which presently crosses the development site from the southern boundary towards Phase 1.
- 3.1.5 National and local policy identifies that Sustainable Drainage Systems (SuDS) should be incorporated into new development where at all feasible. As shown on the proposed planning layout there is scope to incorporate some SuDS features such as a pond/basin within the proposed open space/amenity areas. There is also a blue/green corridor shown on the planning layout to border the Ordinary Watercourse crossing the site. Detailed design will however be required to confirm the specific types, subject to ground investigations and detailed levels review.

4.0 SOURCES OF FLOOD RISK

4.1 Fluvial Flood Risk

4.1.1 Information relating to flood risk at the site has been obtained from the Environment Agency and from the Gov.uk website. The Flood Map for Planning shows that the site is wholly located within Flood Zone 1 as seen in Figure 3, the site is also identified to be at 'very low' risk of fluvial flooding based on the long-term fluvial flood risk mapping (refer to mapping in Appendix B).

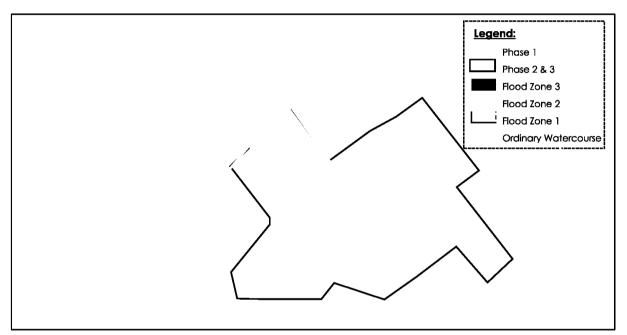


Figure 3: Fluvial/Tidal Flood Zone Map for Planning Extract (GOV.UK 2021)

- 4.1.2 There is an existing Ordinary Watercourse crossing the development site, which flows north until the watercourse outfalls into Higgin Brook approximately 1km to the north. Higgin Brook flows north and eventually outfalls into the River Loud (Main River) located approximately 1.2km north of site. Due to the distance of site to the nearest Main River, the risk associated is 'very low'.
- 4.1.3 In terms of the Ordinary Watercourse, consultations with the EA, RVBC and LCC also did not identify any historic flooding at the site and review of the topographic survey suggests that the existing site levels are 800mm above the bed levels of the Ordinary Watercourses crossing the site. Due to the nature and scale of the existing Ordinary Watercourse, the flood risk associated is considered to be 'very low'.
- 4.1.4 The LLFA (LCC) will require a maintenance easement to be maintained from the existing Ordinary Watercourse for future maintenance. The LCC typically require an 8m easement to be maintained from the Top of Bank of Ordinary Watercourses into the development area. The easement should provide clear and unimpeded access for future maintenance including no fencing, walls or buildings. Ordinary Watercourses are also required to remain open channel where possible. Culverting of the watercourse for crossing purposes however, is typically accepted by LCC as with Phase 1 of development, providing the culverting is kept to a minimum and follows LCC design

requirements. Early discussion with LCC is advised to get approval of any culvert proposals.

4.1.5 As part of the Phase 1 application, hydraulic modelling of the Ordinary Watercourse crossing the site was undertaken to determine the potential flow risks associated with the proposed part culverting the Ordinary Watercourse for crossing. The section below draws on outcomes of the modelling exercise to further evidence the risk to the proposals from the Ordinary Watercourse is low.

Hydraulic Assessment

- 4.1.6 For full details of the Ordinary Watercourse model build and parameters, refer to the full separate Hydraulic Assessment (HA) Report which has been included in Appendix H). This section of the Flood Risk Assessment will summarise the key findings of the separate report. The HA used The Flood Estimation Handbook (FEH) to obtain the catchment descriptors for Higgin Brook upstream of a point north of the development site. Three smaller sub-catchments (Sub A, Sub B and Sub C) upstream of the 600mm culvert located adjacent to Chipping Lane to the north of the site were identified using LiDAR data (see Hydraulic Assessment in Appendix H for full methodology).
- 4.1.7 The Revitalised Flood Hydrograph (ReFH) method was then applied for each subcatchment based on catchment descriptors. The full hydrographs for all subcatchments in all return periods are shown in **Appendix H**. The HA considered the following events:
 - 1 in 5 year (20% AEP)
 - 1 in 30 year (3.3% AEP)
 - 1 in 100 year (1% AEP)
 - 1 in 100 year (1% AEP) plus Climate Change (CC)
- 4.1.8 The results of the simulations have been presented in the form of longitudinal profile and cross sections (including peak water levels) included in **Appendix H**. The results show that water levels remain in bank for most of the Ordinary Watercourse reach in all Annual Exceedance Probabilities in the existing scenarios. In the proposed scenario a 600mm diameter pipe, approximately 26m long, was inserted upstream to simulate a proposed culvert crossing. Comparison of the existing and post development levels in the 1% AEP plus climate change event shows that peak levels remain largely unchanged, although with some small increases in places. These increases are relatively small and do not increase flood risk to the proposed development or neighbouring areas.
- 4.1.9 Sensitivity analysis was carried out on the model parameters and showed that water levels were not particularly sensitive to changes in channel roughness, therefore the impact of the proposed development on flood depths in vicinity of the site and the wider floodplain are low and within modelling tolerances. Overall, when the outcomes of the proposed scenario of the previously completed FRA are considered, the risk of the proposed development as part of Phase 2 & 3 is minimal.

Safe Access and Egress

4.1.10 The access road to site was previously approved as part of the Phase 1 application (Ref: 3/2014/0764). This is shown on the EA's Flood Zone Map for Planning, to also be

located within Flood Zone 1. Safe access and egress will therefore be maintained via Chipping Lane (through Phase 1).

4.2 Tidal Flood Risk

4.2.1 The coastline is located approximately 30km west of the proposed site and the Ribble Estuary is located approximately 20km west of site. Due to the distance from the coast, the associated flood risk from these sources is considered to be 'very low'. This is supported by the EA's Fluvial/Tidal Flood Zone Map for Planning as the site is shown to be located within Flood Zone 1.

4.3 Flood Risk Vulnerability Classification and Flood Zone Compatibility

4.3.1 The proposals are solely 'residential' in nature and as such is classified as 'More Vulnerable' in Table 2: Flood Risk Vulnerability Classification within the PPG. Table 3: Flood Risk Vulnerability and Flood Zone 'Compatibility' within the PPG confirms that this type of land use is appropriate for Flood Zone 1, providing there is no increase in flood risk elsewhere due to the proposals.

4.4 Surface Water Flood Risk

4.4.1 Surface water flooding occurs when rainwater is unable to drain away through the normal drainage systems or soak into the ground but lies on or flows over the ground instead. The risk associated with surface water run-off is indicated by the long-term flood mapping (extract shown in **Figure 4**).

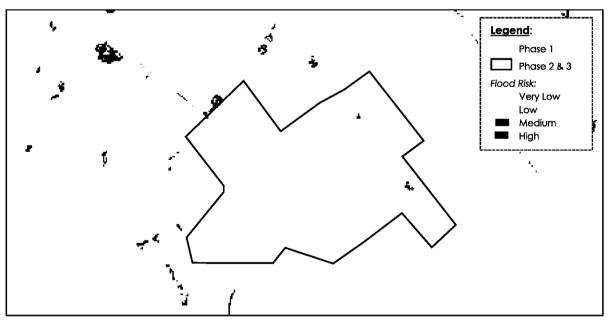


Figure 4: Surface Water Flood Map Extract (GOV.UK, 2021)

4.4.2 As indicated in **Figure 4**, the site is predominantly at 'very low' to 'low' risk from flooding associated with surface water. There are however some existing areas of 'medium' to 'high' risk shown onsite. A review of the existing topography shows that these higher flood risk areas are closely associated with the natural low-lying drainage ditches or

existing water bodies including the Ordinary Watercourse and existing pond features onsite. These low-lying areas would be susceptible to ponding in the extreme rainfall events as the surrounding ground levels are elevated in comparison (refer to **Appendix F** for topographic survey).

4.4.3 The flood risk to the proposals from surface water will be inherently reduced, postdevelopment through the design and implementation of a sustainable surface water drainage regime onsite. Interception methods may be beneficial along any boundary where run-off can enter site or cause risk to others. For any residual risks it is advised that (following any re-grade of the site) FFL are raised above the external levels to provide overland flood routes for excess surface water run-off; this will help protect properties from excess surface water run-off.

Pluvial (Overland run-off) Flood Risk

- 4.4.4 Intense rainfall that is unable to soak into the ground or enter drainage systems can run-off land and result in flooding. Local topography and the land use can have a strong influence on the direction and depth of flow. The topography of the surrounding undeveloped areas means there is little potential for overland flows to impact on the site, as levels generally fall towards the existing watercourses.
- 4.4.5 The volume and rate of overland flow from land can be exacerbated, if development increases the percentage of impermeable area. Any overland flows generated by the development must be carefully controlled; safe avenues directing overland flow away from adjacent development is advised.

Sewer Flood Risk

- 4.4.6 In urban areas, rainwater is frequently drained into surface water sewers or sewers containing both surface and waste water known as 'combined sewers'. Foul water flooding often occurs in areas prone to overland flow and can result when the sewer is overwhelmed by heavy rainfall and will continue until the water drains away.
- 4.4.7 United Utilities (UU) records identify there to be a foul water pumping station onsite adjacent to the southern boundary (see sewer records in **Appendix C**). This pumping station has been accounted for within the planning proposals and a public foul water sewer (375mm.dia) associated with the pumping station has also been identified onsite adjacent to the southern boundary. In addition, there is also a public surface water sewer (375mm.dia) which presently crosses the development site from the southern boundary towards Phase 1. Consultation with UU, identified no recorded historical sewer flooding issues on or near to the proposed development site (see **Appendix C** for correspondence).

4.5 Groundwater Flood Risk

4.5.1 High groundwater levels are usually the key source of groundwater flooding, which occurs when excess water emerges at the grounds surface (or within manmade underground structures such as basements). Groundwater flooding is often more insistent than surface water flooding and would typically last for weeks/months rather than days meaning the result to property is often more severe.

- 4.5.2 In general terms groundwater flooding can occur from three main sources:
 - If groundwater levels are naturally close to the surface, then this can present a flood risk during times of intense rainfall. No groundwater flood risk has been identified during consultation with the various interested parties.
 - Seepage and percolation occur where embankments above ground level hold water. In these cases, water travels through the embankment material and emerges on the opposite side of the embankment. At present there are no reported problems with groundwater flooding.

Groundwater recovery/rebound occurs where the water table has been artificially depressed by abstraction. When the abstraction stops the water table makes a recovery to its original level. There is the potential for groundwater flooding in low lying areas where groundwater levels have been depressed below their prepumping conditions, where these were at or close to ground level. As with the seepage scenario the likelihood of flooding from this source is low.

- 4.5.3 The mapping data for groundwater shows that the site is underlain by a Secondary A Bedrock Aquifer with Secondary 'Undifferentiated' Superficial Deposits (Appendix B). The site has been identified to be in a Low Groundwater Vulnerability Area to a Minor Aquifer.
- 4.5.4 No historical groundwater flooding of the site has been identified during consultation with the various interested parties. Irrespective, it is advised that external levels fall away from the property (where feasible) to minimise the flood risk from a variety of sources. By keeping the finished floor levels elevated relative to the externals, this should help create an overland flow route.

4.6 Artificial Sources of Flood Risk

4.6.1 National policy states that an FRA should consider the potential risks from a variety of other flood sources including artificial sources (such as risks from reservoirs and canals).

Reservoirs

- 4.6.2 The EA recognises reservoirs as bodies of water over 25,000cu.m, the site is not considered to be influenced by any flooding associated with a breach or failure in the neighbouring reservoirs.
- 4.6.3 There are a number of small bodies of water (less than 25,000cu.m) located to the north of the development site and are understood to aid in the natural drainage of the surrounding area. The risk they pose to site is considered to be 'low' due to the natural topography and the scale/nature of these small drainage features.

Canals

- 4.6.4 The nearest identified canal systems to the proposed development site is the Lancaster Canal located approximately 1km to the west of site. Due to the proximity and the local topography, the associated flood risk is considered to be 'low'.
- 4.6.5 Irrespective, it is advised that external levels fall away from the property (where feasible) to minimise the flood risk from a variety of sources. By keeping the Finished Floor Levels elevated relative to the externals, this should help create an overland flood

flow route in the event of a breach or any other source of flooding that could lead to overland flow.

4.7 Historical and Anecdotal Flooding Information

- 4.7.1 An internet-based search for flooding did not identify any historical flooding directly to the site however, the internet-based search did identify surface water flooding issues to the neighbouring Longridge area during extreme storm events. Furthermore, review of the Lancashire County Council's and Ribble Valley Borough Council's Preliminary Flood Risk Assessment and Strategic Flood Risk Assessment, did not highlight any historic flooding pertinent to this FRA.
- 4.7.2 Consultation with various interested parties including the EA also failed to highlight any historical flooding on the site. No historical sewer flooding issues onsite were highlighted by UU or within the wider area (correspondence in **Appendix B** and **C** respectively).

4.8 Flood Risk Mitigation Measures & Residual Risks

4.8.1 The site is located within Flood Zone 1 and considered to be at little risk of fluvial/tidal flooding. To observe a conservative approach however, mitigation measures have been proposed below to safeguard the development with regards to other potential residual sources of flood risk and to consider the uncertainties of climate change in accordance with the NPPF and PPG.

Mitigation Measures

- 4.8.2 For 'more vulnerable' development located within Flood Zone 1, it is typical to set the Finished Floor Levels (FFL) of residential dwellings to a minimum of 150mm above the existing ground levels. By ensuring the FFLs are raised sufficiently above the external levels (following any re-grade) should mitigate any risk of flooding from a variety of sources, including groundwater and surface water run-off risks at the proposed development.
- 4.8.3 Any overland flows generated by the development must be carefully controlled. Safe avenues directing overland flow way from any existing and proposed buildings are advised. Some areas of the site are shown to be at higher risk from surface water, these areas correspond with the existing drainage ditches and pond features. It would be recommended that the existing drainage features be retained where practical and/or mimicked within the development to make allowance for natural conveyance through the proposals.
- 4.8.4 In accordance with LCC there is a requirement to maintain an easement from the existing Ordinary Watercourse for future maintenance. The LCC typically require an 8m easement to be maintained from the Top of Bank of Ordinary Watercourses into the development area. The easement should provide clear and unimpeded access for future maintenance including no fencing, walls or buildings. Ordinary Watercourses are also required to remain open channel where possible. Culverting of the watercourse for crossing purposes however, is typically accepted by LCC as occurred on Phase 1 of development, providing the culverting is kept to a minimum and follows LCC design requirements. Early discussion with LCC is advised to get approval of any culvert proposals.

- 4.8.5 To minimise the flood risk to the neighbouring properties it is recommended that the surface water run-off generated by the proposals be managed effectively with the peak rates of run-off being restricted to the equivalent of the pre-development situation (with betterment). The proposed onsite surface water drainage system will need to be sized to contain the 1 in 30yr return period event below ground with exceedance from storm events up to and including the 1 in 100yr return period storm event with a 40% allowance for climate change being contained onsite.
- 4.8.6 As with any drainage system blockages within either the foul or surface water system have the potential to cause flooding or disruption. It is important that should any drainage systems not be offered for adoption to either the Water Company or the Local Authority then an appropriate maintenance regime should be scheduled with a suitably qualified management company for these private drainage systems.

Residual Risks

4.8.7 If an extreme rainfall event exceeds the design criteria for the drainage system it is likely that there will be some overland flows that are unable to enter the system, it is important that these potential overland flows are catered for within the development site if the capacity of the drainage system is exceeded.

5.0 SURFACE WATER MANAGEMENT

5.1 Pre-Development Surface Water Run-off

- 5.1.1 Phase 2 & 3 of the development covers 10.66ha. The proposed development area (excluding areas onsite such as the POS areas and the area allocated for a new school) and will cover 6.24ha based on the proposed planning proposals. At present the development area is 100% permeable and is understood to drain naturally to the onsite Ordinary Watercourse, which ultimately outfalls into Higgin Brook located to the north of the site.
- 5.1.2 The peak rates and volumes of run-off generated by Phase 2 & 3's development area has been calculated for the peak events shown in **Table 1** (full details **Appendix J**). The surface water run-off rates have been calculated using the FEH Statistical Method.

		Run-Off	Rates		Run-Of	f Volumes
Site Area	1 In 1 Year	1 In 30 Year	1 In 100 Year	QBar	1 In 1 Year	1 In 100 Year
6.236ha	73.8I/s	144.3I/s	1 76.5l/s	84.9I/s	710.7cu.m	2178.7cu.m
Table 1: Pre-Development Surface Water Run-Off Rates (Betts Hydro, 2021)						

5.2 Post Development Surface Water Run-Off

5.2.1 At present the indicative proposals show the development area to cover 6.24ha of the wider site. Based on the planning layout we have estimated that the post-development impermeable areas will increase to approximately 45% of the development area. The unrestricted post-development run-off rates have been detailed in **Table 2**.

Sile Area	Run-Off Rates			
Site Area	1 In 1 Yr	1 In 30 Yr	1 In 100 Yr +CC	
2.806ha	150.2l/s	291.3I/s	488.5I/s	
Table 2: Post	-Development Un-Re	stricted Run-Off Rates	(Betts Hydro, 2021)	

5.2.2 In accordance with national and local planning policies it is necessary to restrict surface water run-off rates where at all practical to mimic a pre-development greenfield situation. The proposals will therefore be to discharge surface water run-off from site mimicking the pre-development greenfield situation (**Table 1**). Further details of proposed drainage strategy can be found in Section 5.6.

5.3 Sustainable Drainage Systems (SuDS)

- 5.3.1 Sustainable Drainage Systems (SuDS) can address the four key sustainability objectives including: water quantity, water quality, amenity and biodiversity. Peak surface water discharge rates to watercourses and sewers should be appropriately managed and where possible reduced. Preference should always be given to SuDS over the traditional methods of buried sewers wherever possible and practical.
- 5.3.2 It would be beneficial to implement wider green space/Public Open Space area(s) in one or more locations within site, where SuDS features could be implemented. Multiple

benefits to using SuDS include the improvement of bio-diversity, aesthetics, ecology and water quality. Opportunities should also be taken to provide soft landscaping where at all possible on site to assist in minimising surface water run-off.

5.3.3 Given the indicative layout, there may be the opportunity to incorporate SuDS methods such as swales and ponds (**Figure 5**) within the non-developed areas, to provide a degree of treatment before flows are carried offsite. It would also be recommended that permeable paving and bio-filtration be considered in non-adopted areas where at all feasible; to assist locally with surface water management (subject to optimum ground conditions). If infiltration is not feasible then a connection into the main drainage systems would be needed.

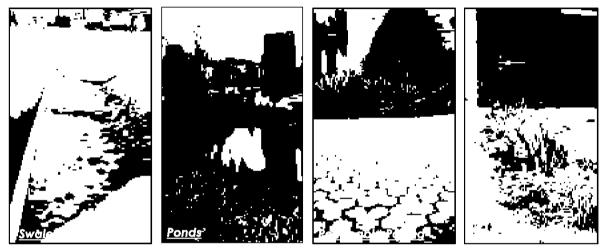


Figure 5: SuDS Photographs (SusDrain, 2012)

5.3.4 Promoting SuDS to deal with surface water at the source, will limit the required attenuation and in turn reduce the volume of surface water in the nearby watercourse and sewer infrastructure. There may be the potential to utilise SuDS features for conveyance/attenuation of surface water flows within the proposed drainage strategy, opposed to the traditional below ground storage methods. Detailed design should confirm whether this site would be suitable for incorporation of SuDS following more detailed analysis of levels, ground conditions and attenuation requirements.

5.4 Methods of Surface Water Management

- 5.4.1 At present the development area for Phase 2 & 3 covers 6.24ha and the proposed impermeable area is assumed to increase from 0% to 45%. There are three methods that have been reviewed for the management and discharge of surface water. These may be applied individually or collectively to form a complete strategy and should be applied in the order of priority listed below:
 - Discharge via infiltration
 - Discharge to watercourse
 - Discharge to public sewerage system

5.5 Discharge via Infiltration

- 5.5.1 Any impermeable areas that can drain to soakaway or an alternative method of infiltration would significantly improve the sustainability of any surface water systems.
- 5.5.2 The Cranfield Soil and AgriFood Institute (CSAI), Soilscapes viewer identifies the soils to be slowly permeable, seasonally wet, slightly acid but base-rich loamy and clayey. The British Geology Survey (BGS) mapping data indicates that the bedrock geology consists of a mixture of Bowland Shale Formation (Mudstone) and Pendleside Sandstone Member (Sandstone) and has superficial deposits associated with Till and Devensian.
- 5.5.3 Based on the ground conditions identified by the published online datasets, it can be considered that infiltration would not likely provide a viable drainage solution for the development site due to the impermeable strata. A ground investigation report (Ref: STN3505NM-G01) was also undertaken for Phase 1 and identified soakaways were not suitable to be used as a method for managing surface water run-off. Infiltration rates however, vary on a site by site basis and therefore it would be recommended further investigation in the form of Soakaway Testing to BRE365, takes place within Phase 2 & 3 areas upon planning approval, to confirm these areas are also not suitable for an infiltration-based solution.

5.6 Discharge to Watercourse

- 5.6.1 Assuming infiltration is not suitable for managing all the surface water run-off generated by the development, the next method in the drainage hierarchy is discharge surface water to a watercourse. As previously mentioned, most of the site naturally drains into the Ordinary Watercourse crossing the development site.
- 5.6.2 The surface water run-off generated by the development is therefore proposed to mimic the existing situation and discharge into the existing Ordinary Watercourse crossing the development site, as illustrated in the preliminary drainage proposals plan (Figure 6). This approach is similar to that proposed and agreed for the earlier Phase 1 and mimics the existing situation through the current mechanisms of run-off management.
- 5.6.3 Detailed design will need to be carried out to confirm whether a site wide gravity solution can be achieved. Although, the site naturally drains to the Ordinary Watercourse at present, when the development proposed levels are considered and formal connections made. It is likely that multiple surface water outfalls will be required to accommodate the layout proposals, the specifics will be confirmed during detailed design.
- 5.6.4 Consents will be required from LCC who are the LLFA and responsible in part for Ordinary Watercourses in terms of proposed works. Consent would be required for any new outfall structures on the Ordinary Watercourse, and any culverting (to accommodate crossings shown on the layout). Agreement would also be required for the proposed rates of discharge to the Ordinary Watercourse, to ensure no increase risk to others result from the site.

Land off Chipping Lane, Longridge Flood Risk Assessment and Drainage Management Strategy

- CONSULTING ENGINEERS
- 5.6.5 In accordance with the LCC, there is a requirement to maintain an easement from existing Ordinary Watercourses and Main Rivers. The EA and LCC both require an 8m easement to be maintained from the Top of Bank of the watercourse into the development area. The easement should provide clear and unimpeded access for future maintenance no fencing, walls or buildings should be present within the designated easement as shown within the proposed planning layout.

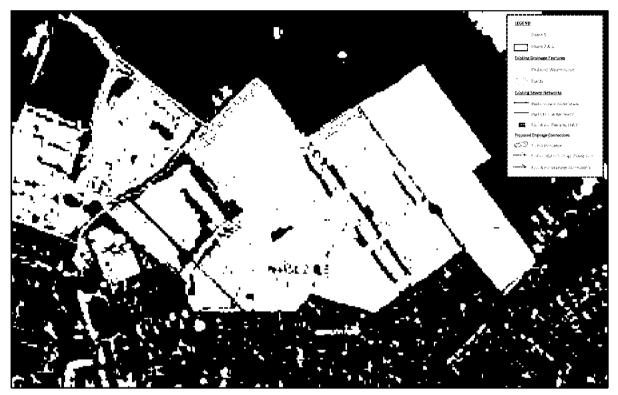


Figure 6: Preliminary Proposed Drainage Plan extract (Betts Hydro, 2021)

5.6.6 In accordance with the SuDS Manual (CIRIA 753) and the Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015) all sites should endeavour to achieve as close to pre-development greenfield rates as is viable. Based on the development area, the pre-development greenfield rate (QBar) is calculated to be 84.91/s using the FEH Statistical Method (see summary in **Appendix J**). The proposals are therefore to restrict surface water run-off to mimic a pre-development greenfield situation. The overall rate of discharge would need to be proportioned between the number of outfalls where necessary. This will be confirmed during detailed design, when the drainage technical detailed are reviewed.

Impermeable Area (2.806ha)	1 in 1 Year	1 in 30 Year	1 In 100 Year + 30% CC
Restricted Run-Off Rate	84.9I/s	84.9I/s	84.9I/s
Estimated Stormwater	117cu.m-290cu.m	515cu.m-853cu.m	1113cu.m-1720cu.m
Storage Volume			
Table 4: Estimated	l Stormwater Storag	e Requirements (Bet	ts Hydro, 2021)

5.6.7 It would be beneficial to implement SuDS features where at all feasible, subject to ground investigation and a detailed levels review. If designed appropriately the SuDS features such as a pond/basin could potentially aid in the attenuation requirements for the proposals (if located appropriately) and provide added benefits in terms of water

quality improvements. Detailed design will be required to confirm whether SuDS can be incorporated, at present indicative proposals allow for the inclusion of SuDS, including a pond/basin at multiple outfall points proposed.

5.7 Discharge to Public Sewer Network

5.7.1 UU sewer records identify there to be a public surface water sewer (375mm.dia) which presently crosses the development site from the southern boundary towards Phase 1. Should infiltration not be feasible then the surface water flows generated are proposed to discharge to the existing Ordinary Watercourse crossing the site and not the existing sewer network.

5.8 Climate Change

- 5.8.1 There are indications that the climate in the UK is changing significantly and it is widely believed that the nature of climate change will vary greatly by region. Current expert opinion indicates the likelihood that future climate change would produce more frequent short duration and high intensity rainfall events with the addition of more frequent periods of long duration rainfall. It is believed that the impact of climate change means there is likely to be a long-term increase in the average sea levels, with an expectation that sea levels will rise gradually. An increase in flood water levels means that future flooding events will occur more frequently and will have a greater impact.
- 5.8.2 In light of the future uncertainties Climate Change should be accounted for within the design of all new developments. The recently published Environment Agency document 'Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities' supersedes Defra's policy statement on Flood Risk and Coastal Erosion Risk Management (2009) and should be used for future proposals. Climate change factors have been considered and any increase in the level of flood risk (to the site) from climate change is likely to be related to the increase in rainfall intensity and duration and its impact upon the surface water drainage system.
- 5.8.3 The site is subject to an existing outline approval (Ref: 3/2014/0764) and the design of Phases 2 & 3 of this development will conform to the criteria already agreed and embedded in the approved planning documentation. The Climate Change factor that has been considered for an increase in rainfall intensity is 30%

6.0 FOUL WATER MANAGEMENT

- 6.1 Due to the existing land-use onsite, no existing foul water connections to the public sewer network are present. Review of the UU sewer records identifies a foul water pumping station onsite adjacent to the southern boundary. This pumping station has been accounted for within the planning proposals and a public foul water sewer (375mm.dia) associated with the pumping station has been identified onsite adjacent to the southern boundary (see sewer records in **Appendix C**).
- 6.2 Phase 1 has a separate approved drainage management strategy (REF: HYD068_CHIPPING.LANE_FRA&DMS) was detailed in the approved supporting FRA&DMS, which shows foul from this portion of development will outfall into the foul water system located within Inglewhite Road to the south-east of Phase 1 (**Appendix C**).
- 6.3 Based on the proposals for the construction of up to 198no. residential units for Phase 2
 & 3, the approximate peak foul water flows generated by the development are 9.2l/s.
 This is based on 4000 litres per dwelling per 24 hours; the guidance contained within Sewers for Adoption (SfA).
- 6.4 The proposals are therefore to connect flows from Phase 2 & 3 to the foul water pumping station within Phase 1 which ultimately connects into the public sewer network within Inglewhite Road. The pumping station within Phase 1 has been designed to also accommodate flows from Phase 2 & 3 however, formal consent is still required from UU approving this connection, discussion with UU shown in **Appendix C**.
- 6.5 A pre-development enquiry was sent to UU in 2018, and an agreement in principle was confirmed allowing foul water to discharge at an unrestricted rate into the 300mm dia. public foul water sewer within Inglewhite Road. It is understood that this response has now expired and therefore a new pre-development enquiry has been sent to UU; however, a response is currently outstanding.
- 6.6 Detailed design will confirm the full technical details based on the engineering constraints. Consent from UU will be required for works to the public sewer infrastructure. It is recommended that early discussion is undertaken to confirm acceptance of the strategy and identify any additional considerations such as preferred point of connection and capacity constraints. Initial discussion has been carried out to get an agreement in principle at this time.

7.0 SUMMARY AND CONCLUSIONS

7.1 This Flood Risk Assessment and Drainage Management Strategy was commissioned by Barratt Homes referred to hereafter as 'the client'. This report has been prepared to support a full planning application for the construction of a residential development on land to the east of Chipping Lane in Longridge. Phase 1 has planning approval (Ref: 3/2014/0764) and is supported by a separate, approved Flood Risk Assessment and Drainage Management Strategy (HYD068_CHIPPING.LANE_FRA&DMS). This assessment therefore focuses on the residential development proposed as part of Phase 2 & 3 only. Phase 2 & 3 collectively cover 10.66ha, although the proposed development area covers a smaller portion at 6.24ha.

Flood Risk

- 7.2 The site is located wholly within Flood Zone 1 based on the Environment Agency Flood Map for Planning. The proposals are for a residential-led development, which is considered 'More Vulnerable' in Table 2: Flood Risk Vulnerability Classification within Planning Practice Guidance. This 'More Vulnerable' development is confirmed to be appropriate within Flood Zone 1, providing there is no increase in flood risk elsewhere due to the proposals.
- 7.3 Consultations with the Environment Agency, Ribble Valley Borough Council, Lancashire County Council and United Utilities have been undertaken and did not identify any historical incidents of flooding to the site or within the neighbouring areas. This assessment has considered all sources of flood risk, this includes the existing Ordinary Watercourse crossing the site which is understood to outfall into Higgin Brook 1km north of the site. As part of Phase 1, hydraulic modelling of the Ordinary Watercourse was undertaken to determine the potential flow risks associated with the proposed culverting the Ordinary Watercourse for vehicular crossing as part of Phase 1. The outcomes of the modelling exercise evidenced the risk to the proposals from the existing Ordinary Watercourse is low. The full Hydraulic Assessment has been appended to this assessment for full details. To summarise the proposed Phase 2 & 3 development area will, following the implementation of mitigation measures remain flood free in all key storm events, including the 1 in 100-year (1% AEP) plus Climate Change event without having any impact on the neighbouring land/properties.
- 7.4 The site is at 'very low' to 'low' flood risk from the reviewed sources of flooding. The primary source of flood risk is considered to be from surface water where the risk varies across the site from 'very low' to 'high' within the natural low-lying areas of site. The risks post-development from surface water will be effectively managed through implementation of the mitigation measures proposed within this assessment, including appropriate ground levels design and inclusion of a suitable surface water management infrastructure. To minimise flood risk from surface water it would also be recommended that natural drainage routes through the site be maintained within the southern boundary to the north.

Drainage Strategy

7.5 To ensure surface water flood risk to others does not increase, it is important to ensure surface water run-off is appropriately managed in accordance with the sustainable drainage hierarchy. Three methods have therefore been reviewed for the appropriate

CONSULTING ENGINEERS

management of surface water run-off. These have been applied in the order of priority being; discharge via infiltration, to a watercourse and finally to public sewerage system.

- 7.6 Based on the ground conditions identified by the published online datasets, infiltration is not considered to provide a viable drainage solution for the development due to the impermeable strata. A ground investigation report (Ref: STN3505NM-G01) was also undertaken for Phase 1 and identified soakaways were not suitable to be used as a method for managing surface water run-off. As infiltration rates can vary on a site by site basis, the Local Planning Authority may still require onsite Soakaway Testing to be undertaken to evidence this is true for Phase 2 & 3, prior to full commencement of works.
- 7.7 Assuming infiltration is not feasible, the next method in the drainage hierarchy should be discharge to a watercourse. Most of the site naturally drains to the Ordinary Watercourse crossing the site at present and the proposals are therefore to mimic the existing situation, discharging surface water run-off from the site to the watercourse using the existing onsite features where practical. Detailed design will need to confirm feasibility of a site wide gravity solution, although this is anticipated as most of the site naturally drains in this manner at present. It is assumed that multiple outfalls to the watercourse will be required given the scale of the development and formal consents will be required from Lancashire County Council for any works to the Ordinary Watercourse, including agreement of the proposed discharge rates and points of connection.
- 7.8 In accordance with the SuDS Manual and the Non-Statutory Technical Standards for Sustainable Drainage Systems, all sites should endeavour to achieve as close to predevelopment greenfield rates as viable. The proposals are to therefore discharge to the watercourse crossing the site mimicking pre-development greenfield situation, QBar is calculated to be 84.91/s and will need to be proportioned between the multiple proposed points of outfall. Restricting the rate of discharge will generate an onsite stormwater storage requirement which will be catered for on the site prior to discharge to the watercourse. It would be beneficial to implement SuDS features including permeable surfaces and bio-filtration where at all feasible (subject to ground investigation and contamination review). Given the scale of development it is proposed that pond/basin features be included onsite near to the proposed outfall location(s). If designed appropriately the SuDS features could potentially aid in the attenuation requirements for the proposals and provide added benefits in terms of water quality. Detailed design will be required to confirm whether SuDS can be incorporated.
- 7.9 This Flood Risk Assessment and Drainage Management Strategy has been prepared in consultation with the relevant interested parties and incorporates their comments where possible. The report is commensurate with the scale and nature of the development proposals and in summary, the development can be considered appropriate in accordance with the Planning Practice Guidance.

8.0 **RECOMMENDATIONS**

- 8.1 For 'more vulnerable' development located within Flood Zone 1, it is typical to set the Finished Floor Levels (FFL) of residential dwellings to a minimum of 150mm above the existing ground levels. By ensuring the FFLs are raised sufficiently above the external levels (following any re-grade) should mitigate any risk of flooding from a variety of sources, including groundwater and surface water run-off risks at the proposed development.
- 8.2 Any overland flows generated by the proposed development must be controlled, safe avenues directing overland flow away from any existing and proposed buildings are advised. As with any development it is also advised that external levels fall away from property to minimise the flood risk from a variety of sources.
- 8.3 In accordance with LCC there is a requirement to maintain an easement from the existing Ordinary Watercourse for future maintenance. The LCC typically require an 8m easement to be maintained from the Top of Bank of Ordinary Watercourses into the development area. The easement should provide clear and unimpeded access for future maintenance including no fencing, walls or buildings. Ordinary Watercourses are also required to remain open channel where possible. Culverting of the watercourse for crossing purposes however, is typically accepted by LCC as occurred on Phase 1 of development, providing the culverting is kept to a minimum and follows LCC design requirements. Early discussion with LCC is advised to get approval of any culvert proposals.
- 8.4 To minimise the flood risk to the neighbouring property and proposed dwellings it is proposed that the surface water run-off generated by the proposals be managed effectively with the peak rates of run-off being restricted to the equivalent of the predevelopment situation
- 8.5 Detailed drainage design will be required to refine the drainage strategy following more in-depth levels and layout review. Early discussion with all relevant parties including the EA, LCC, RVBC and UU is advised for any proposed works. Consents will be required from LCC who are the LLFA and therefore in charge of the Ordinary Watercourses in terms of proposed works. Consent would be required for any new outfall structures on the Ordinary Watercourse, and any culverting (to accommodate crossings shown on the layout). Agreement would also be required to agree the proposed rates of discharge to the Ordinary Watercourse.
- 8.6 The proposed onsite surface water drainage system will need to be sized to contain the 30yr return period event wholly below ground with overland run-off from storm events up to and including the 1 in 100yr return period storm event with a 40% allowance for climate change being contained onsite.
- 8.7 It is important that should any drainage systems not be offered for adoption to either the United Utilities or Lancashire County Council then an appropriate maintenance regime should be scheduled with a suitably qualified management company for these private drainage systems.

BIBLIOGRAPHY & REFERENCES

Adapting to Climate Change: Advice for Flood and Coastal Erosion Risk Management Authorities – Environment Agency/DEFRA 2016

CIRIA 522: Sustainable urban drainage systems – design manual for England and Wales (2000). CIRIA 523: Sustainable urban drainage systems – best practice manual (2001).

CIRIA 609: Sustainable drainage systems. Hydraulic, structural and water quality advice (2004).

CIRIA 624: Development and flood risk - guidance for the construction industry (2004).

CIRIA 635: Designing for Exceedance in urban drainage: Good practice (2006).

CIRIA 644: Building Greener (2007).

CIRIA 753: The SUDS manual (2015).

Flood Risk to People - Phase 2 (FD2321/TR2), DEFRA and the Environment Agency (2006).

Flood estimation for small catchments: Institute of Hydrology Report No.124, NERC (1994).

Flood Estimation Handbook, Centre for Ecology and Hydrology (1999).

Planning Policy Statement 25: Development and Flood Risk (2006).

Sewers for Adoption 7th Edition, WRc (2012).

National Planning Policy Framework, Ministry of Housing, Communities and Local Government (2018).

Web-based References

Bingmaps - http://www.bing.com/Maps/

British Geological Survey – http://www.bgs.ac.uk/opengeoscience/home.html

Chronology of British Hydrological Events - www.dundee.ac.uk/

CIRIA - http://www.ciria.org/

Cranfield University - http://www.landis.org.uk/soilscapes/

Environment Agency - www.environment-agency.gov.uk/

FloodProBE - http://www.floodprobe.eu/

Flood Forum - http://www.floodforum.org.uk/

Flood London - http://www.floodlondon.com/

Google Maps - http://maps.google.co.uk/

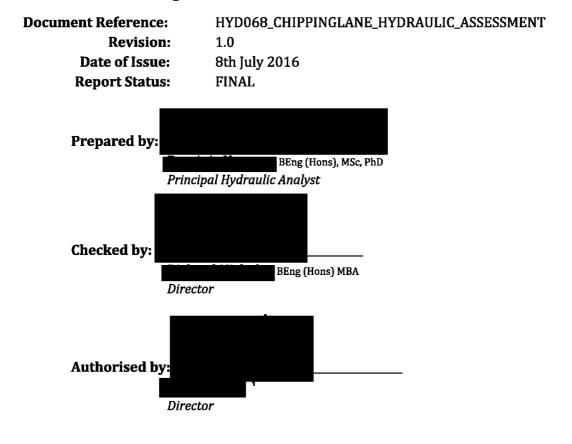
Streetmap - http://www.streetmap.co.uk/

United Utilities - https://www.unitedutilities.com/

Appendix C Hydraulic Assessment

LAND AT CHIPPING LANE, LONGRIDGE

HYDRAULIC ASSESSMENT


For Barratt Homes Manchester 4 Brindley Road, City Park, Manchester, M16 9HQ.

July 2016

LAND AT CHIPPING LANE, LONGRIDGE

HYDRAULIC ASSESSMENT

Document Tracking Sheet

Revision History:

Rev.:	Date:	Status:	Prepared by:	Checked by:	Issued by:
1.0	04/07/16	Final	DK	RN	DK

where better regime address made

CONTENTS

Docum	ient Tra	cking Sheet	iii		
Figure	s & Tabl	es	vi		
Special	list Softv	vare	vi		
Abbrev	viations	& Acronyms	vi		
1.0	EXISTI	NG SITE SITUATION	7		
2.0	DEVEL	OPMENT PROPOSALS	8		
3.0	САТСН	MENT DESCRIPTORS	9		
	Import	ant Catchment Descriptors: All sub-catchments	9		
4.0	HYDRO	DLOGY	11		
5.0		ULIC MODELLING			
Model	Assump	tions	. 13		
Model	Results		. 13		
	Existin	g Scenario	13		
	Propos	ed Scenario	13		
	Sensiti	vity Testing	13		
6.0	LOW F	LOW ANALYSIS	17		
7.0	CONCL	USIONS	21		
BIBLIC	OGRAPH	IY & REFERENCES	22		
Web-b	ased Re	ferences	22		
APPEN	IDIX A:	LOCATION PLAN	. 23		
		INDICATIVE PLANNING LAYOUT			
APPEN	IDIX C:	FEH CATCHMENT DATA & DESCRIPTIONS	. 30		
APPEN	IDIX D:	REVITALISED FLOOD HYDROGRAPH METHOD OUTPUTS [PEAK FLOW			
ESTIM					
APPEN		ISIS OUTPUTS: EXISTING SCENARIO SCHEMATIC, LONG-SECTION AND CROSS			
SECTIO		ISIS OUTDUTS, DOODOSED SCENADIO SCUEMATIC I ONS SECTION AND SDO			
APPEN SECTIO		ISIS OUTPUTS: PROPOSED SCENARIO SCHEMATIC, LONG-SECTION AND CRO			
		FLOOD MODELLER OUTPUTS: SENSITIVITY TESTING			
		NOTES OF LIMITATIONS			

.----

Figures & Tables

Figure 1: Aerial Photograph of site (proposed development area edged in red)	7
Figure 2: Indicative Planning Proposals	8
Figure 3: Upstream Sub-catchments	9
Table 1: Sub-catchment specific characteristics	10
Table 2: ReFH Peak Flow Estimates	11
Figure 4: ISIS Model Schematic	12
Figure 5: Proposed ISIS model schematic with new crossing	14
Table 3: Peak 20%, 3.3%, 1% and 0.1% AEP existing water levels	15
Table 4: Peak 20%, 3.3%, 1% and 0.1% AEP proposed water levels	16
Figure 6: Soil HOST map classification	
Figure 7: FEH CD-ROM catchment	18
Table 5: Flow duration	
Figure 8: Flow Duration Curve	19
Figure 9: Typical cross section	20

Specialist Software

- + Flood Estimation Handbook FEH CD-ROM (v.3.0) Determination of Catchment Descriptors and depths of rainfall.
- ↓ ISIS (3.7) 2013 1D Hydraulic Model

Abbreviations & Acronyms

AEP	Annual Exceedance Probability	mAOD	Metres Above Ordnance Datum
BGL	Below Ground Level	NGR	National Grid Reference
СС	Climate Change	NPPF	National Planning Policy Framework
EA	Environment Agency	os	Ordnance Survey
FEH	Flood Estimation Handbook	PFRA	Preliminary Flood Risk Assessment
FRA	Flood Risk Assessment	PPS	Planning Policy Statement
FZ	Flood Zone	SFRA	Strategic Flood Risk Assessment
На	Hectare	LCC	Lancashire County Council
LLFA	Lead Local Flood Authority	TWL	Top Water Level
LPA	Local Planning Authority	UU	United Utilities

.----

1.0 EXISTING SITE SITUATION

- 1.1 The proposed development site is located on land at Chipping Lane, Longridge and is directly accessed off Chipping Lane. The Ordnance Survey National Grid Reference (OS NGR) for the site is Eastings 360073, Northings 437980 and the nearest postcode is PR3 2NA.
- 1.2 The proposed development area is edged in red Figure 1 (below). A location plan is included Appendix A.

Figure 1: Aerial Photograph of site (proposed development area edged in red)

- 1.3 Two small watercourses enter the site from the south east and south west and flow in a north westerly direction, leaving the site via 600mm diameter culvert outfall by Chipping Lane north of the site.
- 1.4 The Environment Agency flood zone maps indicated that the site is entirely within Flood Zone 1, implying that the site is at low risk of fluvial flooding.
- 1.6 From a flood risk perspective it was considered prudent to undertake a hydraulic assessment of the watercourse to assess the peak water levels in the watercourse in both the existing and the post development scenarios.

2.0 DEVELOPMENT PROPOSALS

2.1 The initial proposals are a residential development within the red edge boundary indicated in Figure 2 and in Appendix B.

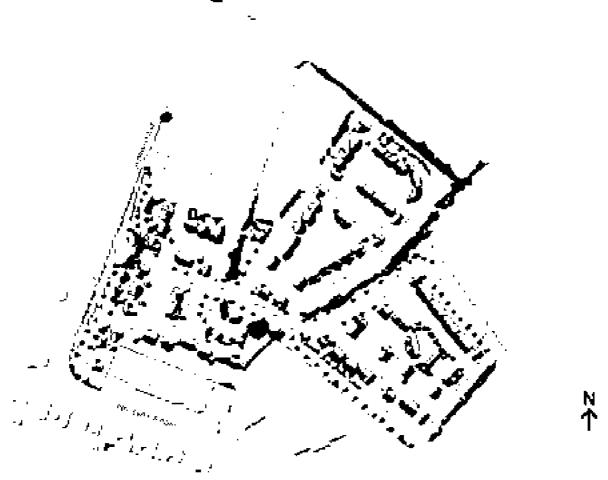


Figure 2: Indicative Planning Proposals

3.0 CATCHMENT DESCRIPTORS

3.1 The Flood Estimation Handbook (FEH) CD-ROM provided catchment descriptors for Higgin Brook upstream of a point north of the development site. Three smaller subcatchments (Sub A, Sub B and Sub C) upstream of the 600mm culvert were identified using LiDAR data.

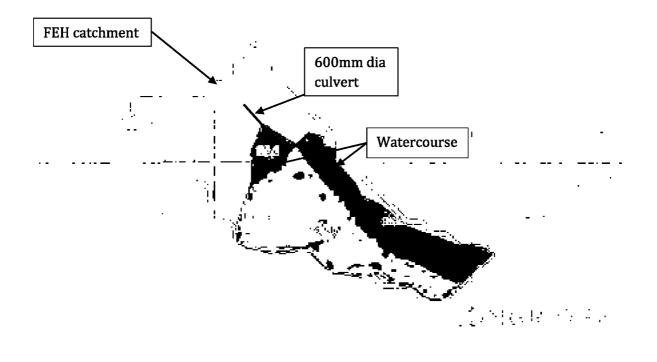


Figure 3: Upstream Sub-catchments

3.2 The FEH Catchment descriptors are summarised below and included in full in Appendix C.

Important Catchment Descriptors: All sub-catchments

DPSBAR (m/km)	22.3	Mean slope between nodes (m/km)
SAAR (mm)	1200	Standard annual average rainfall – 1961-1990
FARL	1.00	Flood attenuation due to reservoirs/lakes (no attenuation)
BFIHOST	0.417	Baseflow index from Hydrology of Soil Types
SPRHOST	35.03	Standard percentage runoff from soil types
PROPWET	0.51	Proportion of time catchment is wet
URBEXT1990	0.1643	Urban extent in 1990 (essentially rural)

3.3 The areas for the sub-catchments were calculated using GIS and mean drainage path length (DPLBAR) was calculated using formula 7.1 from the FEH Volume 5: Catchment Descriptors as follows: *DPLBAR = AREA*^{0.548}. The sub-catchment areas and DPLBAR values are shown in Table 1.

0.093	0.272
0.200	0.414
0.022	0.123
 •	

Table 1: Sub-catchment specific characteristics

.----

- 4.1 The Revitalised Flood Hydrograph (ReFH) method was applied for each sub-catchment based on catchment descriptors. The URBEXT₁₉₉₀ <0.5 and BFIHOST<0.65 for all sub-catchments, therefore the use of the ReFH method is appropriate.
- 4.2 This study has considered the 1 in 5 year (20% AEP), 1 in 30 year (3.3% AEP), 1 in 100 year (1% AEP) and the 1 in 100 year (1% AEP) plus climate change (CC) return period flows in the watercourses.
- 4.3 These are considered to represent conservative flow estimates (i.e. adopts the precautionary approach). The site is considered to be predominantly greenfield and the catchment characteristics from the FEH CD-ROM were utilised. The peak flow estimates are shown in Table 2 below. Full details are shown in Appendix D.

0.11	0.18	0.24	0.29						
0.20	0.32	0.45	0.54						
0.03	0.06	0.08	0.10						
Table 2: ReFH Peak Flow Estimates									

- 4.4 The critical storm duration for the largest sub-catchment (Sub B) was 1.065 hours. It was assumed that the same storm would occur in all sub-catchments, as they are adjacent to one another.
- 4.5 The full hydrographs for all sub-catchments in all return periods are shown in Figures D.1 to D.10 in Appendix D.

5.0 HYDRAULIC MODELLING

Model Details

- 5.1 An unsteady state 1D model of the watercourse was developed using ISIS for the existing and the proposed development scenarios.
- 5.2 A topographical survey of the site and watercourse was undertaken and a 3D ground model was generated. Cross sections through the watercourse were generated from the ground model at locations shown in the model schematics shown in Figure 4. The cross sections (Figures E.1 to E.30) and watercourse profile (Figure E.15) are included in Appendix E.
- 5.3 The watercourse was modelled in the existing scenario for the 20%, 3.3%, 1% and 1% plus climate change AEP events.

Figure 4: ISIS Model Schematic

- 5.4 Roughness coefficient allocation was based on aerial imagery. The watercourse channel is straight with some vegetation and as such the channel was assigned a roughness Manning's n value of 0.04 (refer to photographs in Appendix H).
- 5.5 There are seven structures within the modelled reach of the watercourse:
 - 4 no. 300mm diameter pipes;
 - 1 no. 525mm diameter pipe;
 - 1 no. 575mm diameter pipe;

- 1 no. 600mm diameter pipe.
- 5.6 Overtopping of the bridges has been modelled in 1-D using a spill unit.

Model Assumptions

- 5.7 The cross sections were generated from a 3D ground model and so the profile of the channel may not be as true as if cross sections had been specifically surveyed. In some cases, the top water level on the date of the survey may have been used as the bed level. This approach is, however, conservative.
- 5.8 The diameters of pipes at cross sections 4, 9 and 15 have been assumed to be 300mm due to surveyed information not being available.

Model Results

Existing Scenario

- 5.7 The hydraulic modelling results including longitudinal profile and cross sections (including peak water levels) are included in Appendix E. Peak water levels for the 20%, 3.3%, 1% AEP and 1% AEP plus climate change events for the existing scenario are shown in Table 3.
- 5.8 The results show that water levels remain in bank for most of the reach in all AEPs. The peak water level is out of bank at the inlet to the 600mm diameter culvert.

Proposed Scenario

- 5.9 A 600mm diameter pipe, approximately 26m long, was inserted upstream of cross section number 26 to simulate a proposed crossing. The location of the new crossing is shown in Figure 5.
- 5.10 The hydraulic modelling results including longitudinal profiles and cross sections (including peak water levels) are included in Appendix F. Peak water levels for the 20%, 3.3%, 1% AEP and 1% AEP plus climate change events for the existing scenario are shown in Table 4.
- 5.11 Comparison of the existing and post development levels in the 1% AEP plus climate change event shows that peak levels remain largely unchanged, although with some small increases in places. The largest increase is of 27mm at cross section 26/26A, upstream of the proposed new culvert. There is also an increase of 25mm at cross section 25. These increases are relatively small and do not increase flood risk or the likelihood of surcharging of surface water outfalls.

Sensitivity Testing

5.12 Sensitivity testing was carried out on certain key model parameters to determine the effects on the simulated flows and water levels due to controlled changes in accordance with best practice.

- 5.15 The flow rate was increased by 20% and Manning's n values (channel roughness) were increased and decreased by 20%. These were all undertaken on the 1% AEP flow event (refer to Appendix G for the full sensitivity analysis results).
- 5.16 The increase in Manning's roughness coefficient, n, resulted in a mean increase in level of 0.022m and a maximum increase of 0.043m, occurring at cross section CS32 at the confluence of sub-catchments A and B. Reducing roughness coefficient by 20% had the effect of maximum decrease in water level of 0.057m. The mean effect was to reduce peak water levels by 0.021m.
- 5.17 Increasing flow by 20% resulted in a mean increase in peak water level of 0.073m and a maximum of 0.323m occurring at cross section CS07.
- 5.19 The sensitivity analysis has shown that water levels are not particularly sensitive to changes in channel roughness, with all mean and maximum changes within +/- 0.057m. When the 1% flow was increased by 20%, there were some isolated relatively large increases in water level, the maximum being 0.323m. The mean change was 0.073m and the change throughout most of the modelled reach was less than 0.100m.
- 5.20 The sensitivity due to these parameters should be taken into account when setting design levels.

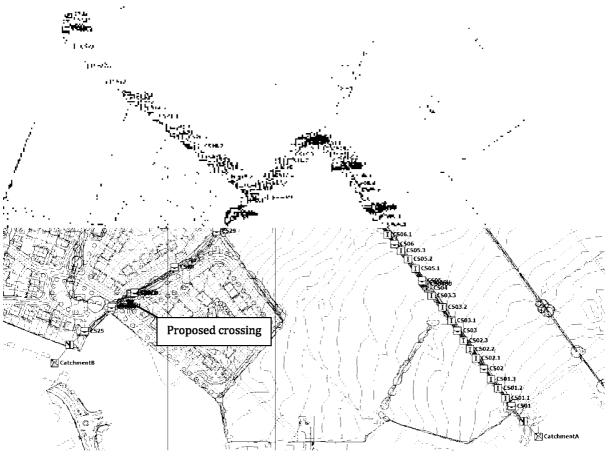


Figure 5: Proposed ISIS model schematic with new crossing

	115.96	116.02	116.06	116.10
	114.79	114.85	114.89	114.92
	113.39	113.45	113.51	113.53
	112.38	112.66	112.88	112.92
	111.36	111.40	111.44	111.47
	109.89	109.92	109.97	110.00
	108.37	108.65	109.08	109.40
	107.86	107.91	107.95	107.97
	107.26	107.51	107.59	107.62
	106.88	106.92	106.97	106.99
	106.39	106.44	106.49	106.51
	105.60	105.85	106.15	106.23
	105.58	105.84	106.15	106.23
	105.14	105.19	105.22	105.25
	103.91	103.92	103.94	103.95
	103.40	103.45	103.50	103.52
	103.40	103.45	103.50	103.52
	102.81	102.88	102.93	103.14
	102.52	102.63	102.84	103.14
	102.40	102.58	102.83	103.14
	101.30	101.39	101.44	101.45
	101.22	101.31	101.35	101.36
	105.85	105.93	106.03	106.13
	105.61	105.76	105.91	106.06
	105.09	105.19	105.27	105.31
	104.81	104.85	104.89	104.92
	104.14	104.23	104.34	104.40
	103.99	104.14	104.27	104.35
	103.63	103.72	103.81	103.85
	103.40	103.45	103.50	103.52
Та	ble 3: Peak 20%. 3.3	3%. 1% and 0.1% AE	P existina water lev	vels

Table 3: Peak 20%, 3.3%, 1% and 0.1% AEP existing water levels

.----

	115.96	116.02	116.06	116.10
	114.79	114.85	114.89	114.92
	113.39	113.45	113.51	113.53
	112.38	112.66	112.88	112.92
	111.35	111.40	111.45	111.47
	109.89	109.92	109.97	110.00
	108.37	108.65	109.08	109.40
	107.86	107.91	107.95	107.97
	107.26	107.50	107.59	107.62
	106.88	106.92	106.97	106.99
	106.39	106.44	106.49	106.51
	105.60	105.85	106.15	106.23
	105.58	105.84	106.15	106.23
	105.14	105.19	105.22	105.25
	103.91	103.92	103.94	103.95
	103.40	103.45	103.50	103.53
	103.40	103.45	103.50	103.53
	102.81	102.88	102.93	103.15
	102.52	102.63	102.84	103.14
	102.41	102.58	102.83	103.14
	101.30	101.39	101.44	101.45
	101.22	101.31	101.35	101.36
	105.86	105.95	106.06	106.15
	105.67	105.81	105.97	106.09
	105.09	105.19	105.28	105.31
	104.81	104.85	104.89	104.92
	104.14	104.24	104.34	104.41
	103.99	104.14	104.28	104.36
	103.63	103.72	103.81	103.86
	103.40	103.45	103.50	103.53
Та	ble 4: Peak 20%. 3.3	%. 1% and 0.1% AEI	P proposed water le	vels

Table 4: Peak 20%, 3.3%, 1% and 0.1% AEP proposed water levels

.----

6.0 LOW FLOW ANALYSIS

- 6.1 In order to determine a typical water level above which to set the levels of the surface water outfalls, a low flow analysis was undertaken in accordance with the Institute of Hydrology Report number 108 (IH 108). The analysis included the soil HOST classification, the UK Hydrometric Register and the Flood Estimation Handbook (FEH) CD-ROM.
- 6.2 An extract from the soil HOST maps is shown in Figure 6, indicating that the soil classification for the catchment is 711m.

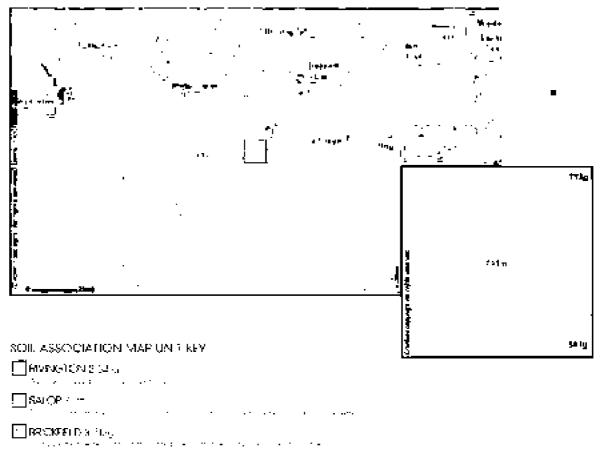


Figure 6: Soil HOST map classification

6.3 The FEH CD-ROM gives the Catchment Area = 0.52km² and standard average annual rainfall, SAAR = 1200mm. The FEH catchment is shown in Figure 7.

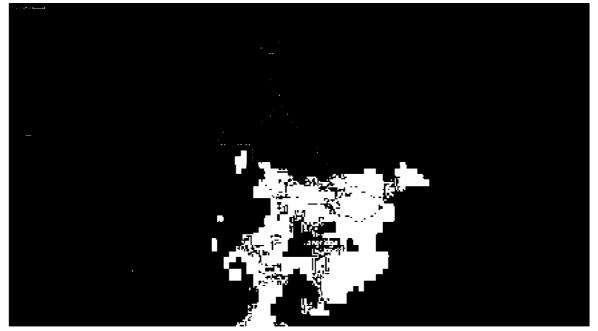


Figure 7: FEH CD-ROM catchment

6.4 From UK Hydrometric Register River Hodder @ Hodder Place (Station Number 71008):

Potential evaporation, PE = 600mm

6.5 From Institute of Hydrology (IH) report 108, section 7.3.2:

Annual Average Runoff Depth (AARD) = SAAR – Losses Losses = r x PE where r=1 for SAAR>= 850mm

AARD = 1200 - 600 AARD = 600mm

Convert AARD to Mean Flow (MF)

MF = AARD x AREA x (3.17 x 10⁻⁵) MF = 600 x 0.52 x 3.17 x 10⁻⁵ MF = 0.0099 m³/s

6.6 From IH 108 Appendix 4

Soil type 711m gives the 95 percentile 1-day flow, Q95(1), of 10.7% of mean flow, therefore

Q95(1) = MF x 10.7/100 Q95(1) = 0.0011 m³/s

6.7 From IH 108 Table 7.1:

Curve 10: Q95(1) percentage of 10.0% is closest to Q95(1) of 10.7% given by soil

	428.96	0.0425
	303.93	0.0301
	52.46	0.0052
	21.25	0.0021
	13.75	0.0014
	10.00	0.0010
	5.89	0.0006
Ta	hla E. Flaus dura	tion

Table 5: Flow duration

6.8 Flow duration curve is shown in Figure 8.

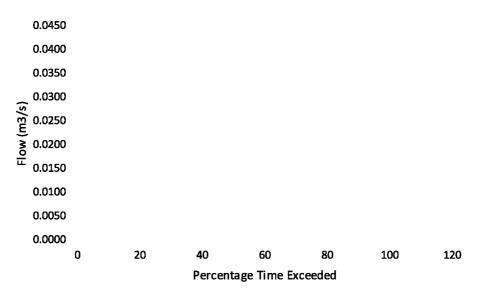
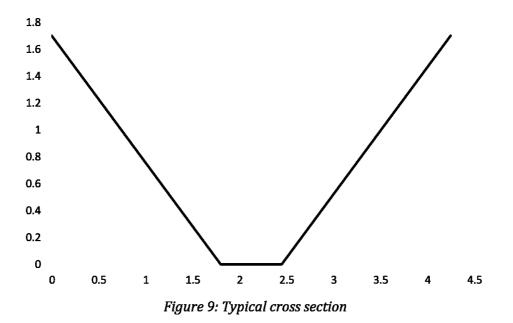



Figure 8: Flow Duration Curve

6.9 The Q95(1) flow of 0.001 m³/s is too low to be run in the hydraulic model, and so a Manning's equation calculation has been undertaken on a typical cross section to determine the typical water level. The typical cross section is shown in Figure 9.

6.10 Manning's equation is as follows:

$$Q = \frac{AR^{2/3}\sqrt{S}}{n}$$

where Q is flow, A is area of flow, R is hydraulic radius and S is gradient.

6.11 Using the average gradient of 0.025 and a Manning's roughness coefficient of 0.06, Manning's equation yields:

$$A = \frac{Qn}{R^{2/3}\sqrt{S}}$$
$$A = \frac{0.01 \times 0.06}{0.011^{2/3}\sqrt{0.025}}$$
$$A = 0.008 \ m^3$$

6.12 The flow area of 0.008m³ corresponds to a depth in the typical channel cross section of 0.012m. It is therefore recommended that the invert levels of surface water outfalls be set at 300mm above this level.

7.0 CONCLUSIONS

- 6.1 The hydraulic assessment has indicated that peak water levels in the watercourses remain largely within banks for events up to the 1% AEP plus climate change.
- 6.2 A thorough sensitivity analysis of key parameters has been undertaken and has shown that the model results are not significantly affected by changes in those parameters.
- 6.3 A low flow analysis was undertaken to determine the Q95(1) flow. The Q95(1) flow was calculated to be 0.001m³/s.
- 6.4 A Manning's equation calculation provided a typical depth in the channel of 0.012m. It is recommended that the invert levels of the surface water outfalls be set at 300mm above the Q95(1) water level.

BIBLIOGRAPHY & REFERENCES

National Planning Policy Framework, CLG (2012). Planning Practice Guidance, CLG (2014) Institute of Hydrology Report No. 108 (1992)

Web-based References

Bingmaps – http://www.bing.com/Maps/ British Geological Survey – http://www.bgs.ac.uk/opengeoscience/home.html Chronology of British Hydrological Events – www.dundee.ac.uk/ CIRIA – http://www.ciria.org/ Cranfield University – http://www.landis.org.uk/soilscapes/ Environment Agency – www.environment-agency.gov.uk/ FloodProBE – http://www.floodprobe.eu/ Flood Forum – http://www.floodforum.org.uk/ Flood Forum – http://www.floodforum.org.uk/ Flood London – http://www.floodlondon.com/ Flood Resilience Group – http://www.floodresiliencegroup.org/frg/ Fylde Borough Council- http://www.fylde.gov.uk/ Google Maps – http://maps.google.co.uk/ Lancashire County Council- http://www.lancashire.gov.uk/home/2010/classic/index.asp Streetmap – http://www.streetmap.co.uk/ United Utilities - http://www.unitedutilities.com/default.aspx

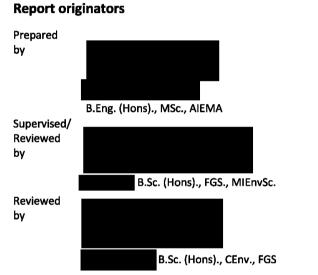
.----

Appendix D Site Investigation

Proposed residential development Land east of Chipping Lane Longridge, Preston

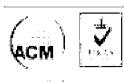
Ground Investigation Report (Phase 1)

e:


W:

t

Proposed residential development Phase 1 Land East of Chipping Lane Longridge Preston PR3 2NA


GROUND INVESTIGATION REPORT

Soiltechnics Ltd. Ivy Mill Business Centre, Crown Street, Failsworth, Manchester, M35 9BG Tel: (0161) 9470270 E-mail: mail@soiltechnics.net

Geo-environmental Engineer, Soiltechnics Limited Associate Director, Soiltechnics Limited

Director, Soiltechnics Limited

&્ય સંસ્થત - દ્રંધ પડેલ્વેન ગ્લોફેટરે પ્રવૃતિવ

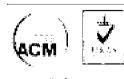
Proposed residential development Land east of Chipping Lane Longridge, Preston

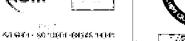
Ground Investigation Report (Phase 2)

e:

W:

t


Proposed residential development Phase 2 Land East of Chipping Lane Longridge Preston PR3 2NA


GROUND INVESTIGATION REPORT

Soiltechnics Ltd. Ivy Mill Business Centre, Crown Street, Failsworth, Manchester, M35 9BG Tel: (0161) 9470270 E-mail: mail@soiltechnics.net

Report originators

Prepared by		
	B.Sc,(Hons) (Open), MIEnvSc.	Senior geo-environmental Engineer, Soiltechnics Limited
Supervised/ Reviewed by	B.Sc. (Hons)., FGS., MIEnvSc.	
Reviewed	bise. (nonsy,) rds., withwas.	Associate Director, Soiltechnics Limited
by		
	B.Sc. (Hons)., CEnv., FGS	Director. Soiltechnics Limited

Appendix E MicroDrainage Simulations

Storm Water Network 1

	t Homes	3 Man	ches	ter							Pag	e 0
4 Brind	dlev Ro	bad			C	hipping La	ne					
City Pa	_		ster			ongridge						
Cheshi:			JUCI			ongridge						
							-					
Date 03						esigned by					2.215	
File CI	HIPPING	GS LA	NE P	HASE 2	CI	hecked by						<u>. se a</u>
Innovy	ze				N	etwork 202	0.1.3					
		STOR	M SEV	VER DES	SIGN by	the Modif	ied R	atior	nal N	<u>letho</u>	<u>d</u>	
			De	<u>sign C</u>	riteria	a for Surf	ace Ne	etwor	<u>k 1</u>			
			P	ipe Size	es STAND	ARD Manhole	Sizes	STAND	ARD			
						odel - Engla	nd and	Wales	5			
		Retu	rn Pe	riod (y		2					PIMP (%	
					• •	8.800					hange (%	
	b 4.		Dai-	Ra fall (m	tio R 0 m/br)	50				-	eight (m eight (m	1) 0.200 1) 1.500
Maximu	m m Time (-		30 Min De				-	-	
i lan tinu.				age (1/	•		-	-	-		nly (m/s	
	V			unoff C							ion (1:X	•
	•		-		-		r		1		. – . •	
				D	esigned	with Level :	Soffits					
		1	Netwo	ork Des	<u>sign Ta</u>	<u>ble for Su</u>	<u>irface</u>	Netw	work	1		
				« - :	Indicate	s pipe capac	ity < :	flow				
							-					
PN	Length (m)	Fall (m)	Slop (1:X		a T.E.	Base Flow (1/s)	k (mm)	HYD SECT		Secti	on Type	Auto Design
	()	(111)	(1.7) (114)	(111110)	E10w (1/3)	(11011)	JECI	()			Destân
	34.856						0.600			-	Conduit	-
1.001	14.100	0.028	503.	6 0.03	4 0.00	0.0	0.600	0	1500	Pipe/	Conduit	۵
0 000	00 070	0 1 - 0	1 7 4		1 = 00		0 000			D '	0	-
	26.078 26.997						0.600 0.600	0 0		-	'Conduit 'Conduit	-
	26.997 9.581						0.600			_		-
	30.643						0.000	0				
2.003	50.045	0.001	04.	~ 0.11	- 0.00		0 600	~	225		'Conduit 'Conduit	
1 002						0.0	0.600	0	225		Conduit Conduit	
1.002	12.868	0.026	494.	9 0.03	9 0.00		0.600 0.600			Pipe/		ē
	12.868 37.925					0.0		0	1500	Pipe/	'Conduit	ē
				5 0.07	5 5.00	0.0	0.600 0.600	0	1500	Pipe/	'Conduit 'Conduit	ē
3.000	37.925	0.181	209.	5 0.07	5 5.00 <u>Networ</u>]	0.0 0.0 <u>0.0</u> 0.0	0.600 0.600 Table	0	1500 300	Pipe/ Pipe/ Pipe/	'Conduit 'Conduit 'Conduit	0 0
	37.925 Rair	0.181 T .	209. c.	5 0.07 US/IL	5 5.00 <u>Networ</u> } E I.Area	0 0.0 0 0.0 <u>κ Results</u> a Σ Base	0.600 0.600 <u>Table</u> Foul	0 0 Add	1500 300 Flow	Pipe/ Pipe/ Pipe/ Vel	'Conduit 'Conduit 'Conduit Cap	ê ê Flow
3.000	37.925	0.181 T .	209.	5 0.07	5 5.00 <u>Networ</u>]	0.0 0.0 <u>0.0</u> 0.0	0.600 0.600 <u>Table</u> Foul	0 0 Add	1500 300 Flow 's)	Pipe/ Pipe/ Pipe/ Vel (m/s)	'Conduit 'Conduit 'Conduit Cap (1/s)	Flow (1/s)
3.000	37.925 Rain (mm/h	0.181 T. r) (mi	209. C.	5 0.07 US/IL	5 5.00 Networl E I.Area (ha)	0.0 0.0 <u>C Results</u> 2 Base Flow (1/s)	0.600 0.600 Table Foul (1/s)	0 0 Add 1 (1/	1500 300 Flow 's)	Pipe/ Pipe/ Pipe/ Vel (m/s)	'Conduit 'Conduit 'Conduit Cap	Flow (1/s)
3.000 PN	37.925 Rair (mm/h 0 50.	0.181 T. r) (mi	209. C. .ns)	5 0.07 US/IL (m)	5 5.00 Networl E I.Area (ha)	0 0.0 0 0.0 <u>C Results 1</u> a Σ Base Flow (1/s) 8 0.0	0.600 0.600 <u>Table</u> Foul (1/s)	0 0 Add : (1/	1500 300 Flow 's)	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86	'Conduit 'Conduit 'Conduit Cap (1/s)	Flow (1/s)
3.000 PN 1.00 1.00	37.925 Rair (mm/h 0 50. 1 50.	0.181 T. r) (mi 00 5 00 5	209. C. .ns) 5.31 : 5.44 :	5 0.07 US/IL (m) 103.006 102.619	5 5.00 <u>Networ</u> E I.Area (ha) 0.164 0.202	0 0.0 0 0.0 0 E Base Flow (1/s) 8 0.0 2 0.0	0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0	0 0 Add : (1/	1500 300 Flow (s) 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90	'Conduit 'Conduit 'Conduit Cap (1/s) 2106.9 3365.7	 Flow (1/s) 22.7 27.4
3.000 PN 1.00 1.00 2.00	37.925 Rair (mm/h 0 50. 1 50. 0 50.	0.181 r. 00 5 00 5	209. C. .ns) 5.31 : 5.44 :	5 0.07 US/IL (m) 103.006 102.619 104.865	5 5.00 <u>Networ</u> E I.Area (ha) 0.164 0.202 0.055	0 0.0 0 0.0 <u>C Results</u> Σ Base Flow (1/s) 8 0.0 2 0.0 1 0.0	0.600 0.600 Table Foul (1/s) 0.0 0.0	0 0 Add 1 (1/	1500 300 Flow 's) 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90	'Conduit 'Conduit 'Conduit 'Conduit (1/s) 2106.9 3365.7 39.7	 Flow (1/s) 22.7 27.4 6.9
3.000 PN 1.00 1.00 2.00 2.00	37.925 Rain (mm/h) 0 50. 1 50. 0 50. 1 50.	0.181 T. r) (mi 00 5 00 5 00 5 00 5	209. C. 	5 0.07 US/IL (m) 103.006 102.619 104.865 104.712	5 5.00 <u>Networ</u> E I.Area (ha) 0.164 0.202 0.052 0.067	0 0.0 0 0.0 <u>C Results</u> E Base Flow (1/s) 8 0.0 2 0.0 1 0.0 7 0.0	0.600 0.600 Table Foul (1/s) 0.0 0.0 0.0	0 0 Add 1 (1/	1500 300 Flow 's) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90 1.65	'Conduit 'Conduit 'Conduit 'Conduit (1/s) 2106.9 3365.7 39.7 65.7	Flow (1/s) 22.7 27.4 6.9 9.1
3.000 PN 1.00 1.00 2.00 2.00 2.00	37.925 Rair (mm/h 0 50. 1 50. 0 50. 1 50. 2 50.	0.181 r. r) (mi 00 5 00 5 00 5 00 5 00 5 00 5	209. C. 	5 0.07 US/IL (m) 103.006 102.619 104.865 104.712 104.283	5 5.00 <u>Networ</u> E I.Area (ha) 0.164 0.202 0.052 0.067 0.11	0 0.0 0 0.0 <u>C Results</u> E Base Flow (1/s) 8 0.0 2 0.0 1 0.0 7 0.0 7 0.0	0.600 0.600 Table Foul (1/s) 0.0 0.0 0.0 0.0	0 0 Add 1 (1/	1500 300 Flow 's) 0.0 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90 1.65 1.00	Conduit Conduit Conduit Conduit 2106.9 3365.7 39.7 65.7 39.6	Flow (1/s) 22.7 27.4 6.9 9.1 15.8
3.000 PN 1.00 1.00 2.00 2.00	37.925 Rair (mm/h 0 50. 1 50. 0 50. 1 50. 2 50.	0.181 r. r) (mi 00 5 00 5 00 5 00 5 00 5 00 5	209. C. 	5 0.07 US/IL (m) 103.006 102.619 104.865 104.712	5 5.00 <u>Networ</u> E I.Area (ha) 0.164 0.202 0.052 0.067	0 0.0 0 0.0 <u>C Results</u> E Base Flow (1/s) 8 0.0 2 0.0 1 0.0 7 0.0 7 0.0	0.600 0.600 Table Foul (1/s) 0.0 0.0 0.0 0.0	0 0 Add 1 (1/	1500 300 Flow 's) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90 1.65	Conduit Conduit Conduit Conduit 2106.9 3365.7 39.7 65.7 39.6	Flow (1/s) 22.7 27.4 6.9 9.1
3.000 PN 1.00 1.00 2.00 2.00 2.00	37.925 Rair (mm/h 0 50. 1 50. 0 50. 1 50. 2 50. 3 50.	0.181 r) (mi 00 5 00 5 00 5 00 5 00 5 00 5 00 5 00 5	209. C. 	5 0.07 US/IL (m) 103.006 102.619 104.865 104.712 104.283	5 5.00 <u>Networ</u> E I.Area (ha) 0.164 0.202 0.052 0.067 0.11	0 0.0 0 0.0 0 0.0 0 CRESULTS 2 Base Flow (1/s) 8 0.0 2 0.0 1 0.0 7 0.0 7 0.0 2 0.0	0.600 0.600 Table Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 Add : (1/	1500 300 Flow 's) 0.0 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90 1.65 1.00 1.42	Conduit Conduit Conduit Conduit 2106.9 3365.7 39.7 65.7 39.6	Flow (1/s) 22.7 27.4 6.9 9.1 15.8
3.000 PN 1.00 1.00 2.00 2.00 2.00 2.00	37.925 Rair (mm/h 0 50. 1 50. 0 50. 1 50. 2 50. 3 50. 2 50.	0.181 T. r) (mi 00 5 00 5 00 5 00 5 00 5 00 5 00 6 00 6	209. C. .ns) 5.31 = 5.44 = 5.44 = 5.44 = 5.44 = 5.23 = 5.33 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.31 = 5.31 = 5.44 = 5.	5 0.07 US/IL (m) 103.006 102.619 104.865 104.712 104.283 104.226	5 5.00 <u>Networ</u> E I.Area (ha) 0.164 0.202 0.052 0.067 0.112 0.232	0 0.0 0 0.0 C Results 1 A Σ Base Flow (1/s) 8 0.0 2 0.0 1 0.0 7 0.0 7 0.0 3 0.0	0.600 0.600 Table Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 Add : (1/	1500 300 Flow 's) 0.0 0.0 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90 1.65 1.00 1.42 1.92	Conduit Conduit Conduit Conduit 2106.9 3365.7 39.7 65.7 39.6 56.5 3395.2	Flow (1/s) 22.7 27.4 6.9 9.1 15.8 31.4 64.1
3.000 PN 1.00 1.00 2.00 2.00 2.00 2.00 1.00	37.925 Rair (mm/h 0 50. 1 50. 0 50. 1 50. 2 50. 3 50. 2 50.	0.181 T. r) (mi 00 5 00 5 00 5 00 5 00 5 00 5 00 6 00 6	209. C. .ns) 5.31 = 5.44 = 5.44 = 5.44 = 5.44 = 5.23 = 5.33 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.34 = 5.31 = 5.31 = 5.44 = 5.	5 0.07 US/IL (m) 103.006 102.619 104.865 104.712 104.283 104.226 102.591	5 5.00 <u>Networ</u> E I.Area (ha) 0.160 0.202 0.052 0.067 0.11 0.232 0.472 0.075	0 0.0 0 0.0 C Results 1 A Σ Base Flow (1/s) 8 0.0 2 0.0 1 0.0 7 0.0 7 0.0 3 0.0	0.600 0.600 Table Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 Add : (1/	1500 300 Flow 's) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Vel (m/s) 1.86 1.90 1.65 1.00 1.42 1.92	Conduit Conduit Conduit Conduit 2106.9 3365.7 39.7 65.7 39.6 56.5 3395.2	Flow (1/s) 22.7 27.4 6.9 9.1 15.8 31.4 64.1

arrat	t Home	s Man	chest	er							Pag	e 1
Brin	dley R	oad			Cł	nipping La	ne					
	ark, Ma		ster			ongridge						
heshi		69HQ				5 - 5 -						
	1/01/2				De	esigned						·
						-					1226	
ile C	HIPPIN	GS LA	NE PH	ASE 2 .		necked by						
nnovy	ze				Ne	etwork 202	0.1.3					
]	Netwoi	rk Desi	.gn Tal	ble for Su	rface	Net	work	1		
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section	. Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design
3.001	12.524	0.031	404.0	0.009	0.00	0.0	0.600	0	450	Pipe/Co	nduit	
1.003	20.839	0.042	496.2	0.030	0.00	0.0	0.600	0	1500	Pipe/Co	nduit	
	19.697				0.00		0.600			Pipe/Co		ā
	11.281			0.000	0.00		0.600			Pipe/Co		ā
	21.474			0.000	0.00		0.600			Pipe/Cc		ē
	11.233			0.057	0.00		0.600			Pipe/Co		ā
	47.046			0.094	0.00		0.600			Pipe/Co		ē
4.000	32.098	0.597	53.8	0.044	5.00	0.0	0.600	o	225	Pipe/Co	nduit	۵
4.001	27.069	0.068	398.1	0.084	0.00	0.0	0.600	0	525	Pipe/Co	nduit	ē
1.009	39.199	0.080	490.0	0.022	0.00	0.0	0.600	0	1500	Pipe/Co	nduit	•
1.010	20.544	0.041	501.1	0.068	0.00	0.0	0.600	0	1500	Pipe/Co	nduit	•
5.000	31.155	0.663	47.0	0.033	5.00	0.0	0.600	0	225	Pipe/Co	nduit	•
5.001	24.755	0.688	36.0	0.068	0.00	0.0	0.600	0	225	Pipe/Co	nduit	ē
5.002	7.704	0.198	38.9	0.000	0.00	0.0	0.600	0	225	Pipe/Co	nduit	ē
5.003	6.655	0.139	47.9	0.000	0.00	0.0	0.600	0	225	Pipe/Co	nduit	ē
6.000	37.767	1.511	25.0	0.054	5.00	0.0	0.600	0		Pipe/Co		٥
6.001	27.458	1.016	27.0	0.068	0.00	0.0	0.600	0	225	Pipe/Co	onduit	•
				N	etwork	Results 1	<u>[able</u>					
PN	Rair				I.Area		Foul	Add		Vel	Сар	Flow
	(mm/h	r) (mi	.ns)	(m)	(ha)	Flow (l/s)	(1/s)	(1,	(s)	(m/s) (1/s)	(1/s)
3.00	1 50.	00 5	5.79 10	3.646	0.084	0.0	0.0		0.0	1.01	159.9	11.4
1.00			5.52 10		0.587		0.0		0.0	1.92 3		78.9
1.00			5.69 10		0.636		0.0		0.0	1.90 3	360.7	84.5
1.00			5.79 10		0.636		0.0		0.0	1.93 34		84.5
1.00			5.98 10		0.636		0.0		0.0	1.91 3		84.5
1.00	7 47.	93 7	.08 10	2.418	0.693	.00	0.0		0.0	1.89 3	342.3	90.0

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
3.001	50.00	5.79	103.646	0.084	0.0	0.0	0.0	1.01	159.9	11.4
1.003	49.61	6.52	102.565	0.587	0.0	0.0	0.0	1.92	3390.9	78.9
1.004	49.07	6.69	102.523	0.636	0.0	0.0	0.0	1.90	3360.7	84.5
1.005	48.78	6.79	102.484	0.636	0.0	0.0	0.0	1.93	3410.6	84.5
1.006	48.22	6.98	102.461	0.636	0.0	0.0	0.0	1.91	3379.8	84.5
1.007	47.93	7.08	102.418	0.693	0.0	0.0	0.0	1.89	3342.3	90.0
1.008	46.78	7.49	102.396	0.787	0.0	0.0	0.0	1.91	3376.1	99.7
4.000	50.00	5.30	104.242	0.044	0.0	0.0	0.0	1.79	71.1	6.0
4.001	50.00	5.70	103.345	0.128	0.0	0.0	0.0	1.12	241.7	17.3
1.009	45.88	7.83	102.302	0.937	0.0	0.0	0.0	1.93	3412.3	116.4
1.010	45.42	8.00	102.222	1.005	0.0	0.0	0.0	1.91	3374.1	123.6
5.000	50.00	5.27	108.172	0.033	0.0	0.0	0.0	1.91	76.1	4.5
5.001	50.00	5.46	107.509	0.101	0.0	0.0	0.0	2.19	87.0	13.7
5.002	50.00	5.52	106.821	0.101	0.0	0.0	0.0	2.10	83.6	13.7
5.003	50.00	5.58	106.624	0.101	0.0	0.0	0.0	1.90	75.4	13.7
6.000	50.00	5.24	111.159	0.054	0.0	0.0	0.0	2.63	104.5	7.3
6.001	50.00	5.42	109.648	0.122	0.0	0.0	0.0	2.53	100.5	16.5
				©1982-2	2020 Innov	VZE				

Barrat	t Home	s Man	cheste	er							Pag	e 2
Brin	dley R	oad			Ch	ipping La	ne					
ity P	ark, M	anche	ster		Lc	ngridge						
heshi		69HQ								_		
ate O	1/01/2				De	signed by					::	
			NE PH	ASE 2 .		ecked by						د. دوسولیت
				чо <u>н</u> с .		twork 202	0 1 2				5	
nnovy	ze				NE	twork 202	0.1.3					
		1	Networ	<u>k Desi</u>	.gn Tak	ole for Su	<u>rface</u>	Netw	vork	1		
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Secti	ion Type	Auto Design
7.000	39.385	0.394	100.0	0.083	5.00	0.0	0.600	o	225	Pipe,	'Conduit	•
8.000	20.526	1.069	19.2	0.121	5.00	0.0	0.600	o	225	Pipe/	'Conduit	•
7 001	47.242	0 304	155 /	0.089	0.00	0.0	0.600	o	300	Dina	'Conduit	•
	26.364			0.089	0.00		0.600	0			Conduit /Conduit	8
								-		-1-27		-
	27.056			0.014	0.00		0.600	0		_	Conduit	•
	35.837			0.092	0.00		0.600	0		-	Conduit	-
	20.674			0.034	0.00		0.600	0		-	Conduit	-
6.005	30.374 8.611			0.000	0.00		0.600	0			'Conduit 'Conduit	
						010		U	100			
5.004			130.0	0.045	0.00		0.600	0		-	'Conduit	
	30.420			0.022	0.00		0.600	0		-	Conduit	-
5.006	7.929			0.021	0.00		0.600	0		-	Conduit	-
	19.595 12.502		58.0 46.0	0.033 0.000	0.00		0.600	0 0		-	'Conduit 'Conduit	-
5.009			403.5	0.087	0.00		0.600	0		-	Conduit /	
	11.131			0.000	0.00		0.600	0		-	'Conduit	
5.011	19.961	0.139	143.6	0.016	0.00	0.0	0.600	0	450	Pipe/	'Conduit	
				N	etwork	Results :	<u>[able</u>					
PN	Rain			•	I.Area			Add		Vel	Cap	Flow
	(mm/h	r) (mi	.ns)	(m)	(ha)	Flow (l/s)	(1/s)	(1/	5)	(m/s)	(1/s)	(l/s)
7.00	0 50.	00 5	5.50 10	8.550	0.083	0.0	0.0		0.0	1.31	52.0	11.2
8.00	0 50.	00 5	5 .1 1 11	0.650	0.121	0.0	0.0		0.0	3.00	119.3	16.4
7.00			5.13 10		0.293				0.0	1.26		39.7
7.00	2 50.	00 6	5.31 10	7.327	0.393	0.0	0.0		0.0	2.41	1062.6	53.2
6.00			5.50 10		0.529				0.0		1062.2	71.2
6.00			5.76 10		0.621				0.0		1023.4	82.2
6.00			$5.99\ 10$		0.655				0.0	1.45		85.5
6.00 6.00			7.17 10 7.28 10		0.655 0.655				0.0 0.0	2.94 1.29	1298.8 205.4	85.5 85.5
5.00	4 47.	18 7	.34 10	6.260	0.801	0.0	0.0		0.0	1.78	283.4	102.3
5.00			.59 10		0.823				0.0	2.08	330.1	
5.00			.65 10		0.844				0.0	2.18	346.6	
5.00			7.77 10		0.877				0.0	2.67	425.3	
5.00	8 45.	85 7	1.84 10	n 461	0.877	0.0	0.0		0.0	3.01	477.9	109.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

0.0 3.01 477.9 109.3

 0.0
 1.01
 160.0
 118.7

 0.0
 1.01
 161.2
 118.7

 0.0
 1.69
 269.5
 118.7

5.008

5.009

5.010

5.011

45.85

45.46

45.00

44.52

7.84 105.461

7.99 105.189 8.17 105.166 8.37 105.138

0.877

0.964

0.964

0.980

			cheste	· -							Page	= 3
Brind	lley Ro	bad			Ch	ipping Lar	e					
City Pa	ark, Ma	anches	ster		Lo	ngridge						
	ce M10	59HQ				-						
Date 01	1/01/20	022			De	signed by					1.::	
			NE PHA	SE 2 .		ecked by					100	أذبعاهم
Innovyz						twork 2020	1 3				"	
		1	letwor	<u>k Desi</u>	<u>gn Tab</u>	<u>le for Su</u>	face	Netw	ork	<u>1</u>		
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section	і Туре	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)			Design
5.012	13.450	0.157	85.7	0.050	0.00	0.0	0.600	o	450	Pipe/Co	onduit	•
9.000	41.859	1.231	34.0	0.052	5.00	0.0	0.600	o	225	Pipe/Co	nduit	
9.001	39.560	1.364	29.0	0.090	0.00		0.600	0		Pipe/Co		-
9.002	13.898	0.613	22.7	0.036	0.00	0.0	0.600	0	225	Pipe/Co	nduit	Ō
10.000	25.064	0.135	185.7	0.000	5.00	0.0	0.600	0	375	Pipe/Co	onduit	
9.003	48.787	1.149	42.5	0.089	0.00	0.0	0.600	o	375	Pipe/Co	onduit	•
5.013	18.119	0.045	402.6	0.011	0.00	0.0	0.600	o	450	Pipe/Co	nduit	•
5.014	27.409	0.069	397.2	0.043	0.00	0.0	0.600	0		Pipe/Co		
	14.789			0.090	0.00		0.600	0		Pipe/Co		-
5.016	6.471	0.017	380.6	0.011	0.00	0.0	0.600	0	450	Pipe/Co	onduit	•
11.000	24.649	0.325	75.8	0.034	5.00	0.0	0.600	0	225	Pipe/Co	onduit	
5.017	17.659	0.044	401.3	0.015	0.00	0.0	0.600	o	450	Pipe/Co	nduit	۵
	66.144			0.090	0.00	0.0	0.600	0		Pipe/Co		
	62.798			0.119	0.00		0.600	0		Pipe/Co		
	26.670			0.035	0.00		0.600			Pipe/Co		-
5.021	39.257	0.098	400.6	0.000	0.00	U.O	0.600	0	1200	Pipe/Co	onauit	•
				<u>Ne</u>	etwork	<u>Results T</u>	<u>able</u>					
PN	Rai	n T.	.c. t	S/IL Σ	I.Area	Σ Base	Foul	Add	Flow	Vel	Cap	Flow
	(mm/h	ur) (mi	ins)	(m)	(ha)	Flow (l/s)	(1/s)	(1/	's)	(m/s)	(1/s)	(1/s)
5.01	2 44.	28 8	8.47 10	4.999	1.030	0.0	0.0		0.0	2.20	349.5	123.5
9.00	0 50.	00 5	5.31 10	8.448	0.052	0.0	0.0		0.0	2.25	89.5	7.0
9.00		00 5	5.58 10	7.217	0.142	0.0	0.0		0.0	2.44	97.0	19.2
9.00	2 50.	00 5	5.66 10	5.853	0.178	0.0	0.0		0.0	2.76	109.7	24.1
10.00	0 50.	00 5	5.31 10	5.375	0.000	0.0	0.0		0.0	1.33	146.5	0.0
10.00	0 00.											

©1982-2020 Innovyze

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 1.01 160.2 154.4 0.0 1.01 161.3 155.8

0.0 1.01 160.7« 164.2

0.0 1.04 164.8 164.6

0.0 1.50 59.8 4.6

0.0 1.01 160.4« 167.7

 0.0
 1.11
 240.8
 169.8

 0.0
 1.11
 241.1
 175.1

 0.0
 2.14
 3788.4
 177.2

 0.0
 2.14
 3776.3
 177.2

1.308

1.351

1.441

1.452

0.034

1.501

1.591

1.710

1.745

1.745

5.013

5.014

5.015

5.016

11.000

5.017

5.018

5.019

5.020

5.021

43.58

42.58

42.07

41.85

50.00

41.26

8.77 104.016

9.22 103.971

9.47 103.902

9.57 103.865

5.27 104.399

9.86 103.848

39.40 10.85 103.729

37.8211.79103.56437.4912.00102.432

37.02 12.31 102.365

Barratt Homes Manchester	Page 4	
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	·

Network Design Table for Surface Network 1

PN	Length (m)		Slope (1:X)		T.E. (mins)			HYD SECT		Section Type	Auto Design
5.022	34.015	0.085	400.2	0.076	0.00	0.0	0.600	0	1500	Pipe/Conduit	•
	44.767 8.914			0.000	0.00		0.600 0.600			Pipe/Conduit Pipe/Conduit	-

<u>Network Results Table</u>

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(l/s)
5.022	36.62	12.57	102.267	1.821	0.0	0.0	0.0	2.14	3778.3	180.6
1.011 1.012			102.182 102.093	2.826 2.826	0.0	0.0 0.0			3367.6 85.5«	

Barratt Homes Manchester				I F	age 5
4 Brindlev Road	Chippin	a Lane			age e
City Park, Manchester	Longrid	-			
Cheshire M169HQ	Longito	ige			
Date 01/01/2022	Designe	d by			
File CHIPPINGS LANE PHASE 2	_	_			
Innovyze		2020.1.3		1	
11110 4 7 2 6	INCENCE.	2020.1.5			
<u>Online</u> C	Controls for	Surface Net	work 1		
Orifice Manhole:	S110, DS/PN:	: 6.006, Vol	Lume (m³):	21.1	
Diameter (m) 0.247 Disc	charge Coefficie	ent 0.600 Inv	ert Level (n	n) 106.2	295
<u>Hydro-Brake® Optimum M</u>	anhole: S13,	DS/PN: 1.01	2, Volume	(m³):	92.9
	Unit Referenc Design Head (m	e MD-SHE-0278		5000	
D	esign Flow (1/s			50.0	
	Flush-Flo		Calcul	ated	
	Objectiv		pstream sto	-	
	Applicatic Sump Availabl		Sur	face Yes	
	Diameter (mm			278	
	Invert Level (m	•	102	.093	
Minimum Outlet Pi	-			300	
Suggested Manho	le Diameter (mm	1)		2100	
Cont	rol Points	Head (m) Flo	ow (l/s)		
Design Poi	nt (Calculated). Flush-Flo		50.0 49.9		
	Kick-Flo		49.9		
		9 I.420	40.0		
Mean Flow	over Head Range		40.8		
Mean Flow The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated	over Head Range have been based ied. Should an	e - l on the Head/ other type of	43.2 Discharge r control de	vice oth	ner than a
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis	over Head Range have been based ied. Should an ed then these s	e - l on the Head/ wother type of storage routin	43.2 Discharge r control de g calculatio	vice oth ons will	ner than a L be
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20	over Head Range have been based ied. Should an ed then these s () Flow (1/s)	e - l on the Head/ other type of storage routin epth (m) Flow 3.000	43.2 Discharge r control de g calculation (1/s) Depti 58.1	vice oth ons will h (m) F 7.000	ner than a L be Low (1/s) 87.6
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.200 28.7 1.40	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) b c) 46.4 c) 41.7	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500	43.2 Discharge r control de g calculation (1/s) Depti 58.1 62.6	vice oth ons will h (m) F : 7.000 7.500	ner than a L be Low (1/s) 87.6 90.6
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) b 0 46.4 0 41.7 0 42.9	e - l on the Head/ other type of storage routin epth (m) Flow 3.000	43.2 Discharge r control de g calculation (1/s) Depti 58.1 58.1 62.6 66.7	vice oth ons will h (m) F 7.000	ner than a L be Low (1/s) 87.6
Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.300 45.2 1.60 0.400 47.9 1.80 0.500 49.3 2.00	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 58.1 62.6 66.7 70.7 74.4	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 0.200 28.7 0.300 45.2 0.400 47.9 0.500 49.3 0.600 49.9	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9	vice oth ons will h (m) F 7.000 7.500 3.000 3.500	ner than a L be low (1/s) 87.6 90.6 93.5 96.3
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 0.200 28.7 0.300 45.2 0.400 47.9 0.500 49.3 0.600 49.9 0.800 49.6	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - a on the Head/ bother type of btorage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 0.200 28.7 0.300 45.2 0.400 47.9 0.500 49.3 0.600 49.9	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 0.200 28.7 0.300 45.2 0.400 47.9 0.500 49.3 0.600 49.9 0.800 49.6	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - a on the Head/ bother type of btorage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.200 28.7 1.40 0.300 45.2 1.60 0.400 47.9 1.80 0.500 49.3 2.00 0.600 49.9 2.20 0.800 49.6 2.40	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - a on the Head/ bother type of btorage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.200 28.7 1.40 0.300 45.2 1.60 0.400 47.9 1.80 0.500 49.3 2.00 0.600 49.9 2.20 0.800 49.6 2.40	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - a on the Head/ bother type of btorage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.200 28.7 1.40 0.300 45.2 1.60 0.400 47.9 1.80 0.500 49.3 2.00 0.600 49.9 2.20 0.800 49.6 2.40	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.200 28.7 1.40 0.300 45.2 1.60 0.400 47.9 1.80 0.500 49.3 2.00 0.600 49.9 2.20 0.800 49.6 2.40	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.200 28.7 1.40 0.300 45.2 1.60 0.400 47.9 1.80 0.500 49.3 2.00 0.600 49.9 2.20 0.800 49.6 2.40	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 1.20 0.200 28.7 1.40 0.300 45.2 1.60 0.400 47.9 1.80 0.500 49.3 2.00 0.600 49.9 2.20 0.800 49.6 2.40	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 0.200 28.7 0.300 45.2 0.400 47.9 0.500 49.3 0.600 49.9 0.800 49.6	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0
The hydrological calculations Hydro-Brake® Optimum as specif Hydro-Brake Optimum® be utilis invalidated Depth (m) Flow (1/s) Depth (m 0.100 8.7 0.200 28.7 0.300 45.2 0.400 47.9 0.500 49.3 0.600 49.9 0.800 49.6	over Head Range have been based ied. Should an ed then these s b) Flow (1/s) D 0 46.4 0 41.7 0 42.9 0 45.4 0 47.7 0 50.0 0 52.1	e - l on the Head/ other type of storage routin epth (m) Flow 3.000 3.500 4.000 4.500 5.000 5.500 6.000	43.2 Discharge r control de g calculation (1/s) Dept 58.1 62.6 66.7 70.7 74.4 77.9 81.3	vice oth ons will h (m) F 7.000 7.500 8.000 8.500 9.000	ner than a L be 10w (1/s) 87.6 90.6 93.5 96.3 99.0

Barratt Homes Manchester		Page 6
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

Storage Structures for Surface Network 1

Tank or Pond Manhole: S13, DS/PN: 1.012

Invert Level (m) 103.650

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000 0.100					1113.4 1156.6		

©1982-2020 Innovyze

Barratt Homes Manchester	Page 0	
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

Manhole Schedules for Surface Network 1

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	105.233	2.227	Open Manhole	2400	1.000	103.006	1200				
S2	105.924	3.305	Open Manhole	2400	1.001	102.619	1500	1.000	102.919	1200	
S15	106.290	1.425	Open Manhole	1350	2.000	104.865	225				
S16	106.358	1.646	Open Manhole	1350	2.001	104.712	225	2.000	104.712	225	
S17	105.854	1.571	Open Manhole	1350	2.002	104.283	225	2.001	104.283	225	
S18	105.655	1.429	Open Manhole	1500	2.003	104.226	225	2.002	104.227	225	1
S 3	105.961	3.370	Open Manhole	2400	1.002	102.591	1500	1.001	102.591	1500	
								2.003	103.865	225	
S19	105.531	1.554	Open Manhole	1800	3.000	103.977	300				
S20	105.820	2.174	Open Manhole	1500	3.001	103.646	450	3.000	103.796	300	
S4	105.808	3.243	Open Manhole	2700	1.003	102.565	1500	1.002	102.565	1500	
								3.001	103.615	450	
S 5	105.622	3.099	Open Manhole	2400	1.004	102.523	1500	1.003	102.523	1500	
S6	105.847	3.363	Open Manhole	2400	1.005	102.484	1500	1.004	102.484	1500	
S 7	105.909	3.448	Open Manhole	2400	1.006	102.461	1500	1.005	102.461	1500	
58	105.721	3.303	Open Manhole	2400	1.007	102.418	1500	1.006	102.418	1500	
S9	105.581	3.185	Open Manhole	2400	1.008	102.396	1500	1.007	102.396	1500	
S21	105.667	1.425	Open Manhole	1350	4.000	104.242	225				
S22	105.259	1.914	Open Manhole	1800	4.001	103.345	525	4.000	103.645	225	
S10	105.002	2.700	Open Manhole	3000	1.009	102.302	1500	1.008	102.302	1500	
								4.001	103.277	525	
S11	104.922	2.700	Open Manhole	3000	1.010	102.222	1500	1.009	102.222	1500	
S23	109.597	1.425	Open Manhole	1350	5.000	108.172	225				
S24	108.947	1.438	Open Manhole	1500	5.001	107.509	225	5.000	107.509	225	
S25	108.247	1.426	Open Manhole		5.002	106.821	225	5.001	106.821	225	
S26	108.049	1.426	Open Manhole		5.003	106.624	225	5.002	106.623	225	
	112.727		-		6.000	111.159	225				
	111.782		1 -	1350		109.648	225	6.000	109.648	225	
	110.167		-		7.000	108.550	225				
S102	112.243	1.593	Open Manhole		8.000	110.650	225				
S103	111.709	3.628	Open Manhole	2100	7.001	108.081	300	7.000	108.156	225	
								8.000	109.581	225	1425
			Open Manhole		7.002			7.001	107.777	300	
S107	111.491	4.359	Open Manhole	2400	6.002	107.132	750	6.001	108.632	225	975
								7.002	107.132	750	
			Open Manhole		6.003	106.932		6.002	106.932	750	
			Open Manhole		6.004	106.686		6.003	106.686	750	
S109A	110.009	3.379	Open Manhole	1800	6.005	106.630	750	6.004	106.630	750	
				©1982-20	20 In	novyze					

Barratt Homes Manchester	Page 1	
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	•

Manhole Schedules for Surface Network 1

MH Name	МН СL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S110	108.200	1.905	Open Manhole	2400	6.006	106.295	450	6.005	106.295	750	
S27	107.924	1.664	Open Manhole	1500	5.004	106.260	450	5.003	106.485	225	
								6.006	106.260	450	
S28	107.857	1.650	Open Manhole	1500	5.005	106.207	450	5.004	106.207	450	
S29	107.540	1.650	Open Manhole	1500	5.006	105.890	450	5.005	105.890	450	
S30	107.449	1.650	Open Manhole	1500	5.007	105.799	450	5.006	105.799	450	
S31	107.646	2.185	Open Manhole	1500	5.008	105.461	450	5.007	105.461	450	
S32	107.569	2.380	Open Manhole	1500	5.009	105.189	450	5.008	105.189	450	
S33	107.430	2.264	Open Manhole	1500	5.010	105.166	450	5.009	105.166	450	
S34	107.241	2.103	Open Manhole	1500	5.011	105.138	450	5.010	105.138	450	
S35	106.909	1.910	Open Manhole	1500	5.012	104.999	450	5.011	104.999	450	
S46	109.881	1.433	Open Manhole	1350	9.000	108.448	225				
S47	108.671	1.454	Open Manhole	1350	9.001	107.217	225	9.000	107.217	225	
S48	107.297	1.444	Open Manhole	1350	9.002	105.853	225	9.001	105.853	225	
S201	107.005	1.630	Open Manhole	2100	10.000	105.375	375				
S49	106.894	1.654	Open Manhole	1350	9.003	105.240	375	9.002	105.240	225	
								10.000	105.240	375	
S36	106.895	2.879	Open Manhole	1800	5.013	104.016	450	5.012	104.842	450	826
								9.003	104.091	375	
S37	106.951	2.980	Open Manhole	1800	5.014	103.971	450	5.013	103.971	450	
S38	106.608	2.706	Open Manhole	1800	5.015	103.902	450	5.014	103.902	450	
S39	106.386	2.521	Open Manhole	1800	5.016	103.865	450	5.015	103.865	450	
S50	105.824	1.425	Open Manhole	1350	11.000	104.399	225				
S40	106.262	2.414	Open Manhole	1800	5.017	103.848	450	5.016	103.848	450	
								11.000	104.074	225	1
S41	105.972	2.243	Open Manhole	1800	5.018	103.729	525	5.017	103.804	450	
S42	105.729	2.165	Open Manhole	1800	5.019	103.564	525	5.018	103.564	525	
S43	105.566	3.134	Open Manhole	2700	5.020	102.432	1500	5.019	103.407	525	
S44	105.250	2.885	Open Manhole	2700	5.021	102.365	1500	5.020	102.365	1500	
S45	104.968	2.701	Open Manhole	3000	5.022	102.267	1500	5.021	102.267	1500	
S12	104.882	2.701	Open Manhole	3000	1.011	102.182	1500	1.010	102.181	1500	
								5.022	102.182	1500	
S13	104.793	2.700	Open Manhole	3000	1.012	102.093	300	1.011	102.093	1500	
S14	102.473	0.433	Open Manhole	600		OUTFALL		1.012	102.040	300	
											1

©1982-2020 Innovyze

Barratt Homes	Manchest	er				Page 2
4 Brindley Ro	ad		Chipping La	ine		
City Park, Ma			Longridge			
Cheshire M16			Touldtrade			
Date 01/01/20			Designed by			
File CHIPPING	5 LANE PH	ASE Z	Checked by	0 1 0		
Innovyze			Network 202	20.1.3		
	Manh	ole Schedu	les for Sur	<u>face Netwo</u>	<u>rk 1</u>	
MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection : Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S1	360045.987	438005.971	360045.987	438005.971	Required	
S2	360075.017	437986.678	360075.017	437986.678	Required	
S15	360020.388	437954.416	360020.388	437954.416	Required	
S16	360046.459	437953.809	360046.459	437953.809	Required	
S17	360073.319	437951.095	360073.319	437951.095	Required	
S18	360082.491	437953.866	360082.491	437953.866	Required	
\$3	360088.830	437983.846	360088.830	437983.846	-	
		438028.822		438028.822	-	
	360104.068		360104.068	437993.447	-	
	360101.424	437981.205	360101.424 360121.836	437981.205 437977.010	-	
		437993.689	360132.313	437993.689	_	
	360137.882		360137.882	438003.500	-	
58	360149.776	438021.379	360149.776	438021.379	Required	
59	360154.725	438031.463	360154.725	438031.463	Required	
		©198	32-2020 Inno	vyze		

Barratt Homes	Manchest	er				Page 3
4 Brindley Ro			Chipping La	ane		
City Park, Ma	anchester		Longridge			
Cheshire M16	59HQ					
Date 01/01/20)22		Designed by	I		
File CHIPPING	SS LANE PH	ASE 2	Checked by			
Innovyze			Network 202	20.1.3		
	Manh	ole Schedu	les for Sur	face Netwo	<u>rk 1</u>	
MH Name	Manhole Easting (m)		Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S21	360226.587	438033.057	360226.587	438033.057	Required	
S22	360201.714	438053.346	360201.714	438053.346	Required	
S10	360180.848	438070.590	360180.848	438070.590	Required	
S11	360204.062	438102.176	360204.062	438102.176	Required	
\$23	360304.757	437915.600	360304.757	437915.600	Required	
S24	360283.654	437892.680	360283.654	437892.680	Required	
S25	360269.253	437872.545	360269.253	437872.545	Required	
S26	360262.459	437868.913	360262.459	437868.913	Required	
S105	360402.238	437825.920	360402.238	437825.920	Required	
S106	360366.337	437837.645	360366.337	437837.645	Required	
S101	360330.611	437925.095	360330.611	437925.095	Required	
S102	360381.960	437894.730	360381.960	437894.730	Required	
S103	360363.102	437902.834	360363.102	437902.834	Required	
S104	360338.786	437862.331	360338.786	437862.331	Required	
S107	360338.930	437835.967	360338.930	437835.967	Required	
		@1 0 G	32-2020 Inno	WW70		

	s Manchest	er				Page 4	
4 Brindley Ro			Chipping La	ane			
City Park, Ma			Longridge				
Cheshire M1							
Date 01/01/20			Designed by	v			
File CHIPPINGS LANE PHASE 2			Checked by	a da ser a Nota da ser a			
Innovyze			Network 202				
Manhole Schedules for Surface Network 1							
MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)	
S108	360317.301	437819.712	360317.301	437819.712	Required		
S109	360281.621	437816.363	360281.621	437816.363	Required		
S109A	360276.512	437836.396	360276.512	437836.396	Required		
S110	360259.497	437861.557	360259.497	437861.557	Required		
S27	360255.818	437869.342	360255.818	437869.342	Required		
S28	360249.600	437872.305	360249.600	437872.305	Required		
S29	360226.735	437892.369	360226.735	437892.369	Required		
s30	360223.678	437899.685	360223.678	437899.685	Required		
S31	360237.326	437913.745	360237.326	437913.745	Required		
S32	360244.782	437923.780	360244.782	437923.780	Required		
\$33	360245.485	437933.033	360245.485	437933.033	Required		
\$34	360238.767	437941.908	360238.767	437941.908	Required		
\$35	360224.192	437955.546	360224.192	437955.546	Required		
S46	360322.713	437931.499	360322.713	437931.499	Required		
S47	360295.411	437963.229	360295.411	437963.229	Required		
		@1 0.0	32-2020 Innc				

Barratt Homes	Manchest	er				Page 5	
4 Brindley Road Chipping Lane							
City Park, Ma			Longridge				
Cheshire M16							
Date 01/01/20)22		Designed by	v			
File CHIPPING	S LANE PH	ASE 2	Checked by				
Innovyze			Network 202				
Manhole Schedules for Surface Network 1							
MH Name	Manhole Easting	Northing	Intersection Easting	Northing	Manhole Access	Layout (North)	
	(m)	(m)	(m)	(m)			
S48	360270.802	437994.203	360270.802	437994.203	Required		
S201	360276.515	438011.955	360276.515	438011.955	Required		
S49	360257.044	437996.173	360257.044	437996.173	Required		
\$36	360217.700	437967.325	360217.700	437967.325	Required		
\$37	360201.357	437959.502	360201.357	437959.502	Required		
S38	360176.634	437947.669	360176.634	437947.669	Required		
\$39	360162.109	437950.453	360162.109	437950.453	Required		
S50	360135.634	437966.802	360135.634	437966.802	Required		
S40	360156.707	437954.016	360156.707	437954.016	Required		
S41	360168.694	437966.984	360168.694	437966.984	Required		
S42	360226.103	437999.836	360226.103	437999.836	Required		
S43	360266.544	438047.879	360266.544	438047.879	Required		
S44	360268.430	438074.482	360268.430	438074.482	Required		
S45	360239.322	438100.823	360239.322	438100.823	Required		
S12	360212.023	438121.115	360212.023	438121.115	Required		
		@1 Q S	32-2020 Inno	WVZE			

Barratt H	omes	Manchest	er				Page 6
4 Brindle	_			Chipping La	ane		
City Park	, Ma	nchester		Longridge			
Cheshire	M16	9HQ					
Date 01/0	1/20	22		Designed by	У		
File CHIP	PING	S LANE PH	ASE 2	Checked by			
Innovyze				Network 20	20.1.3		
		Manh	ole Sched	ules for Su	rface Netwo	<u>rk 1</u>	
	MH Name	Manhole Easting	Manhole Northing	Intersection Easting	Intersection Northing	Manhole Access	Layout (North)
	(diné:	(m)	(m)	(m)	(m)	AUUEBO	
	S13	360176.651	438148.554	360176.651	438148.554	Required	
	S14	360175.816	438157.429			No Entry	
			@1 Q	82-2020 Inno	NV70		

STORM SEWER DESIGN

Rainfall Simulation

1:30 year event

Barratt Homes Manchester		Page 0
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	-
Simulation Cri	iteria for Surface Network 1	
Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrog	0 Inlet Coefficience 0 Flow per Person per Day (1/per/da 0.500 Run Time (min	nge 2.000 ent 0.800 Ay) 0.000 as) 60
	trols 0 Number of Real Time Controls 0	
Synthe	tic Rainfall Details	
Rainfall Model Return Period (years) Region Engl M5-60 (mm) Ratio R	FSR Profile Type Sum 2 Cv (Summer) 0. and and Wales Cv (Winter) 0. 18.800 Storm Duration (mins) 0.281	750

	mes Manche	ster					Pag	e 1
4 Brindlev	Road			Chipping La	ne			-
City Park,		r		Longridge				
Cheshire		· 上		Longridge				
				D				
Date 01/01				Designed by			2 2 6	
File CHIPP	INGS LANE	PHASE		Checked by			(in the second s	
Innovyze]	Network 202	0.1.3			
Summary of	Areal Red	uction H Start	<u>Sim</u> Factor 1. (mins)	ulation Crite: .000 Additi 0 MA 0	ria onal Flow - DD Factor *	- % of Tota	l Flow 0. torage 2.	000
	e Headloss Co Sewage per 1 Number of	oeff (G] hectare Input	lobal) 0. (1/s) 0. Hydrogra	.500 Flow per	Person per of Storage	Day (1/pe	er/day) 0. s 1	
				ols 0 Number		-		
	Rain	ıfall Mo	-	<u>ic Rainfall D</u> : FSR		R 0.281		
		Reg	ion Engl	and and Wales	Cv (Summe	r) 0.750		
		M5-60 (mm)	18.800	Cv (Winte	r) 0.840		
	Manada E			····· · · · · · · · · ·	00 0 DT			
	Margin f	or Flood		arning (mm) 30				
			Analysi	is Timestep I DTS Status		a Status ()F.F.	
				DID DUAUUS	ÚN			
Re	Duration eturn Period Climate	(s) (yea	ins)	15, 30, 60, 1 720, 960, 1			30, 600,), 5760,	
	eturn Period Climate	n(s) (mi (s) (yea Change	ns) nrs) (%)	720, 960, 1	440, 2160,	40, 360, 48 2880, 4320 7200, 8640	30, 600, 0, 5760, 0, 10080 30 0	Water
Re US/MF PN Name	eturn Period Climate	n(s) (mi (s) (yea Change Return	ins)	720, 960, 1	440, 2160,	40, 360, 48 2880, 4320	30, 600, 0, 5760, 0, 10080 30 0	Water Level (m)
US/MH PN Name	eturn Period Climate I Storm	n(s) (mi (s) (yea Change Return Period	(%) Climate Change	720, 960, 1 First (X)	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m)
US/ME PN Name 1.000 S1	eturn Period Climate	n(s) (mi (s) (yea Change Return	(%) Climate	720, 960, 1 First (X)	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level
US/ME PN Name 1.000 S1	eturn Period Climate Storm 120 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30	ns) (%) Climate Change +0%	720, 960, 1 First (X)	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575
US/MF PN Name 1.000 S1 1.001 S2	eturn Period Climate Storm 120 Winter 120 Winter 5 15 Winter	n(s) (mi (s) (yea Change Return Period 30 30	ns) (%) Climate Change +0% +0%	720, 960, 1 First (X)	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30	rrs) (%) Climate Change +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30	rrs) (%) Climate Change +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30	rrs) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30	rrs) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 104.090
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 15 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30	rrs) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 104.090 103.794
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 15 Winter 120 Winter 15 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	rrs) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 104.090 103.794 103.575
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 120 Winter 15 Winter 120 Winter 120 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 104.090 103.794 103.575 103.575
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 120 Winter 15 Winter 120 Winter 120 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 104.090 103.794 103.575 103.575
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S16 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.006 S7	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 15 Winter 120 Winter 120 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.005 S6 1.006 S7 1.007 S8	Storm Climate Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575 103.575
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S16 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.006 S7 1.007 S8 1.008 S9	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575 103.576 103.576
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.005 S6 1.006 S7 1.007 S8 1.008 S9 4.000 S21	Storm Climate Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575 103.575 103.576 103.576 103.576
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.006 S7 1.007 S8 1.008 S9 4.000 S21 4.001 S22	Storm Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575 103.575 103.576 103.576 103.576
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.006 S7 1.007 S8 1.008 S9 4.000 S21 4.001 S22 1.009 S10	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575 103.575 103.576 103.576 104.308 103.576
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.006 S7 1.007 S8 1.008 S9 4.000 S21 4.001 S22 1.009 S10 1.010 S11	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	Climate (%) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y)	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575 103.575 103.576 103.576 104.308 103.576 103.576
US/ME PN Name 1.000 S1 1.001 S2 2.000 S15 2.001 S16 2.002 S17 2.003 S18 1.002 S3 3.000 S19 3.001 S20 1.003 S4 1.004 S5 1.005 S6 1.006 S7 1.007 S8 1.008 S9 4.000 S21 4.001 S22 1.009 S10	sturn Period Climate Storm 120 Winter 120 Winter 120 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter	n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	rrs) (%) Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	720, 960, 1 First (X) Surcharge 30/15 Summer	440, 2160, First (Y) Flood	40, 360, 44 2880, 4320 7200, 8640 First (Z)	30, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.575 103.575 104.964 104.799 104.605 104.555 103.575 103.575 103.575 103.575 103.575 103.575 103.576 103.576 103.576 104.308 103.576

Barratt Homes Manchester		Page 2
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S1	-0.631	0.000	0.01			17.8	OK	
1.001	S2	-0.544	0.000	0.02			19.6	OK	
2.000	S15	-0.126	0.000	0.39			14.2	OK	
2.001	S16	-0.138	0.000	0.31			18.8	OK	
2.002	S17	0.097	0.000	0.97			31.9	SURCHARGED	
2.003	S18	0.104	0.000	1.14			60.1	SURCHARGED	
1.002	S 3	-0.516	0.000	0.04			44.1	OK	
3.000	S19	-0.187	0.000	0.30			21.3	OK	
3.001	S20	-0.302	0.000	0.23			23.8	OK	
1.003	S4	-0.490	0.000	0.03			51.3	OK	
1.004	S5	-0.448	0.000	0.03			49.5	OK	
1.005	S6	-0.409	0.000	0.04			44.2	OK	
1.006	S7	-0.386	0.000	0.02			40.5	OK	
1.007	S8	-0.342	0.000	0.04			39.5	OK	
1.008	S9	-0.320	0.000	0.02			43.8	OK	
4.000	S21	-0.159	0.000	0.19			12.3	OK	
4.001	S22	-0.294	0.000	0.07			13.8	OK	
1.009	S10	-0.226	0.000	0.02			38.7	OK	
1.010	S11	-0.147	0.000	0.02			29.1	OK	
5.000	S23	-0.171	0.000	0.13			9.3	OK	

Barratt Homes Manchester		Page 3
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

PN	US/MH Name	S	torm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
5.001	S24	15	Winter	30	+0%						107.604
5.002	S25	15	Winter	30	+0୫						106.931
5.003	S26	15	Winter	30	+0೪						106.746
6.000	S105	15	Winter	30	+0%						111.218
6.001	S106	15	Winter	30	+0%						109.745
7.000	S101	15	Winter	30	+0%						108.660
8.000	S102	15	Winter	30	+0욱						110.737
7.001	S103	15	Winter	30	+0୫						108.327
7.002	S104	15	Winter	30	+0%						107.528
6.002	S107	15	Winter	30	+0웅						107.367
6.003	S108		Winter	30	+0웅						107.261
6.004	S109		Winter	30	+08						107.250
	S109A		Winter	30	+0웅						107.239
6.006	S110		Winter	30		30/15	Summer				107.227
5.004	S27		Winter	30	+08						106.539
5.005	S28		Winter	30	+0%						106.414
5.006	S29		Winter	30	+0%						106.180
5.007	S30		Winter	30	+0용						105.998
5.008	S31		Winter	30	+0%						105.699
5.009	S32		Winter	30			Summer				105.659
5.010	S33		Winter	30		30/15	Winter				105.616
5.011	S34		Winter	30	+0%						105.421
5.012	S35		Winter	30	+0%						105.282
9.000	S46		Winter	30	+0%						108.511
9.001	S47		Winter	30	+0%						107.324
9.002	S48		Winter	30	+0%						105.973
10.000	S201		Summer	30	+0%						105.375
9.003	S49		Winter	30	+0%	00/15	~				105.375
5.013	S36		Winter	30			Summer				105.032
5.014	\$37		Winter	30			Summer				104.904
5.015	S38		Winter	30			Summer				104.743
5.016	S39		Winter	30		30/15	Summer				104.587
11.000	S50		Winter	30	+08	20 /1 F	0				104.462
5.017	S40 S41		Winter Winter	30 30			Summer Winter				104.435 104.282
5.018	541 542		Winter	30			Winter				104.282
5.019			Winter	30	+0% +0%	30/30	MILLEI				104.100
5.020			Winter	30	+08 +08						
5.021			Winter	30	+0종 +0용						103.580 103.578
1.011			Winter	30	+0%						103.575
1.011			Winter	30		30/15	Summer				103.568
1.012	315	120		50	.00	50,10	2 Gunnie T				
		St	ircharge	d Flood	ed		H:	alf Drain	Pipe		

PN	US/MH Name	Surcharged Depth (m)			Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
5.001	S24	-0.130	0.000	0.37			29.8	OK	
5.002	S2 5	-0.115	0.000	0.47			29.7	OK	
			(D1982-2	2020 Inn	ovyze			

Barratt Homes Manchester		Page 4
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

		Surcharged				Half Drain	-		
	US/MH	Depth		•	Overflow		Flow		Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
5.003	S26	-0.103	0.000	0.56			29.5	OK	
6.000	S105	-0.166	0.000	0.15			15.3	OK	
6.001	S106	-0.128	0.000	0.38			35.8	OK	
7.000	S101	-0.115	0.000	0.47			23.1	OK	
8.000	S102	-0.138	0.000	0.32			34.3	OK	
7.001	S103	-0.054	0.000	1.00			83.4	OK	
7.002	S104	-0.549	0.000	0.16			109.9	OK	
6.002	S107	-0.515	0.000	0.21			149.0	OK	
6.003	S108	-0.421	0.000	0.22			168.7	OK	
6.004	S109	-0.186	0.000	0.31			139.9	OK	
6.005	S109A	-0.141	0.000	0.12			112.1	OK	
6.006	S110	0.482	0.000	0.69			94.8	SURCHARGED	
5.004	S27	-0.171	0.000	0.70			118.3	OK	
5.005	S28	-0.243	0.000	0.43			122.3	OK	
5.006	S29	-0.160	0.000	0.74			125.6	OK	
5.007	S30	-0.251	0.000	0.40			131.5	OK	
5.008	S31	-0.212	0.000	0.45			131.5	OK	
5.009	S32	0.020	0.000	1.56			147.3	SURCHARGED	
5.010	S33	0.000	0.000	1.47			146.9	SURCHARGED	
5.011	S34	-0.167	0.000	0.71			148.8	OK	
5.012	S35	-0.167	0.000	0.71			157.5	OK	
9.000	S46	-0.162	0.000	0.17			14.6	OK	
9.001	S47	-0.118	0.000	0.45			41.5	OK	
9.002	S48	-0.105	0.000	0.55			52.2	OK	
10.000	S201	-0.375	0.000	0.00			0.0	OK	
9.003	S49	-0.240	0.000	0.27			77.8	OK	
5.013	S36	0.566	0.000	1.69			204.6	SURCHARGED	
5.014	S37	0.483	0.000	1.53			209.9	SURCHARGED	
5.015	S38	0.391	0.000	2.09				SURCHARGED	
5.016	S39	0.272	0.000	2.11			223.1	SURCHARGED	
11.000	S50	-0.162	0.000	0.17			9.5	OK	
5.017	S40	0.137	0.000	1.93				SURCHARGED	
5.018	S41	0.028	0.000	1.07				SURCHARGED	
5.019	S42	0.011	0.000	1.11				SURCHARGED	
5.020	S43	-0.351	0.000	0.07			168.6	OK	
5.021	S44	-0.285	0.000	0.06			152.7	OK	
5.022	S45	-0.189	0.000	0.06			135.0	OK	
1.011	S12	-0.107	0.000	0.03			78.5	OK	
1.012	S13	1.175	0.000	0.81			49.8	SURCHARGED	

Rainfall Simulation

1:30 year event with Surcharged Outfall

Barratt Ho	mes Ma	anchest	cer							I	Page 0
l Brindley	Road				Chipp	ing La	ne				
City Park,	Manch	nester			Longr	idge					
Cheshire	м169но	2									
Date 01/01	/2022				Desig	ned by					
File CHIPP		LANE P	HASE 2	,	Checke	-					ردی در قر به در این در کرد
	11100 1			•••		rk 202	0 1 3				
Innovyze					Netwo.	LK ZUZ	0.1.5				
		urcharg Outfall	. Out	itfall :fall C. ame			el b I.), ь и	7	
		1.0	12	S14 1	L02.473	102.0	40	0.000	600	0	
			Dati	um (m)	102.040	Offset	: (mins	s) O			
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	-
(11112)	()	(/ ** /	(()	(1110)	(111)	(()	((***)
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520 0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520 0.520		0.520		0.520	1	0.520 0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520	178	0.520	219	0.520
15	0.520	56	0.520	97	0.520	138	0.520	179	0.520	220	0.520
16	0.520	57	0.520	98	0.520	139	0.520	180	0.520	221	0.520
17	0.520	58	0.520	99	0.520	140	0.520	181	0.520	222	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520	1	0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520 0.520		0.520	1	0.520 0.520	1	0.520 0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520	1	0.520	1	0.520
30	0.520		0.520		0.520	153	0.520	1	0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520	1	0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520	1	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520 0.520		0.520 0.520		0.520 0.520		0.520		0.520 0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
		I		I	I			I		I	
				©198	2-2020) Inno	vze				

Barratt Ho	mes Ma	anches	ter							I	2age 1
4 Brindley	Road				Chipp	ing La	ne				
City Park,	Mancl	nester			Longr	idge					
Cheshire	м169но)			-	-					
Date 01/01		~			Desig	ned by					
File CHIPP		אודי סו	UNCE (,	Check	-					
	TNGS						0 1 2				
Innovyze					Netwo	rk 202	0.1.3				
	<u>Sı</u>	irchar	ged Ou	utfall	Detai	<u>ls for</u>	Surf	<u>ace Ne</u>	<u>twork</u>	1	
Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth		-
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)
247	0.520	266	0.520	285	0.520	304	0.520	323	0.520	342	0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
250	0.520	269	0.520	288	0.520	307	0.520	326	0.520	345	0.520
251	0.520	270	0.520	289	0.520	308	0.520	327	0.520	346	0.520
252	0.520	271	0.520	290	0.520		0.520	328	0.520	347	0.520
	0.520	272	0.520		0.520		0.520	1	0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520		0.520		0.520		0.520		0.520		0.520
	0.520 0.520		0.520 0.520		0.520 0.520		0.520 0.520		0.520		0.520 0.520
		I		I				<u>Netwoi</u>			
									<u> </u>		
		etric R						.ow - % :or * 10			
	Area	l Reduc	tart (0000	MAI	JD Fact			iecient	
	но	t Start	-	-	-	low per	Person	per Da			
Manhole		oss Coe				row ber	rerson	-		(mins)	
		per he	•				Ou	itput In			
	Numl	per of I	Input H	lydrogra	aphs 0		of Sto:	rage St:	ructure	es 1	
								e/Area 1 1 Time (2		
			<u>Sy</u>	nthet	ic Rai	nfall	<u>Detai</u>	<u>ls</u>			
										_	
		Rainfall				FSR				e Summe	
R	eturn 1	Period				2		•	Summer)		
		ME	-	n Englar			+ D-	۲ Cv uration	Winter)		
			60 (mm) Ratio F			0.281 0.281	LOTIN D	uracion	(mrus)	3	0
		1	Nacio r			0.201					

Barratt Ho	mes manene	SCEL					ray	je 2
4 Brindley	7 Road			Chipping La	ine			
City Park,	Mancheste	r		Longridge				
Cheshire				5				
Date 01/01				Designed by	7			
	PINGS LANE	DUXCE					- 19 <u>9</u> 9	
	INGS LANE	PHASE		Checked by	0 1 0			
Innovyze				Network 202	20.1.3			
Manhol	Areal Red Hot Hot Sta e Headloss Co Sewage per D Number of Number o Rain	uction E Start (rt Level beff (GJ hectare Input of Onli of Offli fall Mo Reg M5-60 (s	Simu Factor 1. (mins) . (mm) .obal) 0. (1/s) 0. (1/s) 0. Hydrogra ne Contr ne Contr ne Contr <u>Synthet</u> del ion Engl mm)	0 .500 Flow per .000 phs 0 Number ols 2 Number ols 0 Number <u>tic Rainfall J</u> FSP and and Wales	ria onal Flow - DD Factor ? Person per of Storage of Time/Ar of Real Ti Details R Ratio S Cv (Summe D Cv (Winte	- % of Tota (10m ³ /ha S hlet Coeffi c Day (1/pe Structure ea Diagram me Control R 0.281 r) 0.750 r) 0.840	al Flow 0 Storage 2 iecient 0 er/day) 0 s 1 s 0 s 0 s 0	.000 .000 .800
	-	Profile	-	is Timestep DTS Status	ON	Summer and	d Winter	
R	Duration Duration eturn Period Climate	Profile n(s) (mi (s) (yea	- (s) ns) rs)	-	ON 120, 180, 2	Summer an 40, 360, 4	d Winter 80, 600, 0, 5760,	
R US/M	Duration eturn Period Climate	Profile n(s) (mi (s) (yea Change	- (s) ns) rs)	DTS Status	ON 120, 180, 2 1440, 2160,	Summer an 40, 360, 4 2880, 432	d Winter 80, 600, 0, 5760, 0, 10080 30 0	Water 7 Level
	Duration eturn Period Climate	Profile n(s) (mi (s) (yea Change Return	- ns) .rs) (%)	DTS Status	ON 120, 180, 2 1440, 2160,	Summer an 40, 360, 4 2880, 432 7200, 864	d Winter 80, 600, 0, 5760, 0, 10080 30 0	
US/M PN Name	Duration eturn Period Climate	Profile n(s) (mi (s) (yea Change Return	(s) ns) rs) (%) Climate	DTS Status 15, 30, 60, 2 720, 960, 2 First (X)	ON 120, 180, 2 1440, 2160, First (Y)	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level
US/M PN Name 1.000 S	Duration eturn Period Climate	Profile n(s) (mi (s) (yea Change Return Period	(s) ns) rs) (%) Climate Change	DTS Status 15, 30, 60, 2 720, 960, 2 First (X)	ON 120, 180, 2 1440, 2160, First (Y)	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	r Level (m)
US/M PN Name 1.000 S 1.001 S 2.000 S1	Duration eturn Period Climate Storm 1 240 Winter 2 240 Winter	Profile n(s) (mi (s) (yea Change Return Period 30	(s) ns) rs) (%) Climate Change +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X)	ON 120, 180, 2 1440, 2160, First (Y)	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	(m)
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1	Duration eturn Period Climate Storm L 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter	Profile n(s) (mi (s) (yea Change Return Period 30 30	(s) ns) rs) (%) Climate Change +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	(m) 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.001 S1 2.002 S1	Duration eturn Period Climate Storm 1 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 7 15 Winter	Profile n(s) (mi (s) (yea Change Return Period 30 30 30 30 30 30	(s) ns) (%) Climate (hange +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	 Level (m) 103.687 103.687 103.687 104.964 104.799
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1	Duration Duration Climate Storm 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 7 15 Winter 3 15 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	 Level (m) 103.687 103.687 104.964 104.799 104.605 104.555
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S	Duration Duration Climate Storm 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 7 15 Winter 3 15 Winter 3 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	I.evel (m) 103.687 103.687 104.964 104.799 104.605 104.555 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1	Duration eturn Period Climate Storm L 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 3 15 Winter 3 240 Winter 9 15 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	I.evel (m) 103.687 103.687 104.964 104.799 104.605 104.555 103.687 104.090
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2	Duration eturn Period Climate Storm L 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 3 15 Winter 3 240 Winter 9 15 Winter 0 15 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 104.900 103.794
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S	Duration eturn Period Climate Storm L 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 3 240 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 15 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	I.evel (m) 103.687 103.687 104.964 104.605 104.555 103.687 104.090 103.794 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S	Duration eturn Period Climate Storm 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 3 240 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 104.090 103.794 103.687 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S	Duration eturn Period Climate Storm 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 3 240 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 240 Winter 5 240 Winter 5 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 104.090 103.794 103.687 103.687 103.687 103.687 103.687 103.687 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S 1.006 S	Duration eturn Period Climate Storm 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 6 15 Winter 7 15 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 15 Winter 9 240 Winter 5 240 Winter 5 240 Winter 5 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S 1.006 S 1.007 S	Duration Duration Climate Climate Storm L 240 Winter 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 3 15 Winter 3 240 Winter 5 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S 1.006 S 1.007 S 1.008 S	Duration Duration Climate Climate Storm L 240 Winter 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 3 240 Winter 5 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S 1.005 S 1.006 S 1.007 S 1.008 S 4.000 S2	Duration Climate Climate Storm 2 240 Winter 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 6 15 Winter 7 15 Winter 9 15 Winter 9 15 Winter 9 240 Winter 5 240 Winter 5 240 Winter 5 240 Winter 5 240 Winter 7 240 Winter 7 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 104.308
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S 1.005 S 1.006 S 1.007 S 1.008 S 4.000 S2 4.001 S2	Duration Climate Climate Storm 2 240 Winter 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 6 15 Winter 7 15 Winter 8 240 Winter 5 240 Winter 5 240 Winter 5 240 Winter 5 240 Winter 5 240 Winter 7 240 Winter 8 240 Winter 5 240 Winter 7 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S 1.005 S 1.006 S 1.007 S 1.008 S 4.000 S2 4.001 S2 1.009 S1	Duration Duration Climate Climate Storm L 240 Winter 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 6 15 Winter 7 15 Winter 8 240 Winter 5 240 Winter 5 240 Winter 6 240 Winter 5 240 Winter 6 240 Winter 7 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter 9 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687 103.687
US/M PN Name 1.000 S 1.001 S 2.000 S1 2.001 S1 2.002 S1 2.003 S1 1.002 S 3.000 S1 3.001 S2 1.003 S 1.004 S 1.005 S 1.005 S 1.006 S 1.007 S 1.008 S 4.000 S2 4.001 S2 1.009 S1	Duration Duration Climate Climate Storm L 240 Winter 2 240 Winter 2 240 Winter 5 15 Winter 5 15 Winter 5 15 Winter 6 15 Winter 7 15 Winter 6 240 Winter 5 240 Winter 6 240 Winter 7 240 Winter 7 240 Winter 8 240 Winter 9 240 Winter 9 240 Winter 1 5 Winter 9 240 Winter	Profile (s) (yea Change Return Period 30 30 30 30 30 30 30 30 30 30 30 30 30	- (s) ns) (%) Climate (%) (%) Climate (%) +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 2 720, 960, 2 First (X) Surcharge 30/15 Summer	ON 120, 180, 2 1440, 2160, First (Y) Flood	Summer an 40, 360, 4 2880, 432 7200, 864 First (Z)	d Winter 80, 600, 0, 5760, 0, 10080 30 0 Overflow	Level (m) 103.687 103.687 104.964 104.555 103.687 104.555 103.687

Barratt Homes Manchester		Page 3
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	·

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S1	-0.519	0.000	0.01			10.2	OK	
1.001	S2	-0.432	0.000	0.01			10.2	OK	
2.000	S15	-0.126	0.000	0.39			14.2	OK	
2.001	S16	-0.138	0.000	0.31			18.8	OK	
2.002	S17	0.097	0.000	0.97			31.9	SURCHARGED	
2.003	S18	0.104	0.000	1.14			60.1	SURCHARGED	
1.002	S 3	-0.404	0.000	0.02			23.1	OK	
3.000	S19	-0.187	0.000	0.30			21.3	OK	
3.001	S20	-0.302	0.000	0.23			23.8	OK	
1.003	S4	-0.378	0.000	0.02			26.6	OK	
1.004	S5	-0.336	0.000	0.02			24.4	OK	
1.005	S6	-0.297	0.000	0.02			19.7	OK	
1.006	S7	-0.274	0.000	0.01			17.1	OK	
1.007	S8	-0.231	0.000	0.02			17.4	OK	
1.008	S9	-0.209	0.000	0.01			18.9	OK	
4.000	S21	-0.159	0.000	0.19			12.3	OK	
4.001	S22	-0.183	0.000	0.04			8.7	OK	
1.009	S10	-0.116	0.000	0.01			25.8	OK	
1.010	S11	-0.038	0.000	0.02			30.7	OK	
5.000	S23	-0.171	0.000	0.13			9.3	OK	

Barratt Homes Manchester		Page 4
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

PN	US/MH Name	s	torm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
5.001	S24	15	Winter	30	+0%						107.604
5.002	S25	15	Winter	30	+0୫						106.931
5.003	S26	15	Winter	30	+0%						106.746
6.000	S105	15	Winter	30	+0%						111.218
6.001	S106	15	Winter	30	+0%						109.745
7.000	S101	15	Winter	30	+0%						108.660
8.000	S102		Winter	30	+0웅						110.737
7.001	S103	15	Winter	30	+0୫						108.327
7.002	S104	15	Winter	30	+0%						107.528
6.002	S107		Winter	30	+08						107.367
6.003	S108		Winter	30	+0웅						107.261
6.004	S109		Winter	30	+08						107.250
	S109A		Winter	30	+08						107.239
6.006	S110		Winter	30		30/15	Summer				107.227
5.004	S27		Winter	30	+08						106.539
5.005	S28		Winter	30	+0웅						106.414
5.006	S29		Winter	30	+0%						106.180
5.007	S30		Winter	30	+0용						105.998
5.008	S31		Winter	30	+0%						105.699
5.009	S32		Winter	30			Summer				105.659
5.010	S33		Winter	30		30/15	Winter				105.616
5.011	S34		Winter	30	+0%						105.421
5.012	S35		Winter	30	+0%						105.282
9.000	S46		Winter	30	+0%						108.511
9.001	S47		Winter	30	+0%						107.324
9.002	S48		Winter	30	+0%						105.973
10.000	S201		Summer	30	+0움						105.375
9.003	S49		Winter	30	+0%		_				105.375
5.013	S36		Winter	30			Summer				105.032
5.014	S37		Winter	30			Summer				104.904
5.015	S38		Winter	30			Summer				104.743
5.016	S39		Winter	30		30/15	Summer				104.587
11.000	S50		Winter	30	+0%	20/15	a				104.462
5.017	S40		Winter	30			Summer				104.435
5.018	S41		Winter	30			Winter				104.282
5.019	S42		Winter	30		30/30	Winter				104.100
			Winter	30	+0욱 +0웅						103.704
5.021			Winter Winter	30	+0% +0%						103.701
1.011			Winter Winter	30 30	+0% +0%						103.694 103.682
1.011			Winter	30		30/15	Summer				103.652
1.012	010	100	HTHCAT	50	1070	20/13	Canangr				100.009
		S1	ircharge	d Flood	ed		H:	alf Drain	Pipe		

PN	US/MH Name	Surcharged Depth (m)			Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
5.001	S24	-0.130	0.000	0.37			29.8	OK	
5.002	S2 5	-0.115	0.000	0.47			29.7	OK	
			(D1982-2	2020 Inn	ovyze			

Barratt Homes Manchester		Page 5
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	·

		Surcharged				Half Drain	-		
	US/MH	Depth		•	Overflow		Flow		Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
5.003	S26	-0.103	0.000	0.56			29.5	OK	
6.000	S105	-0.166	0.000	0.15			15.3	OK	
6.001	S106	-0.128	0.000	0.38			35.8	OK	
7.000	S101	-0.115	0.000	0.47			23.1	OK	
8.000	S102	-0.138	0.000	0.32			34.3	OK	
7.001	S103	-0.054	0.000	1.00			83.4	OK	
7.002	S104	-0.549	0.000	0.16			109.9	OK	
6.002	S107	-0.515	0.000	0.21			149.0	OK	
6.003	S108	-0.421	0.000	0.22			168.7	OK	
6.004	S109	-0.186	0.000	0.31			139.9	OK	
6.005	S109A	-0.141	0.000	0.12			112.1	OK	
6.006	S110	0.482	0.000	0.69				SURCHARGED	
5.004	S27	-0.171	0.000	0.70			118.3	OK	
5.005	S28	-0.243	0.000	0.43			122.3	OK	
5.006	S29	-0.160	0.000	0.74			125.6	OK	
5.007	S30	-0.251	0.000	0.40			131.5	OK	
5.008	S31	-0.212	0.000	0.45			131.5	OK	
5.009	S32	0.020	0.000	1.56				SURCHARGED	
5.010	S33	0.000	0.000	1.47				SURCHARGED	
5.011	S34	-0.167	0.000	0.71			148.8	OK	
5.012	S 35	-0.167	0.000	0.71			157.5	OK	
9.000	S46	-0.162	0.000	0.17			14.6	OK	
9.001	S47	-0.118	0.000	0.45			41.5	OK	
9.002	S48	-0.105	0.000	0.55			52.2	OK	
10.000	S201	-0.375	0.000	0.00			0.0	OK	
9.003	S49	-0.240	0.000	0.27			77.8	OK	
5.013	S36	0.566	0.000	1.69				SURCHARGED	
5.014	S37	0.483	0.000	1.53				SURCHARGED	
5.015	S38	0.391	0.000	2.09				SURCHARGED	
5.016	S39	0.272	0.000	2.11				SURCHARGED	
11.000	S50	-0.162	0.000	0.17			9.5	OK	
5.017	S40	0.137	0.000	1.93				SURCHARGED	
5.018	S41	0.028	0.000	1.07				SURCHARGED	
5.019	S42	0.011	0.000	1.11				SURCHARGED	
5.020	S43	-0.228	0.000	0.05			114.6	OK	
5.021	S44	-0.164	0.000	0.04			105.0	OK	
5.022	S45	-0.073	0.000	0.04			96.1	OK	
1.011	S12	0.000	0.000	0.03			69.3	OK	
1.012	S13	1.266	0.000	0.81			49.9	SURCHARGED	

Rainfall Simulation

1:100 year event +30% Climate Change

Denneth Henry Manahashas		D 0
Barratt Homes Manchester		Page 0
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	
Date 01/01/2022 File CHIPPINGS LANE PHASE 2 Innovyze Simulation Crit Volumetric Runoff Coeff (Areal Reduction Factor : Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (1/s) (Number of Input Hydrogr Number of Online Cont Number of Offline Cont Synthet Rainfall Model Return Period (years)	Network 2020.1.3 teria for Surface Network 1 0.750 Additional Flow - % of Total Fl 1.000 MADD Factor * 10m ³ /ha Stora 0 Inlet Coeffiecie 0 Flow per Person per Day (1/per/da 0.500 Run Time (min	ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1
©198	82-2020 Innovyze	

Barratt	nomes	1 IGII CII C	ester					Page	
4 Brindl					Chipping La	ine			
City Par	-		or		Longridge	ine			
-			εı		Toudtrade				
Cheshire						-			
Date 01/	•				Designed by	7		2 3 5 5	
File CHI	PPINGS	LANE	PHASE	2	Checked by				يغضاه
Innovyze					Network 202	20.1.3			
Manh	Ar ole Hea ul Sewa Nu	real Red Hot Sta dloss (ge per umber o Number Number	duction Start Art Leve Coeff (G hectare f Input of Onl.	Sir Factor 1 (mins) el (mm) Global) (e (1/s) (Hydrogr ine Cont ine Cont <u>Synthe</u>	0).500 Flow per	ria onal Flow - DD Factor * In Person per of Storage of Storage of Time/Are of Real Tim Details	% of Total 10m³/ha St let Coeffie Day (1/per Structures a Diagrams	L Flow 0.0 corage 2.0 ecient 0.8 c/day) 0.0 1 0	000 000 300
		largin f	M5-60 For Floo		18.800 Warning (mm) 3) Cv (Winter 00.0 DV) 0.840 D Status OF	FF	
	Return	Duratic	Profil on(s) (m l(s) (ye e Change	e(s) ins) ars)	sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1	ON 120, 180, 24 1440, 2160,	a Status OF Summer and 0, 360, 480	Winter 0, 600, , 5760,	
US/I PN Nam	Return	Duratic	Profil on(s) (m l(s) (ye e Change Return	e(s) ins) ars)	DTS Status	ON 120, 180, 24 1440, 2160,	a Status OF Summer and 0, 360, 480 2880, 4320,	Winter 0, 600, , 5760, , 10080 100 30	Water Level (m)
PN Nam	Return fH e St	Duratic Period Climate	Profil on(s) (m d(s) (ye e Change Return Period	e(s) Lins) ars) (%) Climate Change	DTS Status 15, 30, 60, 1 720, 960, 1 First (X)	ON 120, 180, 24 1440, 2160, First (Y)	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m)
PN Nam 1.000 S	Return fH e St	Duratic Period Climate Corm Winter	Profil on(s) (m d(s) (ye e Change Return Period 100	e(s) Lins) Aars) (%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X)	ON 120, 180, 24 1440, 2160, First (Y)	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07:
PN Nam 1.000 \$ 1.001 \$	Return 6H e St 51 240 7 52 240 7	Duratic Period Climate corm Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100	e(s) Lins) ars) : (%) Climate Change +30% +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 220, 180, 24 440, 2160, First (Y) Flood	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$	Return 6H 9 St 32 240 7 5 15 7	Duratic Period Climate Corm Winter Winter Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100	e(s) Lins) Climate Change +30% +30% +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe	ON 220, 180, 24 440, 2160, First (Y) Flood r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 104.07 105.30
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$	Return 6 2 240 7 32 240 7 5 15 7 6 15 7	Duratic Period Climate corm Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100	e(s) Lins) ars) : (%) Climate Change +30% +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 220, 180, 24 440, 2160, First (Y) Flood	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$	Return e St 32 240 7 5 15 7 6 15 7 7 15 7	Duratic Period Climate Corm Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100	e(s) ins) ears) (%) Climate Change +30% +30% +30% +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe	ON 220, 180, 24 440, 2160, First (Y) Flood	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Leve] (m) 104.07 105.30 105.25 105.18
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$	Return e St 32 240 7 5 15 7 6 15 7 7 15 7	Duratic Period Climate Winter Winter Winter Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100	e(s) ins) ears) c(%) Climate Change +30% +30% +30% +30% +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe	ON 220, 180, 24 440, 2160, First (Y) Flood	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$	Return e St 32 240 7 5 15 7 5 15 7 5 15 7 5 15 7 5 15 7 5 3 240 7	Duratic Period Climate Winter Winter Winter Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100	e(s) ins) ears) c(%) Climate Change +30% +30% +30% +30% +30% +30% +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe	ON 220, 180, 24 440, 2160, First (Y) Flood	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$	Return e St 32 240 7 5 15 7 5 15 7 5 15 7 5 15 7 5 15 7 5 3 240 7	Duratic Period Climate Winter Winter Winter Winter Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye change Return Period 100 100 100 100 100 100 100	e(s) ins) ears) c(%) Climate Change +30% +30% +30% +30% +30% +30% +30% +30% +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe	ON 220, 180, 24 440, 2160, First (Y) Flood	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07 104.12
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 3.001 \$ 1.003 \$	Return 61 240 7 5 15	Duratic Period Climate Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye change Return Period 100 100 100 100 100 100 100 100	e(s) ins) ears) c(%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe	ON 120, 180, 24 1440, 2160, First (Y) Flood	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07 104.12 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 3.001 \$ 1.003 \$ 1.004 \$	Return e St 31 240 5 15 5 15 5 15 5 240 9 15 5 240 5 240 5 240 5 240	Duratic Period Climate Climate Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e(s) ins) ears) c(%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07 104.12 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 1.003 \$ 1.004 \$ 1.005 \$	Return 6 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Duratic Period Climate Climate Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e(s) ins) ears) c(%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/12 Winte 100/120 Winte	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07 104.12 104.07 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 1.003 \$ 1.004 \$ 1.005 \$ 1.006 \$	Return 6 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Duratic Period Climate Climate Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e(s) ins) ears) c(%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/12 Winte 100/120 Winte 100/120 Winte	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (n) 104.07 105.30 105.25 105.18 105.09 104.07 104.12 104.07 104.07 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 1.003 \$ 1.004 \$ 1.005 \$ 1.006 \$ 1.007 \$	Return e St 31 240 7 32 240 7 32 240 7 33 240 7 33 240 7 33 240 7 34 240 7 35 240 7 35 240 7 36 240 7 36 240 7 37 240 7 38 240 7 39 240 7 39 240 7 30	Duratic Period Climate Climate Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e(s) ins) ears) c(%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/12 Winte 100/120 Winte 100/120 Winte 100/120 Winte	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (n) 104.07 105.30 105.25 105.18 105.09 104.07 104.12 104.07 104.07 104.07 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 1.003 \$ 1.004 \$ 1.005 \$ 1.006 \$ 1.007 \$ 1.008 \$	Return 6 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Duratic Period Climate Climate Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e(s) ins) ears) c(%) Climate (%) Climate (%) +30% +30% +30% +30% +30% +30% +30% +30	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/12 Winte 100/120 Winte 100/120 Winte	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (n) 104.07 105.30 105.25 105.18 105.09 104.07 104.12 104.07 104.07 104.07 104.07 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 1.003 \$ 1.004 \$ 1.005 \$ 1.006 \$ 1.007 \$ 1.008 \$ 4.000 \$	Return 6 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Duratic Period Climate Climate Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e (s) ins) ears) c (%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/12 Winte 100/120 Winte 100/120 Winte 100/120 Winte 100/120 Summe	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (n) 104.07 105.30 105.25 105.18 105.09 104.07 104.12 104.07 104.07 104.07 104.07 104.07 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 1.003 \$ 1.004 \$ 1.005 \$ 1.006 \$ 1.007 \$ 1.008 \$ 4.000 \$	Return e St 31 240 32 240 32 240 33 240 33 240 34 240 35 240 36 240 36 240 37 240 38 240 39 240 30 240	Duratic Period Climate Climate Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e (s) ins) ears) c (%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/120 Winte 100/120 Winte 100/120 Winte 100/120 Summe 100/120 Summe	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 3.001 \$ 1.003 \$ 1.004 \$ 1.005 \$ 1.006 \$ 1.007 \$ 1.008 \$ 4.000 \$ 4.001 \$ 1.009 \$	Return 6 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Duratic Period Climate Climate Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e (s) ins) ears) c (%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/120 Winte 100/120 Winte 100/120 Winte 100/120 Summe 100/120 Summe	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r r r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07
PN Nam 1.000 \$ 1.001 \$ 2.000 \$ 2.001 \$ 2.002 \$ 2.003 \$ 1.002 \$ 3.000 \$ 3.001 \$ 1.003 \$ 1.004 \$ 1.005 \$ 1.006 \$ 1.008 \$ 4.000 \$ 1.009 \$ 1.010 \$	Return e St 31 240 32 240 32 240 32 240 33 240 33 240 34 240 35 240 36 240 36 240 37 240 38 240 39 240 39 240 39 240 39 240 39 240 39 240 39 240 39 240 39 240 30 240 30 240 30 240 30 240 31 240 31 240 32 240 32 240 33 240 34 240 35 240 35 240 36 240 37 240 38 240 39 240 30 240	Duratic Period Climate Climate Winter	Profil on(s) (m d(s) (ye e Change Return Period 100 100 100 100 100 100 100 100 100 10	e (s) ins) ears) c (%) Climate Change +30%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/15 Summe 100/120 Winte 100/120 Winte 100/120 Winte 100/120 Summe 100/120 Summe	ON 120, 180, 24 1440, 2160, First (Y) Flood r r r r r r r r r r r r r	a Status OF Summer and 0, 360, 480 2880, 4320, 7200, 8640, First (Z)	Winter 0, 600, , 5760, , 10080 100 30 Overflow	Level (m) 104.07 105.30 105.25 105.18 105.09 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07 104.07

Barratt Homes Manchester		Page 2
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)			Overflow (l/s)	Ealf Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S1	-0.134	0.000	0.01			16.8	OK	
1.001	S2	-0.047	0.000	0.01			14.9	OK	
2.000	S15	0.214	0.000	0.57			20.8	SURCHARGED	
2.001	S16	0.321	0.000	0.50			30.7	SURCHARGED	
2.002	\$17	0.681	0.000	1.39			45.7	SURCHARGED	
2.003	S18	0.642	0.000	1.65			87.3	SURCHARGED	
1.002	S3	-0.020	0.000	0.03			37.5	OK	
3.000	S19	-0.148	0.000	0.50			35.1	OK	
3.001	S20	-0.025	0.000	0.10			9.7	OK	
1.003	S4	0.006	0.000	0.03			46.3	SURCHARGED	
1.004	S 5	0.049	0.000	0.03			47.1	SURCHARGED	
1.005	S6	0.088	0.000	0.04			42.6	SURCHARGED	
1.006	S 7	0.111	0.000	0.02			40.6	SURCHARGED	
1.007	S8	0.154	0.000	0.04			41.7	SURCHARGED	
1.008	S9	0.176	0.000	0.02			48.9	SURCHARGED	
4.000	S21	-0.138	0.000	0.31			20.7	OK	
4.001	S22	0.202	0.000	0.07			14.3	SURCHARGED	
1.009	S10	0.270	0.000	0.02			55.5	SURCHARGED	
1.010	S11	0.350	0.000	0.03			56.7	SURCHARGED	
5.000	S23	-0.153	0.000	0.22			15.6	OK	

rratt H			ester	2						Page 3
Brindle	-					pping I	ane			
ty Parl			er		Lone	gridge				
leshire	M169									
te 01/0)1/202	22			Des	igned b	у			naisi in triu
ile CHII	PING	5 LANE	PHAS	SE 2 .	Che	cked by	7			
nnovyze					Net	work 20	20.1.3		•	
-	of Cr US/MH				y Maxin Climate	First	: (X)	nk 1) for S First (Y) Fi	irst (Z)	
PN	Name	Stor	cm.	Period	Change	Surch	large	Flood O	verflow	Act.
5.001	S24	15 Wi:	nter	100	+30%					
5.002	S25	15 Wi:		100	+30%					
5.003	S26			100	+30%					
6.000	S105			100	+30%					
6.001	S106			100	+30%	100 10				
7.000	S101			100	+30%	100/15	Summer			
8.000	S102			100	+30% +30%	100/15	C11			
7.001	S103 S104			100 100	+30% +30%	100/12	Summer			
6.002	S104 S107			100	+30% +30%	100/30	Winter			
6.002	S107			100	+30%		Winter			
6.004	S109			100	+30%	-	Summer			
	S109A			100	+30%		Summer			
6.006	S110			100	+30%		Summer			
5.004	S27	30 Wi:	nter	100	+30%	100/30	Winter			
5.005	S28	30 Wi:	nter	100	+30%	100/30	Winter			
5.006	S29	30 Wi:	nter	100	+30%		Winter			
5.007	S30	30 Wi:		100	+30%		Winter			
5.008	S31	30 Wi:		100	+30%		Summer			
5.009	\$32			100	+30%		Summer			
5.010	S33			100	+30%	-	Summer			
5.011 5.012	S34 S35			100 100	+30% +30%		Summer Summer			
9.000	S46			100	+30%	100/10	Summer			
9.001	S47	15 Wi:		100	+30%					
9.001	S48	30 Wi:		100	+30%	100/30	Winter			
10.000	S201	30 Wi:		100	+30%		Winter			
9.003	S49	30 Wi:	nter	100	+30%	100/15	Winter			
5.013	S36	30 Wi:		100	+30%	-	Summer			
5.014	\$37	30 Wi:		100	+30%		Summer			
5.015	S38	30 Wi:		100	+30%		Summer			
5.016	S39	30 Wi:		100	+30%		Summer			
11.000	S50	30 Wi:		100	+30%	-	Summer			
5.017	S40	30 Wi:		100	+30% +30%	-	Summer			
5.018 5.019	S41 S42	30 Wi: 30 Wi:		100 100	+30% +30%		Summer Summer			
5.019		240 Wi:		100		100/120				
5.020		240 Wi:		100	+30%		Winter			
5.022		240 Wi		100	+30%		Summer			
1.011		240 Wi		100	+30%		Winter			
1.012	S13	240 Wi	nter	100	+30%	100/15	Summer			
		Water	Surc	harged	Flooded			Half Drain	Pipe	
	US/MH	Level		epth		Flow /	Overflow		Flow	
PN	Name	(m)		(m)	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status
5.001	S24	107.639)	-0.095	0.000	0.62			50.0	OK
5.002		106.975		-0.071	0.000	0.79			49.8	OK

Barratt Homes Manchester		Page 4
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	·

		Water	Surcharged			AA	Half Drain	-	
PN	US/MH Name	Level (m)	Depth (m)	Volume (m ³)	Flow / Cap.	Overflow (1/s)	Time (mins)	Flow (l/s)	84.4.4
FN	паше	(ш)	(111)	(m-)	Cap.	(1/8)	(mrns)	(1/8)	Status
5.003	S26	106.798	-0.051	0.000	0.94			49.4	OK
6.000	S105	111.237	-0.147	0.000	0.26			25.7	OK
6.001	S106	109.780	-0.093	0.000	0.64			60.0	OK
7.000	S101	109.009	0.234	0.000	0.75			36.8	SURCHARGED
8.000	S102	110.768	-0.107	0.000	0.53			57.6	OK
7.001		108.787	0.406	0.000	1.53				SURCHARGED
7.002	S104	107.942	-0.135	0.000	0.21			146.3	OK
6.002		107.932	0.050	0.000	0.26			183.6	SURCHARGED
6.003		107.917	0.235	0.000	0.24				SURCHARGED
6.004		107.899	0.463	0.000	0.32				SURCHARGED
		107.884	0.504	0.000	0.15				SURCHARGED
6.006		107.867	1.122	0.000	0.97				SURCHARGED
5.004		106.755	0.045	0.000	1.00				SURCHARGED
5.005		106.712	0.055	0.000	0.61				SURCHARGED
5.006		106.605	0.265	0.000	1.01				SURCHARGED
5.007		106.555	0.306	0.000	0.54				SURCHARGED
5.008		106.461	0.550	0.000	0.61				SURCHARGED
5.009		106.393	0.754	0.000	2.02				SURCHARGED
5.010		106.284	0.668	0.000	1.93				SURCHARGED
5.011		106.176	0.588	0.000	0.94				SURCHARGED
5.012		106.064	0.615	0.000	0.92				SURCHARGED
9.000		108.531	-0.142	0.000	0.29			24.5	OK
9.001		107.366	-0.076	0.000	0.76			69.6	OK
9.002		106.161	0.083	0.000	0.75				SURCHARGED
10.000		106.003	0.253	0.000	0.04				SURCHARGED
9.003		106.006	0.391	0.000	0.34				SURCHARGED
5.013		105.942 105.725	1.476 1.304	0.000 0.000	2.17				SURCHARGED SURCHARGED
5.014 5.015		105.457	1.304	0.000	1.98 2.71				SURCHARGED
5.015		105.194	0.879	0.000	2.71				SURCHARGED
11.000		103.194	0.325	0.000	0.22				SURCHARGED
5.017		104.949	0.631	0.000	2.54				SURCHARGED
5.018		104.645	0.391	0.000	1,45				SURCHARGED
5.019		104.294	0.205	0.000	1.56				SURCHARGED
5.020		104.074	0.142	0.000	0.08				SURCHARGED
5.020		104.073	0.208	0.000	0.07				SURCHARGED
5.021		104.073	0.306	0.000	0.08				SURCHARGED
1.011		104.072	0.390	0.000	0.10				SURCHARGED
1.012		104.071	1.678	0.000	0.81				SURCHARGED
				TIS	S/MH L	evel			
					ame Exc				
				F 001	G 24				
				5.001 5.002	S24 S25				
				5.002	S25 S26				
					526				
						0			
			C	1982-20	i∠u inn	lovyze			

Barratt Homes Manchester		Page 5
4 Brindley Road	Chipping Lane	
City Park, Manchester	Longridge	
Cheshire M169HQ		
Date 01/01/2022	Designed by	
File CHIPPINGS LANE PHASE 2	Checked by	
Innovyze	Network 2020.1.3	

PN	US/MH Name	Level Exceeded
6.001	S106	
7.000	S101	
8.000	S102	
7.001	S103	
7.002	S104	
6.002	S107	
6.003	S108	
6.004	S109	
6.005	S109A	
6.006	S110	
5.004	S27	
5.005	S28	
5.006	S29	
5.007	S30	
5.008	S31	
5.009	S32	
5.010	S33	
5.011	S34	
5.012	S35	
9.000	S46	
9.001	S47	
9.002	S48	
10.000 9.003	S201	
5.013	S49 S36	
5.013	S30 S37	
5.014	\$38 \$38	
5.015	S39	
11.000	S59	
5.017	S40	
5.018	S41	
5.019	S42	
5.020	s43	
5.021	S44	
5.022	S45	
1.011	S12	
1.012	S13	

Storm Water Network 3

Barrat	t Home	s Man	chest	ter								Pag	e O
4 Brin	dley R	oad											
City P	ark, M	anche	ster										
Cheshi	re M1	69HQ											
Date 2	8/09/2	021 0	9:40		De	sign	ed by						
				.09.21.1		ecke						212	-
Innovy							$\frac{4}{k} = \frac{2}{2020}$	0.1.3				788	
		<u>STORI</u>	<u>M SEW</u>	VER DES:	<u>IGN by</u>	the	<u>Modif</u>	ied Ra	atior	nal M	<u>lethor</u>	1	
<u>Design Criteria for Surface Network 3</u>													
Pipe Sizes STANDARD Manhole Sizes STANDARD													
			_	FSR Rain			Englar	nd and	Wales	3			
		Retu	rn Pe	riod (ye		2		7.dd E	1 /	<u>c</u> 1.4 m		PIMP (%	•
					(mm) 18. io R 0.							ange (% ight (n	
	м	aximum	Rain	fall (mm		50					-	eight (n	
Maximu				ation (m			lin Des				-	ition (n	
				age (l/s		.000						ly (m∕s	•
	v	olumet	ric R	unoff Co	eff. 0	.750	Mi	n Slop	e for	Opti	misati	on (1:)	() 500
				De	signed w	witb ⊺	evel s	offits					
]	Netwo	ork Des:	<u>ign Tak</u>	ole f	or Su	<u>rface</u>	Net	vork	3		
				« - Ir	ndicates	pipe	capac:	ity < f	low				
DN	Length	P ell	Slop	• T 7res	m p	8-		k	חענו	גדח	Secti	on Turne	Auto
PN	Length (m)	Fall (m)	Slope (1:X)	e I.Area) (ha)			ise (1/s)	k (mm)	HYD SECT		Secti	on Type	Auto Design
1.000	(m) 18.574	(m) 0.113	(1:X)) (ha) 4 0.129	(mins) 5.00		(1/s) 0.0	(mm) 0.600	SECT	(mm) 225	Pipe/	 Conduit	Design
1.000 1.001	(m) 18.574 21.020	(m) 0.113 0.127	(1:X)) (ha) 4 0.129 5 0.023	(mins) 5.00 0.00		(1/s) 0.0 0.0	(mm) 0.600 0.600	SECT 0 0	(mm) 225 225	Pipe/ Pipe/	 Conduit Conduit	Design Ô
1.000 1.001	(m) 18.574	(m) 0.113 0.127	(1:X)) (ha) 4 0.129 5 0.023	(mins) 5.00 0.00		(1/s) 0.0 0.0	(mm) 0.600	SECT о	(mm) 225 225	Pipe/ Pipe/	 Conduit	Design Ö
1.000 1.001 1.002	(m) 18.574 21.020 38.591	(m) 0.113 0.127 0.234	(1:X) 164.4 165.4 164.4) (ha) 4 0.129 5 0.023 9 0.082	(mins) 5.00 0.00 0.00		(1/s) 0.0 0.0 0.0	(mm) 0.600 0.600 0.600	SECT 0 0	(mm) 225 225 300	Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit	Design ෆී ෆී
1.000 1.001 1.002 2.000	(m) 18.574 21.020 38.591 20.496	(m) 0.113 0.127 0.234 0.637	(1:X) 164.4 165.4 164.4 32.2	 (ha) 0.129 0.023 0.082 0.052 	(mins) 5.00 0.00 0.00 5.00		(1/s) 0.0 0.0 0.0	(mm) 0.600 0.600 0.600	SECT 0 0 0 0 0	(mm) 225 225 300 225	Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Conduit	Design ෆී ෆී ෆී
1.000 1.001 1.002 2.000 2.001	(m) 18.574 21.020 38.591	(m) 0.113 0.127 0.234 0.637 0.630	(1:X) 164. 165. 164. 32. 32.	 (ha) 0.129 0.023 0.082 0.052 0.047 	(mins) 5.00 0.00 0.00		(1/s) 0.0 0.0 0.0 0.0	(mm) 0.600 0.600 0.600	SECT 0 0	(mm) 225 225 300 225 225	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit	Design T T T T T
1.000 1.001 1.002 2.000 2.001 2.002	(m) 18.574 21.020 38.591 20.496 20.288 33.160	(m) 0.113 0.127 0.234 0.637 0.630 1.079	(1:X) 164. 165. 164. 32. 32. 30.	 (ha) 0.129 0.023 0.082 0.052 0.047 0.028 	(mins) 5.00 0.00 0.00 5.00 0.00 0.00		(1/s) 0.0 0.0 0.0 0.0 0.0 0.0	(mm) 0.600 0.600 0.600 0.600 0.600 0.600	SECT 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Conduit Conduit Conduit	Design එ ඒ ඒ ඒ
1.000 1.001 1.002 2.000 2.001 2.002 1.003	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905	(1:x) 164. 165. 164. 32. 32. 30. 35.	 (ha) 0.129 0.023 0.082 0.052 0.047 0.028 0.084 	(mins) 5.00 0.00 0.00 5.00 0.00 0.00		(1/s) 0.0 0.0 0.0 0.0 0.0 0.0	(mm) 0.600 0.600 0.600 0.600 0.600 0.600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Design T T T T T T T T
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540	(1:x) 164. 165. 164. 32. 32. 30. 35. 33.	 (ha) 0.129 0.023 0.082 0.052 0.047 0.028 0.084 0.031 	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00		(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Design T T T T T T T T T T T
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540	(1:x) 164. 165. 164. 32. 32. 30. 35. 33.	 (ha) 0.129 0.023 0.082 0.052 0.047 0.028 0.084 0.031 	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00		(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mm) 0.600 0.600 0.600 0.600 0.600 0.600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Design T T T T T T T T T T T
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540	(1:x) 164. 165. 164. 32. 32. 30. 35. 33.	 (ha) 0.129 0.023 0.082 0.052 0.047 0.028 0.084 0.031 0.055 	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00	Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Design T T T T T T T T T T T
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 Rai	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 n T	(1:x) 164.1 165.1 164.1 32.1 32.1 30.1 35.1 33.1 .C.	 (ha) 0.129 0.023 0.082 0.052 0.047 0.028 0.084 0.084 0.031 0.055 N US/IL 	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00 0.0	Flow Resu	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.6000 0.600 0.600 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.60000 0.6000 0.6000 0.6000 0.600000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Design (f) (f) (f) (f) (f) (f) (f) (f)
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 n T	(1:x) 164.1 165.1 164.1 32.3 30.3 35.3 33.1 33.1	 (ha) 0.129 0.023 0.082 0.052 0.052 0.047 0.028 0.031 0.055 N 	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00 0.0	Flow Resu	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.6000 0.600 0.600 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.60000 0.6000 0.6000 0.6000 0.600000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 225 300 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Design T T T T T T T T T T T T
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 Rai (mm/)	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 n T hr) (m	(1:x) 164.1 165.1 164.1 32.1 32.1 30.1 33.1 33.1 .C. ins)	 (ha) 0.129 0.023 0.082 0.052 0.047 0.028 0.084 0.084 0.031 0.055 N US/IL 	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00 0.0	Flow Resu ε Σ Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Cable Foul (l/s)	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Design (f) (f) (f) (f) (f) (f) (f) (f)
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 Rai (mm/) 00 50	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 n T hr) (m	(1:x) 164 165 164 32 30 35 33 33 .C. ins) 5.30	(ha) (ha) (ha) (129) (0.023) (0.082) (0.052) (0.047) (0.028) (0.031) (0.031) (0.035) (Note: Content of the second seco	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00 0.0	Flow Resu E Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.6000 0.6000 0.6000 0.6000 0.60000 0.600000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 225 225 225 300 300 300 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Cap (1/s) 40.4	Design ຕື ຕື ຕື ຕື ຕື ຕື ຕື ຕື ຕື ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 N Rai (mm/) 00 50 01 50	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 n T hr) (m .00 .00	(1:x) 164 165 164 32 30 35 33 33 .C. ins) 530	(ha) (ha) (ha) (129) (0.023) (0.082) (0.052) (0.047) (0.028) (0.028) (0.084) (0.031) (0.031) (0.035) (N) (US/IL) (m) (113.750)	(mins) 5.00 0.00 5.00 0.00 0.00 0.00 0.00 0.0	Flow Results Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.6000 0.600 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.600000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 Flow /s) 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.02	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit (1/s) 40.4 40.3	Design ຕື່ ຕື່ ຕື່ ຕື່ ຕື່ ຕື່ ຕື່ ອີ ຕື່ ອີ ຕື່ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 N Rai (mm/) 00 50 01 50 02 50	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 m T hr) (m .00 .00 .00	(1:x) 164. 165. 164. 32. 30. 35. 33. 33. .C. ins) 5.30 5.65 6.18	(ha) (ha) (ha) (129) (0.023) (0.023) (0.082) (0.052) (0.047) (0.028) (0.047) (0.028) (0.047) (0.028) (0.047) (0.028) (0.055) (N) (0.055) (1.028) </td <td>(mins) 5.00 0.00 5.00 0.02 0.122 0.122 0.234</td> <td>Flow Resu E Flow</td> <td>(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</td> <td>(mm) 0.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000000</td> <td>SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>(mm) 225 225 300 225 225 225 300 300 300 300 300 300 0.0</td> <td>Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// 1.02 1.01 1.22</td> <td>Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Au.4 40.4 40.3 86.3</td> <td>Design ຕື່ ຕື່ ຕື່ ຕື່ ຕື່ ຕື່ ອີ ຕື່ ອີ ຕື່ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ</td>	(mins) 5.00 0.00 5.00 0.02 0.122 0.122 0.234	Flow Resu E Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 300 0.0	Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// Pipe// 1.02 1.01 1.22	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Au.4 40.4 40.3 86.3	Design ຕື່ ຕື່ ຕື່ ຕື່ ຕື່ ຕື່ ອີ ຕື່ ອີ ຕື່ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ ອີ
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00 1.00 2.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 N Rai (mm/) 00 50 01 50 02 50 00 50	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 n T hr) (m .00 .00 .00	<pre>(1:x) 164 165 164 32 32 33 33 33C. ins) 530 565 618 515</pre>	<pre>) (ha) 4 0.129 5 0.023 9 0.082 2 0.052 2 0.047 7 0.028 4 0.084 5 0.031 5 0.055 N US/IL 5 (m) 113.750 113.637 113.435</pre>	(mins) 5.00 0.00 5.00 0.122 0.152 0.234 0.052 0.052 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.0	Flow Resi	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.0000 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 Flow /s) 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Number Number Pipe/ Pipe	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Cap (1/s) 40.4 40.3 86.3 92.0	Design (1) (1) (1) (1) (1) (1) (1) (1)
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00 1.00 1.00 2.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 N Rai (mm/) 00 50 01 50 02 50 00 50 01 50	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 m T hr) (m .00 .00 .00 .00 .00	<pre>(1:x) 164 165 164 32 30 35 33 33C. ins) 530 565 618 515 529</pre>	<pre>) (ha) 4 0.129 5 0.023 9 0.082 2 0.052 2 0.047 7 0.028 4 0.084 5 0.031 5 0.055 N US/IL 3 (m) 113.750 113.637 113.435 115.622 114.985</pre>	(mins) 5.00 0.00 5.00 0.122 0.152 0.234 0.052	Flow Resi	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.0000 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 Flow /s) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ Pipe/ 2.01 1.02 1.01 1.22 2.31 2.31	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit A0.4 40.4 40.3 86.3 92.0 92.0	Design (1) (1) (1) (1) (1) (1) (1) (1)
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00 1.00 2.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 N Rai (mm/) 00 50 01 50 02 50 00 50 01 50	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 m T hr) (m .00 .00 .00 .00 .00	<pre>(1:x) 164 165 164 32 30 35 33 33C. ins) 530 565 618 515 529</pre>	<pre>) (ha) 4 0.129 5 0.023 9 0.082 2 0.052 2 0.047 7 0.028 4 0.084 5 0.031 5 0.055 N US/IL 5 (m) 113.750 113.637 113.435</pre>	(mins) 5.00 0.00 5.00 0.122 0.152 0.234 0.052 0.052 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.234 0.055 0.0	Flow Resi	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.0000 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 Flow /s) 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Number Number Pipe/ Pipe	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit A0.4 40.4 40.3 86.3 92.0 92.0	Design (1) (1) (1) (1) (1) (1) (1) (1)
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00 1.00 2.00 2.00 2.00 2.00 1.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 V Rai (mm/J) 00 50 01 50 02 50 01 50 02 50 03 50	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 m T hr) (m .00 .00 .00 .00 .00 .00	<pre>(1:x) 164 165 164 32 30 35 33 33C. ins) 530 565 618 515 529 553 638</pre>	<pre>) (ha) 4 0.129 5 0.023 9 0.082 2 0.052 2 0.047 7 0.028 4 0.084 5 0.031 5 0.055 N US/IL : (m) 113.750 113.637 113.637 113.435 115.622 114.985 114.355</pre>	(mins) 5.00 0.00 5.00 0.152 0.052 0.052 0.052 0.052 0.052 0.024 0.125 0.024 0.025 0.025 0.125 0.025 0.125 0.025 0.125 0.025 0.125 0.125 0.0125 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	Flow Result Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.0000 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 Flow /s) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ None 1.02 1.01 1.22 2.31 2.31 2.37 2.65	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit A0.4 40.3 86.3 92.0 92.0 94.2 187.5	Design () () () () () () () () () ()
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00 1.00 2.00 2.00 2.00 2.00 1.00 1	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 V Rai (mm/J) 00 50 01 50 02 50 01 50 02 50 03 50 04 49	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 m T hr) (m .00 .00 .00 .00 .00 .00 .00 .0	<pre>(1:x) 164 165 164 32 30 35 33 33C. ins) 530 565 618 515 529 553 638 649</pre>	<pre>) (ha) 4 0.129 5 0.023 9 0.082 2 0.052 2 0.047 7 0.028 4 0.084 5 0.031 5 0.055 N US/IL 3 (m) 113.750 113.637 113.637 113.435 115.622 114.985 114.355 113.201 112.296</pre>	(mins) 5.00 0.00 5.00 0.152 0.052 0.052 0.152 0.152 0.125 0.155 0.1	Flow Results Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nole 1.02 1.01 1.22 2.31 2.31 2.37 2.65 2.72	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit A0.4 40.3 86.3 92.0 92.0 94.2 187.5 192.6	Design () () () () () () () () () ()
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00 1.00 2.00 2.00 2.00 2.00 1.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 V Rai (mm/J) 00 50 01 50 02 50 01 50 02 50 03 50 04 49	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 m T hr) (m .00 .00 .00 .00 .00 .00 .00 .0	<pre>(1:x) 164 165 164 32 30 35 33 33C. ins) 530 565 618 515 529 553 638 649</pre>	<pre>) (ha) 4 0.129 5 0.023 9 0.082 2 0.052 2 0.047 7 0.028 4 0.084 5 0.031 5 0.055 N US/IL : (m) 113.750 113.637 113.637 113.435 115.622 114.985 114.355</pre>	(mins) 5.00 0.00 5.00 0.152 0.052 0.052 0.052 0.052 0.052 0.024 0.125 0.024 0.025 0.025 0.125 0.025 0.125 0.025 0.125 0.025 0.125 0.125 0.0125 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155	Flow Results Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 300 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nole 1.02 1.01 1.22 2.31 2.31 2.37 2.65 2.72	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit A0.4 40.3 86.3 92.0 92.0 94.2 187.5	Design () () () () () () () () () ()
1.000 1.001 1.002 2.000 2.001 2.002 1.003 1.004 1.005 PN 1.00 1.00 2.00 2.00 2.00 2.00 1.00 1.00	(m) 18.574 21.020 38.591 20.496 20.288 33.160 32.000 18.105 21.220 V Rai (mm/J) 00 50 01 50 02 50 01 50 02 50 03 50 04 49	(m) 0.113 0.127 0.234 0.637 0.630 1.079 0.905 0.540 0.633 m T hr) (m .00 .00 .00 .00 .00 .00 .00 .0	<pre>(1:x) 164 165 164 32 30 35 33 33C. ins) 530 565 618 515 529 553 638 649</pre>	<pre>) (ha) 4 0.129 5 0.023 9 0.082 2 0.052 2 0.047 7 0.028 4 0.084 5 0.031 5 0.055 N US/IL 3 (m) 113.750 113.637 113.637 113.435 115.622 114.985 114.355 113.201 112.296 111.756</pre>	(mins) 5.00 0.00 5.00 0.152 0.052 0.052 0.152 0.152 0.125 0.155 0.1	Flow Resu Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mm) 0.600 0.000 0.600 0.0000 0.0000 0.0000 0.000000	SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 225 225 300 225 225 225 300 300 300 300 300 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nole 1.02 1.01 1.22 2.31 2.31 2.37 2.65 2.72	Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit A0.4 40.3 86.3 92.0 92.0 94.2 187.5 192.6	Design () () () () () () () () () ()

Darrac	t Home:	s Mano	cheste	er							Pag	ge 1					
4 Brin	dley Ro	oad															
City P	ark, Ma	anche	ster														
Cheshi	re M1	69HQ															
Date 2	8/09/2	021 0	9:40		De	sign	ed by										
File C	HIPPIN	G LANI	E 21.0	9.21.M	IDX Ch	ecke	d by										
Innovy	ze				Ne	twor	k 202	0.1.3			I						
Network Design Table for Surface Network 3																	
PN	Length	Fall	Slope	I.Area	T.E.	Bz	ise	k	HYD	DIA	Section Type	a Auto					
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design					
1.006	26.149	0.972	26.9	0.030	0.00		0.0	0.600	o	300	Pipe/Condui	നീ					
1.007	14.101	0.463	30.5	0.032	0.00		0.0	0.600	0	450	Pipe/Condui	t 🖑					
3.000	66.749	1.420	47.0	0.081	5.00		0.0	0.600	o	225	Pipe/Condui	t A					
1 008	11.314	0 343	33.0	0.089	0.00		0 0	0.600	0	450	Pipe/Condui	د ر م					
	75.598		33.0	0.107	0.00			0.600	0		Pipe/Condui						
1.010	19.351	0.586	33.0	0.150	0.00		0.0	0.600	0		Pipe/Condui	-					
4.000	20.774	0.472	44.0	0.094	5.00		0.0	0.600	0	150	Pipe/Condui	t A					
	31.984		44.0	0.024	0.00			0.600	0		Pipe/Condui						
4.002	15.379	0.349	44.1	0.087	0.00		0.0	0.600	0	150	Pipe/Condui						
1.011	9.311	0.023	404.8	0.000	0.00		0.0	0.600	o	1500	Pipe/Condui	t of					
5.000	33.973	0.085	399.7	0.120	5.00		0.0	0.600	o	1500	Pipe/Condui	t ð					
5.001	19.633	0.049	400.7	0.096	0.00		0.0	0.600	0	1500	Pipe/Condui						
1.012	62.392	0.156	399.9	0.058	0.00		0.0	0.600	0	1500	Pipe/Condui	t m ^e					
1.013	17.480	0.044	397.3	0.054	0.00			0.600	0		Pipe/Condui	t ē					
	12 000	0 078	166.6	0.000	0.00		0.0	0.600	0	225	Pipe/Condui	t 🌢					

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (l/s)	Flow (1/s)	
1.006	48.86	6.76	111.123	0.561	0.0	0.0	0.0	3.04	215.1	74.2	
1.007	48.67	6.82	110.001	0.593	0.0	0.0	0.0	3.69	587.6	78.2	
3.000	50.00	5.58	112.437	0.081	0.0	0.0	0.0	1.91	76.1	11.0	
1.008	48.51	6.88	109.538	0.763	0.0	0.0	0.0	3.55	564.5	100.2	
1.009	47.48	7.23	109.194	0.870	0.0	0.0	0.0	3.55	564.4	111.9	
1.010	47.23	7.32	105.438	1.020	0.0	0.0	0.0	3.55	564.2	130.5	
4.000	50.00	5.23	109.677	0.094	0.0	0.0	0.0	1.52	26.9	12.7	
4.001	50.00	5.58	107.728	0.118	0.0	0.0	0.0	1.52	26.9	16.0	
4.002	50.00	5.75	105.501	0.205	0.0	0.0	0.0	1.52	26.9«	27.8	
1.011	47.02	7.40	103.802	1.225	0.0	0.0	0.0	2.13	3756.4	156.0	
5.000	50.00	5.26	103.912	0.120	0.0	0.0	0.0	2.14	3780.6	16.2	
5.001	50.00	5.42	103.827	0.216	0.0	0.0	0.0	2.14	3775.9	29.2	
1.012	45.73	7.88	103.778	1.499	0.0	0.0	0.0	2.14	3779.3	185.7	
1.013	45.39	8.02	103.622	1.553	0.0	0.0	0.0	2.15	3792.1	190.9	
1.014	44.85	8.23	103.578	1.553	0.0	0.0	0.0	1.01	40.2«	190.9	
				©1982-2	2020 Innov	yze					

Barratt Homes Manchester		Page 2
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 09:40	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Online Controls for Surface Network 3

Depth/Flow Relationship Manhole: S324, DS/PN: 1.014, Volume (m³): 48.8

Invert Level (m) 103.578

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)

0.100	7.9700	0.800	34.6400	2.000	33.5200	3.800	46.2000
0.200	17.9600	1.000	32.1700	2.200	35.1600	4.200	48.5800
0.300	26.1200	1.200	30.5300	2.400	36.7200	4.600	50.8400
0.400	31.6700	1.400	29.7200	2.600	38.2200	5.000	53.0000
0.500	34.7400	1.600	29.9800	3.000	41.0500		
0.600	35.8600	1.800	31.8000	3.400	43.7000		

Barratt Homes Manchester		Page 3									
		raye 5									
4 Brindley Road											
City Park, Manchester											
Cheshire M169HQ											
Date 28/09/2021 09:40	Designed by	2.200 1.200									
File CHIPPING LANE 21.09.21.MDX											
Innovyze	Network 2020.1.3										
Storage Struct	<u>ures for Surface Network 3</u>										
Tank on Bond M	a = b = 1 + c = 224 $b = c = 1 + c = 14$										
Storage Structures for Surface Network 3 Tank or Pond Manhole: S324, DS/PN: 1.014 Invert Level (m) 106.350 Depth (m) Area (m ²) Depth (m) Area (m ²) 0.000 451.4 0.800 1004.1											
Inver											
Depth (m) Are	Depth (m) Area (m²) Depth (m) Area (m²)										
Tank or Pond Manhole: S324, DS/PN: 1.014 Invert Level (m) 106.350 Depth (m) Area (m ²) Depth (m) Area (m ²)											
	0.0000 T										
0198	2-2020 Innovyze										

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 09:41	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	·

Manhole Schedules for Surface Network 3

Backdrop (mm)	Diameter (mm)	Pipes In Invert Level (m)	PN	Diameter (mm)	Pipe Out Invert Level (m)	PN	MH Diam.,L*W (mm)	MH nection	Con	MH Depth (m)	MH CL (m)	MH Name
				225	113.750	1.000	1800	Manhole	Open	2.260	116.010	s301
	225	113.637	1.000	225	113.637	1.001	1800	Manhole	Open	2.047	115.684	S302
	225	113.510	1.001	300	113.435	1.002	1800	Manhole	Open	1.980	115.415	s303
				225	115.622	2.000	1350	Manhole	Open	1.575	117.197	S304
	225	114.985	2.000	225	114.985	2.001	1350	Manhole	Open	1.736	116.721	S305
	225	114.355	2.001	225	114.355	2.002	1350	Manhole	Open	1.729	116.084	S306
	300	113.201	1.002	300	113.201	1.003	1800	Manhole	Open	1.866	115.067	S307
	225	113.276	2.002									
	300	112.296	1.003	300	112.296	1.004	1350	Manhole	Open	1.746	114.042	s308
	300	111.756	1.004	300	111.756	1.005	1350	Manhole	Open	1.820	113.576	s309
	300	111.123	1.005	300	111.123	1.006	1350	Manhole	Open	2.093	113.216	s310
	300	110.151	1.006	450	110.001	1.007	1500	Manhole	Open	3.011	113.012	S311
				225	112.437	3.000	1500	Manhole	Open	1.590	114.027	S312
	450	109.538	1.007	450	109.538	1.008	1800	Manhole	Open	3.660	113.198	5313
1254	225	111.017	3.000									
1	450	109.195	1.008	4 50	109.194	1.009	1800	Manhole	Open	3.722	112.916	5314
1465	450	106.903	1.009	450	105.438	1.010	1800	Manhole	Open	5.603	111.041	S315
				150	109.677	4.000	1350	Manhole	Open	1.493	111.170	S316
1477	150	109.205	4.000	150	107.728	4.001	1200	Manhole	Open	3.045	110.773	S317
1500	150	107.001	4.001	150	105.501	4.002	1350	Manhole	Open	4.762	110.263	S318
	450	104.852	1.010	1500	103.802	1.011	3000	Manhole	Open	6.406	110.208	S319
	150	105.152	4.002									
				1500	103.912	5.000	3000	Manhole	Open	5.433	109.345	5320
	1500	103.827	5.000	1500	103.827	5.001	3000	Manhole	Open	6.029	109.856	5321
1	1500	103.779	1.011	1500	103.778	1.012	3000	Manhole	Open	6.002	109.780	5322
	1500	103.778	5.001									
	1500	103.622	1.012	1500	103.622	1.013	3000	Manhole	Open	3.648	107.270	s323
	1500	103.578	1.013	225	103.578	1.014	3000	Manhole	Open	3.282	106.860	5324
	225	103.500	1.014		OUTFALL		0	Manhole	Open	0.400	103.900	S325

MH	Manhole	Manhole	Intersection	Intersection	Manhole	Layout
Name	Easting	Northing	Easting	Northing	Access	(North)
	(m)	(m)	(m)	(m)		
S301	360511.561	437893.841	360511.561	437893.841	Required	

Barratt Home	s Manchest	er				Page 1
4 Brindley R	.oad					
City Park, M						
Cheshire M1						
Date 28/09/2			Designed by			
File CHIPPIN		09.21.MDX	Checked by			ويې د وي وي وي. در د وي وي و ي و
Innovyze			Network 202	0.1.3		/
111101920			NOCHOIR 202	0.1.0		
	Man	hole Schedı	<u>lles for Sur</u>	<u>face Netwc</u>	<u>ork 3</u>	
МН	Manhole	Manhole	Intersection I	ntersection	Manhole	Layout
Name	Easting		Easting	Northing	Access	(North)
	(m)	(m)	(m)	(m)		
6303	360496.828	122002 520	260406 020	427002 520	Dominod	
5502	300490.020	437862.550	360496.828	437882.530	Required	
S303	360484.705	437865.358	360484.705	437865.358	Required	
0.204	360540.687	137831 307	360540.687	137931 207	Pomirod	
5304	500540.00/	-J/0J4.20/	300340.00/	437834.207	vedutted	
\$305	360524.091	437822.179	360524.091	437822.179	Required	
\$306	360503.953	137819 721	360503.953	437819.724	Pequired	
5500	500505.555	437019.724	300303.905	457019.724	Required	
S307	360472.084	437828.889	360472.084	437828.889	Required	
S308	360441.293	437837 603	360441.293	437837.603	Remuired	
5500	00011112200	10/00/1000	0001111290	10,00,1000	noquirou	
S309	360429.491	437851.332	360429.491	437851.332	Required	
\$310	360424.950	437872.060	360424.950	437872.060	Required	
0010	0001210000	107072.000		1010121000	noquirou	
S311	360414.973	437896.231	360414.973	437896.231	Required	
\$312	360465.454	437958.539	360465.454	437958.539	Required	
5016						
				_		
\$313	360426.523	437904.320	360426.523	437904.320	Required	
S314	360420.446	437913.864	360420.446	437913.864	Required	
					-	
	0.00000.010	403055 600		403033 205	Dec 1	
S315	360379.843	437977.633	360379.843	437977.633	Required	
S316	360422.942	438021.553	360422.942	438021.553	Required	
		©198				

Barratt Hom	es Manchest	er				Page 2
4 Brindley	Road					
City Park, I	Manchester					
Cheshire M						
Date 28/09/			Designed by	v		
File CHIPPI		09 21 MDX	Checked by			
	ING DAME ZI.	.0	Network 20			V
Innovyze			Network 20.	20.1.5		
	Man	hole Schedu	les for Su	rface Netwo	o <u>rk 3</u>	
МН			Intersection 3	Intersection	Manhole	Layout
Nam	e Easting (m)	Northing (m)	Easting (m)	Northing (m)	Access	(North)
\$31	7 360402.923	438016.002	360402.923	438016.002	Required	
S31	8 360374.989	438000.425	360374.989	438000.425	Required	
S31	9 360364.390	437989.281	360364.390	437989.281	Required	
\$32	0 360314.485	437963.005	360314.485	437963.005	Required	
\$32	1 360343.099	437981.320	360343.099	437981.320	Required	
S32	2 360357.105	437995.079	360357.105	437995.079	Required	
S32	3 360316.597	438042.533	360316.597	438042.533	Required	
\$32	4 360305.768	438056.255	360305.768	438056.255	Required	
S32	5 360295.300	438063.960			No Entry	
		©198	32-2020 Inno	ovyze		

Rainfall Simulation

1:30 year event

Barratt Homes Manchester	Page 0
4 Brindley Road	
City Park, Manchester	
Cheshire M169HQ	
Date 28/09/2021 09:43 Designed by o	
File CHIPPING LANE 21.09.21.MDX Checked by	
Innovyze Network 2020.1.3	
Simulation Criteria for Surface Network 3	
Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storad Hot Start (mins) 0 Inlet Coefficient Hot Start Level (mm) 0 Flow per Person per Day (1/per/day Manhole Headloss Coeff (Global) 0.500 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0	ge 2.000 nt 0.800 y) 0.000 s) 60
Number of Stilline concrois of Number of Real Time concrois o	
Synthetic Rainfall Details	
Rainfall ModelFSRProfile Type SummReturn Period (years)2Cv (Summer)0.7Region England and WalesCv (Winter)0.8M5-60 (mm)18.800 Storm Duration (mins)Ratio R0.281	750

Barratt Homes N	anchester					Page	
4 Brindley Road	1						
City Park, Mand	chester						
Cheshire M169							
Date 28/09/2023			Designed by				·
File CHIPPING 1							
	LANE ZI.U9.		-				
Innovyze			Network 202	0.1.3			
F Manhole Head Foul Sewag Nu	eal Reduction Hot Start Lot Start Lev lloss Coeff (pe per hectar mber of Input Number of Onl umber of Offl Rainfall M	Sim Factor 1 (mins) el (mm) Global) 0 e (1/s) 0 : Hydrogra ine Contr ine Contr Synthet Model egion Engl (mm)	ulation Criter .000 Additio 0 MAN 0 .500 Flow per 0.000 aphs 0 Number rols 1 Number rols 0 Number tic Rainfall D FSR land and Wales 18.800	ria DD Factor * In Person per of Storage of Time/Are of Real Tir <u>etails</u> Ratio Cv (Summer Cv (Winter	<pre>% of Tota 10m³/ha S let Coeffi Day (1/pe Structures a Diagrams me Controls R 0.281 c) 0.750 c) 0.840</pre>	l Flow 0. torage 2. ecient 0. r/day) 0.	000 000 800
M	argin for Flo		varning (mm) 3 sis Timestep DTS Status		/D Status (ia Status (
D Return	Profi Profi Turation(s) (r Period(s) (ye limate Change	Analys le(s) mins) ears)	sis Timestep	Fine Inert: ON 20, 180, 24	ia Status (Summer and 10, 360, 48	DN H Winter 30, 600,), 5760,	
D Return	Profi Puration(s) (r Period(s) (ye limate Change	Analys le(s) mins) ears)	sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1	Fine Inert: ON 20, 180, 24 440, 2160,	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640	DN Winter 30, 600, 0, 5760, 0, 10080 30 0	Water Level
D Return C	Profi Puration(s) (r Period(s) (ye limate Change Return	Analys le(s) mins) ears) e (%)	515 Timestep DTS Status 15, 30, 60, 1	Fine Inert: ON 20, 180, 24 440, 2160,	ia Status (Summer and 10, 360, 48 2880, 4320	DN Winter 30, 600, 0, 5760, 0, 10080 30 0	
D Return C US/MH PN Name St	Profi Puration(s) (r Period(s) (ya limate Changa Return corm Period	Analys le(s) mins) ears) e (%) a Climate i Change	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X)</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level
D Return C US/MH PN Name St 1.000 S301 15 M	Profi Puration(s) (r Period(s) (ya limate Changa Return corm Period	Analys le(s) mins) ears) e (%) a Climate i Change) +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m)
D Return C US/MH PN Name St 1.000 \$301 15 1 1.001 \$302 15 1	Profi Puration(s) (r Period(s) (ya limate Changa Return corm Period Winter 30	Analys le(s) mins) ears) e (%) a Climate d Change) +0%) +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980
D Return C US/MH PN Name St 1.000 \$301 15 1 1.001 \$302 15 1 1.002 \$303 15 1	Profi Puration(s) (r Period(s) (ya limate Changa Return corm Period Winter 30 Winter 30	Analys le(s) mins) ears) e (%) a Climate i Change) +0%) +0%) +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878
D Return C US/MH PN Name St 1.000 \$301 15 1 1.001 \$302 15 1 1.002 \$303 15 1 2.000 \$304 15 1	Profi Puration(s) (r Period(s) (ya limate Changa Return corm Period Winter 30 Winter 30 Winter 30	Analys le(s) mins) ears) e (%) a Climate i Change) +0%) +0%) +0%) +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.686
D Return C PN Name St 1.000 \$301 15 1 1.001 \$302 15 1 1.002 \$303 15 1 2.000 \$304 15 1 2.001 \$305 15 1	Profi Puration(s) (r Period(s) (ya limate Changa Return corm Period Winter 30 Winter 30 Winter 30 Winter 30	Analys le(s) mins) ears) e (%) a Climate i Change b +0% b +0% b +0% b +0% b +0% b +0% b +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.870 113.634 115.680 115.077
D Return C VS/MH PN Name St 1.000 S301 15 1 1.001 S302 15 1 1.002 S303 15 1 2.000 S304 15 1 2.001 S305 15 1 2.001 S305 15 1	Profi Profit Period(s) (ye limate Change Return corm Period Winter 30 Winter 30 Winter 30 Winter 30 Winter 30	Analys le(s) mins) ears) e (%) a Climate d Change) +0%) +0%) +0%) +0%) +0%) +0%) +0%) +0%) +0%) +0%) +0%) +0%) +0%)	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.98 113.87 113.63 115.68 115.07 114.45
D Return C VS/MH PN Name St 1.000 S301 15 1 1.001 S302 15 1 1.002 S303 15 1 2.000 S304 15 1 2.001 S305 15 1 2.001 S305 15 1 2.002 S306 15 1 1.003 S307 15 1	Profi Profit Period(s) (ye limate Change Return corm Period Winter 30 Winter 30	Analys le(s) mins) ears) e (%) a Climate d Change) +0%)	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.870 113.634 115.680 115.077 114.450 113.390
D Return C VS/MH PN Name St 1.000 S301 15 1 1.001 S302 15 1 1.002 S303 15 1 2.000 S304 15 1 2.001 S305 15 1 2.001 S305 15 1 2.002 S306 15 1 1.003 S307 15 1 1.004 S308 15 1	Profi Profit Period(s) (ye limate Change Return corm Period Winter 30 Winter 30	Analys Le(s) mins) ears) e (%) A Climate A Change (%) + 0% + 0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.870 113.634 115.680 115.077 114.450 113.390 112.499
D Return C VS/MH PN Name St 1.000 S301 15 1 1.001 S302 15 1 1.002 S303 15 1 2.000 S304 15 1 2.001 S305 15 1 2.001 S305 15 1 1.003 S307 15 1 1.003 S307 15 1 1.004 S308 15 1	Profi Profit Period(s) (ye limate Change Return corm Period Winter 30 Winter 30	Analys Le(s) mins) ears) e (%) A Climate A Change (%) + 0% + 0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.680 115.077 114.458 113.390 112.499 111.973
D Return C VS/MH PN Name St 1.000 S301 15 1 1.001 S302 15 1 1.002 S303 15 1 2.000 S304 15 1 2.001 S305 15 1 2.002 S306 15 1 1.003 S307 15 1 1.004 S308 15 1 1.005 S309 15 1	Profi Profit Period(s) (ye limate Change Return corm Period Winter 30 Winter 30	Analys Le(s) mins) ears) e (%) A Climate A Change (%) +0% +0% +0% +0% +0% +0% +0% +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.680 115.077 114.458 113.390 112.499 111.973 111.328
EXAMPLE CONTRIBUTION CONTRIBUTICON CONTRILON CONTRIBUTICON CONTRIBUTA CONTRA CONTRIBUTICO	Profi Period(s) (ye Period(s) (ye limate Change Return corm Period Winter 30 Winter 30 Wint	Analys Le(s) mins) ears) e (%) c Climate c Change h -0% h	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.680 115.077 114.458 113.390 112.499 111.973 111.328 110.205
US/MH Return C 1.000 S301 15 1.001 S302 15 1.002 S303 15 2.000 S304 15 2.001 S305 15 2.002 S306 15 1.003 S307 15 1.004 S308 15 1.005 S309 15 1.006 S310 15 1.007 S311 15	Profi Period(s) (ye Period(s) (ye limate Change Return corm Period Winter 30 Winter 30 Wint	Analys Le(s) mins) ears) e (%) c Climate d Change h +0% h +0% h +0% h	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.680 115.077 114.458 113.390 112.499 111.973 111.328 110.209 112.524
US/MH Return C 1.000 S301 15 1.001 S302 15 1.002 S303 15 2.000 S304 15 2.001 S305 15 2.002 S306 15 1.003 S307 15 1.004 S308 15 1.005 S309 15 1.006 S310 15 1.007 S311 15 1.008 S313 15	Profi: Period(s) (ye limate Change Return corm Period Winter 30 Winter	Analys Le(s) mins) ears) e (%) climate change (%) h +0% h +0% h +0% h +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.680 115.077 114.458 113.390 112.499 111.973 111.328 110.209 112.524 109.800
US/MH Return C 1.000 S301 15 1.001 S302 15 1.002 S303 15 2.000 S304 15 2.001 S305 15 2.002 S306 15 1.003 S307 15 1.004 S308 15 1.005 S309 15 1.006 S310 15 1.007 S311 15 3.000 S312 15 1.008 S313 15	Profi Period(s) (ye limate Change Return corm Period Winter 30 Winter 3	Analys Le(s) mins) ears) e (%) climate change h -0% h +0% h +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.680 115.077 114.458 113.390 112.499 111.973 111.328 110.209 112.524 109.800 109.409
US/MH Return C 1.000 S301 15 1.001 S302 15 1.002 S303 15 2.000 S304 15 2.001 S305 15 2.002 S306 15 1.003 S307 15 1.004 S308 15 1.005 S309 15 1.006 S310 15 1.007 S311 15 1.008 S313 15 1.008 S313 15 1.009 S314 15	Profi Period(s) (ye limate Change Return corm Period Winter 30 Winter 3	Analys Le(s) mins) ears) e (%) c Climate d Change d Change h +0% h +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter 30/15 Summer</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.874 113.634 115.680 115.077 114.450 113.390 112.499 111.973 111.324 110.209 112.524 109.800 109.409 105.703
US/MH Return C PN Name St 1.000 S301 15 15 1.001 S302 15 15 1.002 S303 15 15 2.000 S304 15 15 2.001 S305 15 15 2.002 S306 15 15 1.003 S307 15 15 1.004 S308 15 15 1.005 S309 15 15 1.006 S310 15 15 1.007 S311 15 15 1.008 S313 15 15 1.008 S313 15 15 1.009 S314 15 15 4.000 S316 15 15	Profi Period(s) (ye Period(s) (ye limate Change Return corm Period Winter 30 Winter 30 Wint	Analys Le(s) mins) ears) e (%) c Climate d Change d Change h +0% h +0%	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Winter</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.874 113.634 115.680 115.077 114.450 113.390 112.499 111.973 111.324 110.209 112.524 109.800 109.409 105.703 109.833
US/MH C PN Name St 1.000 S301 15 1.001 S302 15 1.002 S303 15 2.001 S305 15 2.002 S306 15 1.003 S307 15 1.004 S308 15 1.005 S309 15 1.006 S310 15 1.006 S310 15 1.007 S311 15 1.008 S313 15 1.009 S314 15 1.010 S315 15 4.000 S316 15	Profi: Period(s) (ye limate Change Return corm Period Winter 30 Winter	Analys Le(s) mins) ears) e (%) climate change (%) h +0% h +0% h +0% h +0%	<pre>Sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Winter 30/15 Summer</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.680 115.077 114.458 113.390 112.499 111.973 111.328 110.205 112.524 109.800 109.405 105.701 109.833 108.213
US/MH C PN Name St 1.000 S301 15 1.001 S302 15 1.002 S303 15 2.000 S304 15 2.001 S305 15 2.002 S306 15 1.003 S307 15 1.004 S308 15 1.005 S309 15 1.006 S310 15 1.007 S311 15 1.008 S313 15 1.009 S314 15 1.010 S315 15 4.000 S316 15	Profi: Period(s) (ye limate Change Return corm Period Winter 30 Winter	Analys Le(s) mins) ears) e (%) climate change (%) climate change (%) climate change (%) climate change (%) climate change (%) climate change (%) climate change (%) climate (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	<pre>sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Winter 30/15 Summer 30/15 Summer</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.686 115.077 114.458 113.390 112.499 111.973 111.328 110.205 112.524 109.800 109.405 105.701 109.837 108.213 106.824
US/MH Return VS/MH C PN Name St 1.000 S301 15 1.001 S302 15 1.002 S303 15 2.000 S304 15 2.001 S305 15 2.002 S306 15 1.003 S307 15 1.004 S308 15 1.005 S309 15 1.006 S310 15 1.007 S311 15 1.008 S313 15 1.009 S314 15 1.010 S315 15 4.000 S316 15	Profi: Period(s) (ye limate Change Return corm Period Winter 30 Winter	Analys Le(s) mins) ears) e (%) climate change (%) climate climate change (%) climate change (%) climate (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	<pre>Sis Timestep DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Winter 30/15 Summer 30/15 Winter 30/15 Summer</pre>	Fine Inert: ON 20, 180, 24 440, 2160, First (Y) Flood	ia Status (Summer and 10, 360, 48 2880, 4320 7200, 8640 First (Z)	DN Winter 30, 600, 0, 5760, 0, 10080 30 0 0 Overflow	Level (m) 113.980 113.878 113.634 115.686 115.077 114.458 113.390 112.499 111.973 111.328 110.205 112.524 109.800 109.405 105.701 109.837 108.213

Barratt Homes Manchester		Page 2
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 09:43	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Ealf Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S301	0.005	0.000	0.95			34.5	SURCHARGED	
1.001	S302	0.016	0.000	1.08			39.4	SURCHARGED	
1.002	S303	-0.101	0.000	0.76			60.5	OK	
2.000	S304	-0.161	0.000	0.18			14.7	OK	
2.001	S305	-0.133	0.000	0.35			28.9	OK	
2.002	S306	-0.122	0.000	0.42			37.2	OK	
1.003	S307	-0.111	0.000	0.70			119.8	OK	
1.004	S308	-0.097	0.000	0.78			129.0	OK	
1.005	S309	-0.083	0.000	0.86			144.5	OK	
1.006	S310	-0.095	0.000	0.79			152.9	OK	
1.007	S311	-0.246	0.000	0.42			161.4	OK	
3.000	S312	-0.138	0.000	0.31			22.8	OK	
1.008	S313	-0.188	0.000	0.63			208.0	OK	
1.009	S314	-0.239	0.000	0.45			235.6	OK	
1.010	S315	-0.187	0.000	0.64			274.4	OK	
4.000	5316	0.010	0.000	1.01			25.7	SURCHARGED	
4.001	S317	0.335	0.000	1.21			31.2	SURCHARGED	
4.002	S318	1.173	0.000	2.07			51.3	SURCHARGED	
1.011	S319	0.034	0.000	0.10			127.1	SURCHARGED	
5.000	S320	-0.076	0.000	0.00			8.4	OK	

Barratt Homes Manchester		Page 3
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 09:43	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
5.001	S321	120 Winter	30	+0%	30/120 Winter				105.335
1.012	S322	120 Winter	30	+0%	30/120 Winter				105.336
1.013	S323	120 Winter	30	+0%	30/60 Winter				105.334
1.014	S324	120 Winter	30	+0%	30/15 Summer				105.334

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
5.001	S321	0.008	0.000	0.01			10.9	SURCHARGED	
1.012	S322	0.058	0.000	0.03			96.8	SURCHARGED	
1.013	S323	0.212	0.000	0.03			49.4	SURCHARGED	
1.014	S324	1.531	0.000	1.03			35.6	SURCHARGED	

Rainfall Simulation

1:30 year event with Surcharged Outfall

Barratt Ho	omes Ma	anchest	ter							E	age O
4 Brindley	Road										
City Park,	Manch	hester									
-	м169но										
Date 28/09		~			Desim	ned by					
			00 01								
File CHIPE	ING LA	ANE ZI	.09.21		Checke						
Innovyze					Netwo:	rk 202	0.1.3				
		urcharc Outfall ipe Numb	. Out	fall C.			el M),L W	I	
		1.0			.03.900	103.5		3.500	0	0	
			Dati	um (m)	103.400	0ffset	: (mins) 0			
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)
1	1.000	10	1.000	ຊາ	1.000	104	1.000	165	1.000	204	1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
7	1.000	48	1.000	89	1.000	130	1.000	171	1.000	212	1.000
8	1.000	49	1.000	90	1.000	131	1.000	172	1.000	213	1.000
9	1.000		1.000	91	1.000	132	1.000	173	1.000	214	1.000
10	1.000	51	1.000	92	1.000	133	1.000	174	1.000	215	1.000
11	1.000	52	1.000	93	1.000	134	1.000	175	1.000	216	1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000 1.000
	1.000		1.000		1.000		1.000		1.000 1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
24	1.000	65	1.000	106	1.000		1.000		1.000	229	1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000 1.000		1.000 1.000		1.000		1.000		1.000		1.000 1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
36	1.000		1.000	118	1.000		1.000		1.000		1.000
37	1.000		1.000		1.000	160	1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
41	1.000	82	1.000	123	1.000	164	1.000	205	1.000	246	1.000

Barratt Ho	mes Ma	anchest	cer							E	Page 1
4 Brindley	Road										
 City Park,	Mancl	nester									
-	M169H										
								_			
Date 28/09					Desig	ned by				2	
File CHIPP	ING LA	ANE 21	.09.21	.MDX	Checke	ed by					n n ezza
Innovyze					Netwo	rk 202	0.1.3			·	
	Sı	irchard	red Ou	tfall	Detai	ls for	Surfa	ace Ne	twork	3	
m²											D 41
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	-
((/	(,	(_/	(()	((,	(,	、 ,	()	(/
247	1.000	266	1.000	285	1.000	304	1.000	323	1.000	342	1.000
	1.000		1.000	286	1.000		1.000	324	1.000	343	1.000
249	1.000	268	1.000	287	1.000	306	1.000	325	1.000	344	1.000
250	1.000	269	1.000	288	1.000	307	1.000		1.000	345	1.000
251	1.000	270	1.000	289	1.000	308	1.000	327	1.000	346	1.000
	1.000		1.000		1.000	309	1.000	328	1.000	347	1.000
	1.000		1.000		1.000		1.000		1.000	348	1.000
254	1.000	273	1.000	292	1.000	311	1.000	330	1.000	349	1.000
255	1.000	274	1.000	293	1.000	312	1.000	331	1.000	350	1.000
256	1.000	275	1.000	294	1.000	313	1.000	332	1.000	351	1.000
257	1.000	276	1.000	295	1.000	314	1.000	333	1.000	352	1.000
258	1.000		1.000	296	1.000	315	1.000		1.000	353	1.000
259	1.000	278	1.000	297	1.000	316	1.000	335	1.000	354	1.000
260	1.000	279	1.000	298	1.000	317	1.000	336	1.000	355	1.000
261	1.000	280	1.000	299	1.000	318	1.000	337	1.000	356	1.000
262	1.000	281	1.000	300	1.000	319	1.000	338	1.000	357	1.000
263	1.000	282	1.000	301	1.000	320	1.000	339	1.000	358	1.000
264	1.000	283	1.000	302	1.000	321	1.000	340	1.000	359	1.000
265	1.000	284	1.000	303	1.000	322	1.000	341	1.000	360	1.000
		<u>Simu</u>	latio	<u>n Crit</u>	eria f	for Su	face	Networ	<u>:k 3</u>		
	Area Hc Headl	etric R l Reduc Hot S ot Start oss Coe per he	tion Fa tart (r Level ff (Glo	actor 1 nins) (mm) obal) 0	.000 0 0 F .500	Additic MAI Low per	D Fact Person	or * 10 Inlet per Da	m³/ha Coeff: y (l/po n Time	Storage iecient er/day) (mins)	2.000 0.800 0.000 60
	N	per of] umber of mber of	- Onlin	e Contr	cols 1	Number	of Time	e/Area 1	Diagram	.s 0	
	11 UI					nfall			JUILLUI		
					<u></u>						
R			(years)	Englar	1	FSR 2 Wales 8.800 S 0.281	torm Du	Cv () Cv ()	Summer) Vinter)	0.84	0 0
		L									

Rainfall Simulation

1:100 year event +30% Climate Change

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:04	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	1
Simulation Crit	<u>ceria for Surface Network 3</u>	
Volumetric Runoff Coeff (Areal Reduction Factor 1).750 Additional Flow - % of Total Fl L.000 MADD Factor * 10m³/ha Stora	
Hot Start (mins)	0 Inlet Coefficie	
	0 Flow per Person per Day (1/per/da	y) 0.000
Manhole Headloss Coeff (Global) (
Foul Sewage per hectare (1/s) ().000 Output Interval (min	S) 1
	aphs 0 Number of Storage Structures 1	
	rols 1 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0	
Number of Offine Cont.	TOIS & MUNDER OF REAL TIME CONTROLS U	
Synthet	<u>ic Rainfall Details</u>	
Rainfall Model	FSR Profile Type Sum	
Return Period (years) Begion Engla	2 Cv (Summer) 0. nd and Wales Cv (Winter) 0.	
M5-60 (mm)	18.800 Storm Duration (mins)	30
Ratio R	0.281	

Barratt Homes Manch 4 Brindley Road	LEGLEL					Page	21
City Park, Manchest	or						
Cheshire M169HQ	.CI						
	0.4		1 1				
Date 28/09/2021 10:		-	ned by			2 2 2 2	
File CHIPPING LANE	21.09.21.1						
Innovyze		Netwo	rk 2020.	1.3			
Ho Hot St Manhole Headloss Foul Sewage per Number Number Number	duction Fac t Start (min art Level (n Coeff (Globa hectare (1) of Input Hyd r of Online of Offline Sy infall Model	Simulation tor 1.000 ns) 0 mm) 0 al) 0.500 F /s) 0.000 Prographs 0 Controls 1 Controls 1 Controls 0 puthetic Rai	Additiona MADD low per Pe Number of Number of Number of nfall Det FSR d Wales C	al Flow - Factor * In: erson per Storage Time/Are Real Tim ails Ratio	<pre>% of Tota. 10m³/ha S Let Coeffic Day (1/pe: Structures a Diagrams e Controls R 0.281) 0.750</pre>	l Flow 0. torage 2. ecient 0. r/day) 0. s 1 s 0	000 000 800
			tatus	ON			
Return Perio	Profile(s) on(s) (mins) d(s) (years) e Change (%)	15, 30 720,	, 60, 120	, 180, 24 0, 2160,	Summer and 0, 360, 48 2880, 4320 7200, 8640	0, 600,), 5760,	
Return Perio Climat	on(s) (mins) d(s) (years) e Change (%)	15, 30 720,	, 60, 120 960, 144	, 180, 24 0, 2160,	0, 360, 48 2880, 4320 7200, 8640	60, 600, 6, 5760, 6, 10080 100 30	Water Level
Return Perio	on(s) (mins) d(s) (years)	15, 30 720, mate Firs	, 60, 120 960, 144	, 180, 24 0, 2160,	0, 360, 48 2880, 4320	60, 600, 6, 5760, 6, 10080 100 30	Water Level (m)
Return Perio Climat US/MH PN Name Storm	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch	15, 30 720, mate Firs ange Surc	, 60, 120 960, 144 t (X) F harge	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m)
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch	15, 30 720, mate Firs ange Surc +30% 100/15	, 60, 120 960, 144 t (X) F harge Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch = 100 = 100	15, 30 720, mate Firs ange Surc +30% 100/15 +30% 100/15	, 60, 120 960, 144 t (X) F harge Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch = 100 = 100 = 100	15, 30 720, mate Firs ange Surc +30% 100/15 +30% 100/15 +30% 100/15	, 60, 120 960, 144 t (X) F harge Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch = 100 = 100 = 100 = 100	15, 30 720, 100, 100, 100, 100, 100, 100, 100, 1	, 60, 120 960, 144 t (X) F harge Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch = 100 = 100 = 100 = 100 = 100	15, 30 720, 15, 30 720, 100/15 100/15 100/15 100/15 100/15 100/15 100/15	, 60, 120 960, 144 t (X) F harge Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch = 100 = 100 = 100 = 100 = 100 = 100	15, 30 720, 15, 30 720, 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15	, 60, 120 960, 144 t (X) F charge Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100	15, 30 720, 15, 30 720, 10, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. 100 100 100 100 100 100 100 100 100 10	15, 30 720, 15, 30 720, 15, 30 100,15 +30% +30% +30% +30% +30% 100/15 +30% +30% +30% +30% 100/15 +30% +30% 100/15 +30% 100/15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter 1.005 S309 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. 100 100 100 100 100 100 100 100 100 10	15, 30 720, 15, 30 720, 15, 30 100,15 +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% +30% 100/15 +30% 100/15 +30% 100/15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322
Return Perio Climat US/MH PN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter 1.005 S309 15 Winter 1.006 S310 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. 100 100 100 100 100 100 100 100 100 10	15, 30 720, 15, 30 720, 15, 30 720, 10, 15 10, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15 100, 15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506
US/MH FN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter 1.005 S309 15 Winter 1.006 S310 15 Winter 1.007 S311 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. c 100 c 100	15, 30 720, 15, 30 720, 15, 30 720, 10, 15 10, 15 100, 15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242
US/MH FN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter 1.005 S309 15 Winter 1.006 S310 15 Winter 1.007 S311 15 Winter 3.000 S312 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. c 100 c 100	15, 30 720, 15, 30 720, 15, 30 720, 15, 30 100,15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553
US/MH FN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter 1.005 S309 15 Winter 1.006 S310 15 Winter 1.007 S311 15 Winter 3.000 S312 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. c 100 c 100	15, 30 720, 15, 30 720, 10, 15 10, 15 100, 15 </td <td>, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer</td> <td>, 180, 24 0, 2160, First (Y)</td> <td>0, 360, 48 2880, 4320 7200, 8640 First (Z)</td> <td>0, 600, 5760, 10080 100 30</td> <td>Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870</td>	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870
US/MH Storm IN Storm 1.000 S301 15 Winteg 1.001 S302 15 Winteg 1.002 S303 15 Winteg 1.002 S303 15 Winteg 2.000 S304 15 Winteg 2.001 S305 15 Winteg 2.002 S306 15 Winteg 1.003 S307 15 Winteg 1.004 S308 15 Winteg 1.005 S309 15 Winteg 1.006 S310 15 Winteg 1.007 S311 15 Winteg 1.008 S313 15 Winteg 1.009 S314 15 Winteg	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. c 100 c 100	15, 30 720, 15, 30 720, 15, 30 720, 15, 30 100,15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870 109.461
US/MH FN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter 1.005 S309 15 Winter 1.006 S310 15 Winter 1.007 S311 15 Winter 3.000 S312 15 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. c 100 c 100	15, 30 720, 15, 30 720, 10, 15 10, 15 100, 15 </td <td>, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer Summer</td> <td>, 180, 24 0, 2160, First (Y)</td> <td>0, 360, 48 2880, 4320 7200, 8640 First (Z)</td> <td>0, 600, 5760, 10080 100 30</td> <td>Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870</td>	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870
US/MH Storm IN Storm 1.000 S301 15 Winteg 1.001 S302 15 Winteg 1.002 S303 15 Winteg 1.002 S303 15 Winteg 2.000 S304 15 Winteg 2.001 S305 15 Winteg 2.002 S306 15 Winteg 1.003 S307 15 Winteg 1.004 S308 15 Winteg 1.005 S309 15 Winteg 1.006 S310 15 Winteg 1.007 S311 15 Winteg 1.008 S313 15 Winteg 1.009 S314 15 Winteg	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch c 100 c 100	15, 30 720, 15, 30 720, 15, 30 720, 15, 30 100,15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870 109.461
US/MH FN Name Storm 1.000 S301 15 Winter 1.001 S302 15 Winter 1.002 S303 15 Winter 1.002 S303 15 Winter 2.000 S304 15 Winter 2.001 S305 15 Winter 2.002 S306 15 Winter 1.003 S307 15 Winter 1.004 S308 15 Winter 1.005 S309 15 Winter 1.006 S310 15 Winter 1.007 S311 15 Winter 1.008 S313 15 Winter 1.009 S314 15 Winter 1.010 S315 180 Winter	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch c 100 c 100	15, 30 720, 15, 30 720, 15, 30 720, 15, 30 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,15 100,30 100,30	, 60, 120 960, 144 t (X) F charge Summer Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870 109.461 106.936 110.526
US/MH Storm IN Storm 1.000 S301 15 Winteg 1.001 S302 15 Winteg 1.002 S303 15 Winteg 1.002 S303 15 Winteg 2.000 S304 15 Winteg 2.001 S305 15 Winteg 2.002 S306 15 Winteg 1.003 S307 15 Winteg 1.004 S308 15 Winteg 1.005 S309 15 Winteg 1.006 S310 15 Winteg 1.007 S311 15 Winteg 1.008 S313 15 Winteg 1.009 S314 15 Winteg 1.010 S315 180 Winteg 4.000 S316 15 Winteg	on (s) (mins) d(s) (years) e Change (%) Return Cli Period Ch. c 100 c 10	15, 30 720, 15, 30 720, 15, 30 720, 15, 30 100,15	, 60, 120 960, 144 t (X) F charge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870 109.461 106.936 110.526 109.687
US/MH PN Name Storm 1.000 S301 15 Winteg 1.001 S302 15 Winteg 1.002 S303 15 Winteg 1.002 S303 15 Winteg 2.000 S304 15 Winteg 2.001 S305 15 Winteg 2.002 S306 15 Winteg 1.003 S307 15 Winteg 1.004 S308 15 Winteg 1.005 S309 15 Winteg 1.006 S310 15 Winteg 1.007 S311 15 Winteg 1.008 S313 15 Winteg 1.008 S313 15 Winteg 1.010 S315 180 Winteg 1.010 S316 15 Winteg 4.001 S317 15 Winteg 4.002 S318 15	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch c 100 c 100	15, 30 720, 15, 30 720, 15, 30 720, 10, 15 10, 15 100, 15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870 109.461 106.936 110.526 109.687 108.016
US/MH Storm IN Storm 1.000 S301 15 Winteg 1.001 S302 15 Winteg 1.002 S303 15 Winteg 1.002 S303 15 Winteg 2.000 S304 15 Winteg 2.001 S305 15 Winteg 2.002 S306 15 Winteg 1.003 S307 15 Winteg 1.004 S308 15 Winteg 1.005 S309 15 Winteg 1.006 S310 15 Winteg 1.007 S311 15 Winteg 1.008 S313 15 Winteg 1.009 S314 15 Winteg 1.010 S315 180 Winteg 4.000 S316 15 Winteg	on(s) (mins) d(s) (years) e Change (%) Return Cli Period Ch c 100 c 100	15, 30 720, 15, 30 720, 15, 30 720, 15, 30 100,15	, 60, 120 960, 144 t (X) F harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	, 180, 24 0, 2160, First (Y)	0, 360, 48 2880, 4320 7200, 8640 First (Z)	0, 600, 5760, 10080 100 30	Level (m) 114.517 114.306 114.023 115.706 115.109 114.497 113.773 112.918 112.322 111.506 110.242 112.553 109.870 109.461 106.936 110.526 109.687

Barratt Homes Manchester		Page 2
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:04	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 3

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	S301	0.542	0.000	1.40				SURCHARGED	
1.001	S302	0.444	0.000	1.60			58.7	SURCHARGED	
1.002	S303	0.288	0.000	1.06			85.1	SURCHARGED	
2.000	S304	-0.141	0.000	0.30			24.7	OK	
2.001	S305	-0.101	0.000	0.58			48.4	OK	
2.002	S306	-0.083	0.000	0.71			62.4	OK	
1.003	S307	0.272	0.000	0.96			164.9	SURCHARGED	
1.004	S308	0.322	0.000	1.05			174.0	SURCHARGED	
1.005	S309	0.266	0.000	1.13			191.5	SURCHARGED	
1.006	S310	0.083	0.000	1.05			201.7	SURCHARGED	
1.007	S311	-0.209	0.000	0.56			213.3	OK	
3.000	S312	-0.109	0.000	0.52			38.3	OK	
1.008	S313	-0.118	0.000	0.88			291.4	OK	
1.009	S314	-0.183	0.000	0.65			341.8	OK	
1.010	S315	1.048	0.000	0.33			140.5	SURCHARGED	
4.000	S316	0.699	0.000	1.47			37.3	SURCHARGED	
4.001	S317	1.809	0.000	1.62			41.9	SURCHARGED	
4.002	S318	2.365	0.000	2.77			68.8	SURCHARGED	
1.011	S319	1.439	0.000	0.12			160.1	SURCHARGED	
5.000	S320	1.328	0.000	0.01			14.2	SURCHARGED	

Barratt Homes Manchester		Page 3
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:04	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 3

	PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
	5.001	S321	180 Winter	100	+30%	100/15 Winter				106.740
	1.012	S322	180 Winter	100	+30%	100/15 Winter				106.740
	1.013	S323	180 Winter	100	+30%	100/15 Summer				106.739
:	1.014	S324	180 Winter	100	+30%	100/15 Summer				106.738

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
5.001	S321	1.413	0.000	0.01			23.0	SURCHARGED	
1.012	S322	1.462	0.000	0.07			187.8	SURCHARGED	
1.013	S323	1.617	0.000	0.10			193.2	SURCHARGED	
1.014	S324	2.935	0.000	1.20			41.8	FLOOD RISK	

Storm Water Network 4

Barratt Hom	es Manc	cheste	er							Pag	e O
4 Brindley	Road										
City Park, I	Manches	ster									
Cheshire M	169HQ										
Date 28/09/	2021 10	0:07		Des	signed by						
File CHIPPI	NG LANE	E 21.(09.21.М	DX Che	ecked by						میں جو اور اور اور اور اور اور اور اور اور او
Innovyze				Net	twork 202	0.1.3					
	STORM	1 SEWE	ER DESI	<u>GN by </u>	the Modif	ied Ra	atior	nal N	lethoo	1	
		Des	ign Cri	teria	for Surfa	ace Ne	twor	<u>k 4</u>			
		Pip	e Sizes	STANDAF	RD Manhole	Sizes S	STAND	ARD			
					del - Engla:	nd and	Wales	3			
	Retur	rn Per:	iod (yea: M5-60 (1	•	2 800	Add F	100 /	Clim	ato Ch	PIMP (१ ange (१	•
				or 0.1						ight (n	
			all (mm/)		50	Max	imum	Backd	lrop He	ight (n	n) 1.500
Maximum Time					30 Min Des	-	-	-			
	Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500										
	, or mile cl	LLC RUI		U.	, 50 MI	m prob		OPU		UII (1.7	., 500
			Des	igned w	ith Level S	Soffits					
	N	Jetwor	ck Desi	gn Tab	<u>le for Su</u>	rface	Netw	vork	4		
	_			-							
			« - Ind	dicates	pipe capac	ity < f	low				
PN Lengti	. 2 911	Slope	I.Area	m 72	Base	k	HYD	лта	Secti	on Type	Auto
(m)	(m)	(1:X)			Flow (1/s)	(mm)	SECT		Secti	оп туре	Design
1.000 44.62 1.001 62.71		48.8 42.0		5.00 0.00		0.600 0.600	0 0		-	Conduit Conduit	
2.000 55.08	3 0.334	164.9	0.152	5.00	0.0	0.600	٥	225	Pipe/	Conduit	ð
1.002 78.48	3 2.116	37.1	0.102	0.00		0.600	0	375	Pipe/	Conduit	- O
3.000 21.96				5.00		0.600	0		-	Conduit	
3.001 23.54	J U.316	74.5	0.164	0.00	0.0	0.600	0	225	Pipe/	Conduit	•
1.003 46.94	5 2.235	21.0	0.110	0.00	0.0	0.600	0	375	Pipe/	Conduit	6
			Ne	etwork	<u>Results 1</u>	<u>[able</u>					
PN Ra	in T.	.c. τ	US/IL Σ	I.Area	Σ Base	Foul	Add	Flow	Vel	Cap	Flow
(mm.	/hr) (mi	lns)	(m)	(ha)	Flow (l/s)	(l/s)	(1	/s)	(m/s)	(1/s)	(l/s)
1 000 -			16 222	0 050	<u> </u>			<u> </u>	1 00	74 7	7 0
		5.40 11 5.91 11		0.052 0.133	0.0			0.0	1.88 2.02	74.7 80.5	7.0 18.0
T.OOT D		·• ·· ± .	10.002	0.100	0.0	. 0.0		0.0	2.02	00.5	10.0
2.000 5	0.00 5	5.90 11	14.704	0.152	0.0	0.0		0.0	1.02	40.4	20.6
1.002 5	0.00 6	5.35 11	14.220	0.387	0.0	0.0		0.0	2.98	329.5	52.4
3.000 5	0.00 5	5.24 11	12.865	0.015	0.0	0.0		0.0	1.52	60.3	2.0
		5.50 1		0.179				0.0		60.3	24.2
1.003 4	9.52 6	5.55 11	12.104	0.676				0.0	3.97	438.3	90.7
			~	1000 0	2020 Innov						

arratt	: Home	s Mar	che	ster	5							Pag	e 1
Brind	lley R	bad											
ity Pa	ark, Ma	anche	ste	r									
neshir	re M1	69HQ											
ate 28	3/09/2	021 1	.0 : 0'	7		De	signed by						:
ile CF	IIPPIN	G LAN	IE 23	1.09).21.M	1DX Ch	ecked by						للعظي
nnovyz	ze					Ne	twork 202	0.1.3				I	
			Netv	vork	Desi	gn Tab	ole for Su	<u>rface</u>	Net	work	4		
PN	Length	Fall	Slo	pe I	Area	T.E.	Base	k	HYD	DIA	Secti	.on Type	Auto
	(m)	(m)	(1:	-	(ha)		Flow (1/s)	(mm)	SECT	(mm)			Design
1 004	20.767	0 050	200	4	0.046	0.00	0.0	0.600		450	Dina	Conduit	0
	31.022				0.046	0.00		0.600	0		-	'Conduit 'Conduit	
	25.220				0.054	0.00		0.600				'Conduit	
1.007	14.107	0.035	403	.1	0.077	0.00	0.0	0.600	0	1500	Pipe/	'Conduit	ð
1.008	6.573	0.047	139	.9	0.000	0.00	0.0	0.600	0	225	Pipe/	'Conduit	ě
					N	<u>etwork</u>	Results 1	<u>[able</u>					
								_		_	_		_
PN	Rain (mm/h		.C. ins)		/IL Σ m)	I.Area (ha)	Σ Base Flow (l/s)	Foul		Flow (s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
	•		-	-	-				(±/				
1.004			6.89			0.722					1.01		
1.005			7.13			0.776						3790.0	
1.000			7.33			0.830 0.907						3777.6 3764.7	
1.008			7.54			0.907				0.0	1.10		

Barratt Homes Manchester		Page 2
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:07	Designed by c	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	•

Online Controls for Surface Network 4

Depth/Flow Relationship Manhole: S414, DS/PN: 1.008, Volume (m³): 38.0

Invert Level (m) 108.516

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)

0.100	6.3600	0.800	20.7500	2.000	23.3300	3.200	29.5100
0.200	13.6600	1.000	19.4100	2.200	24.4700	3.400	30.4200
0.300	18.9100	1.200	18.8000	2.400	25.5600	3.600	31.3000
0.400	21.8000	1.400	19.5200	2.600	26.6000	3.800	32.1600
0.500	22.7900	1.600	20.8700	2.800	27.6000		
0.600	22.5500	1.800	22.1300	3.000	28.5700		
	•		•		•		

Barratt Homes Manchester		Page 3							
4 Brindley Road									
City Park, Manchester									
Cheshire M169HQ									
Date 28/09/2021 10:07	Designed by								
File CHIPPING LANE 21.09.21.MDX									
Innovyze	Network 2020.1.3								
<u>Storage Structures for Surface Network 4</u>									
Tank or Pond M	anhole: S414, DS/PN: 1.008								
	t Level (m) 110.850								
	ea (m²) Depth (m) Area (m²)								
0.000	586.3 0.500 777.8								
©198	2-2020 Innovyze								

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:15	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Manhole Schedules for Surface Network 4

MH Name	MH CL (m)	MH Depth (m)		MH ection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S401	118.355	1.578	Open 1	Manhole	1350	1.000	116.777	225				
S402	118.935	3.073	Open i	Manhole	1500	1.001	115.862	225	1.000	115.862	225	
S404	116.328	1.624	Open 1	Manhole	1350	2.000	114.704	225				
S405	116.856	2.636	Open i	Manhole	1800	1.002	114.220	375	1.001	114.370	225	
									2.000	114.370	225	
S407	114.456	1.591	Open 1	Manhole	1350	3.000	112.865	225				
S408	114.523	1.953	Open 1	Manhole	1350	3.001	112.570	225	3.000	112.570	225	
S409	114.256	2.152	Open 1	Manhole	1800	1.003	112.104	375	1.002	112.104	375	
									3.001	112.254	225	
S410	112.505	2.711	Open 1	Manhole	1500	1.004	109.794	450	1.003	109.869	375	
S411	111.719	3.027	Open i	Manhole	3000	1.005	108.692	1500	1.004	109.742	450	
S412	111.859	3.245	Open 1	Manhole	3000	1.006	108.614	1500	1.005	108.614	1500	
S413	111.580	3.029	Open 1	Manhole	3000	1.007	108.551	1500	1.006	108.551	1500	
S414	111.120	2.604	Open 1	Manhole	3000	1.008	108.516	225	1.007	108.516	1500	
S415	108.700	0.231	Open 1	Manhole	0		OUTFALL		1.008	108.469	225	

1	MH Name	Manhole Easting (m)	Manhole Northing (m)		Intersection Northing (m)		Layout (North)
5	S401	360582.948	437865.029	360582.948	437865.029	Required	
\$	S402	360618.846	437891.540	360618.846	437891.540	Required	
5	S404	360537.418	437909.396	360537.418	437909.396	Required	
5	S405	360581.742	437942.099	360581.742	437942.099	Required	
5	S407	360497.984	437978.850	360497.984	437978.850	Required	
ł	S408	360516.085	437991.296	360516.085	437991.296	Required	
\$	5409	360535.078	438005.203	360535.078	438005.203	Required	

Barratt	Homes	s Manchest	er				Page 1
4 Brind	ley Ro	oad					
City Par	rk, Ma	anchester					
Cheshire	e M1(69HQ					
Date 28,	/09/20	021 10:15		Designed k	ру		
File CHI	IPPIN	G LANE 21.	09.21.MDX	Checked by	7		
Innovyze	Э			Network 20	20.1.3		
		Man	hole Sched	ules for Su	rface Netwo	ork 4	
	MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
	S410	360507.343	438043.080	360507.343	438043.080	Required	
	S411	360495.124	438059.871	360495.124	438059.871	Required	
	S412	360468.964	438043.196	360468.964	438043.196	Required	
	S413	360447.697	438029.641	360447.697	438029.641	Required	
	S414	360435.030	438035.851	360435.030	438035.851	Required	
	S415	360428.660	438037.473			No Entry	

STORM SEWER DESIGN

Rainfall Simulation

1:30 year event

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:17	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	1
Simulation Crit	<u>eria for Surface Network 4</u>	
Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) 0 Foul Sewage per hectare (l/s) 0	0 Inlet Coeffiecie 0 Flow per Person per Day (1/per/da .500 Run Time (min	ge 2.000 nt 0.800 y) 0.000 s) 60
	rols 1 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0	
<u>Synthet</u> :	<u>ic Rainfall Details</u>	
Rainfall Model Return Period (years) Region Englar M5-60 (mm) Ratio R	FSR Profile Type Summ 2 Cv (Summer) 0.7 nd and Wales Cv (Winter) 0.8 18.800 Storm Duration (mins) 0.281	50

Barratt Hom								Page 1
4 Brindley								
City Park,	Mancheste	r						
Cheshire M	~ ~							
Date 28/09/	2021 10:1	7	1	Designed by	7			
File CHIPPI	NG LANE 2	1.09.21.	MDX (Checked by				
Innovyze			1	Network 202	20.1.3			
<u>Summary of</u>	<u>Critical</u>	<u>Results</u>	by Ma	aximum Leve	1 (Rank	<u>1) for</u>	Surfac	<u>e Network</u>
	Hot Hot Sta	Start (mi rt Level (oeff (Glob	ctor 1. ins) (mm) pal) 0.	0 .500 Flow per	onal Flow DD Factor I	* 10m³/ nlet Co	'ha Stora Deffiecie	age 2.000 ent 0.800
	Number	of Online	Contro	phs 0 Number ols 1 Number ols 0 Number	of Time/A	rea Dia	grams O	
	Rain	fall Mode	l	ic Rainfall FSI	R Rati	DR 0.2		
		Regio: M5-60 (mm	-	and and Wales 18.80	s Cv (Summ) Cv (Winte			
	Margin f	or Flood	Risk Wa	arning (mm) 3	300.0	OVD Sta		
			Analys:	is Timestep DTS Status		tia Sta	tus ON	
	-	Profile(s	-	DTS Status	ON	Summe	r and Win	
Ret	-	Profile(s n(s) (mins	:) ;)	-	ON 120, 180, 1	Summe: 240, 36 , 2880,	r and Win 0, 480, 6	600, 760,
Ret	Duration	Profile(s n(s) (mins	;) ;) ;)	DTS Status	ON 120, 180, 1	Summe: 240, 36 , 2880,	r and Win 0, 480, (4320, 5	600, 760, 0080
Ret US/MH PN Name	Duration	Profile(s n(s) (mins (s) (years	:) :) :) imate	DTS Status	ON 120, 180, 1	Summe: 240, 36 2880, 7200,	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 Water
US/MH PN Name	Duration urn Period Climate	Profile(s n(s) (mins (s) (years Change (% Return Cl	:) :) :) imate	DTS Status 15, 30, 60, 1 720, 960, 1 First (X)	ON 120, 180, 1 1440, 2160, First (Y	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 Water orflow Leve
US/MH PN Name 1.000 S401 1.001 S402	Duration Curn Period Climate Storm 15 Winter 15 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Ch 30 30	:) ;) ;) imate hange +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 30 0 water orflow Level Act. (m) 116.84 115.97
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter	Profile(s n(s) (mins (s) (years Change (% Return C1 Period Cf 30 30 30	:) ;) ;) imate hange +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X)	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water wflow Level Act. (m) 116.84 115.97 114.96
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter	Profile(s n(s) (mins Change (% Return C1 Period Cf 30 30 30 30 30 30	:) ;) ;) ;) imate hange +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water wflow Level Act. (m) 116.84 115.97 114.96 114.37
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter	Profile(s n(s) (mins (s) (years Change (% Return C1 Period Cf 30 30 30	:) ;) ;) imate hange +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water wflow Level Act. (m) 116.84 115.97 114.96
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(s n(s) (mins Change (% Return Cl Period Ch 30 30 30 30 30 30 30 30 30 30 30 30 30	imate inange +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28
US/MH PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.004 \$410	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Ct 30 30 30 30 30 30 30 30 30 30 30 30 30	imate inange +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe:	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30
US/MH PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.004 \$410 1.005 \$411	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Ch 30 30 30 30 30 30 30 30 30 30 30 30 30	imate a) bange +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe: 30/12 Winte:	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30 110.25
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 12 Winter 12 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Cl 30 30 30 30 30 30 30 30 30 30 30 30 30	imate a) bange +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe: 30/12 Winte: 30/60 Winte:	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30 110.25 110.25
US/MH PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Ch 30 30 30 30 30 30 30 30 30 30 30 30 30	imate a) bange +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe: 30/12 Winte:	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 36 2880, 7200, First	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30 110.25
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412 1.007 S413	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 12 Winter 120 Winter 120 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Ct 30 30 30 30 30 30 30 30 30 30 30 30 30	imate +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe: 30/120 Winte: 30/60 Winte: 30/15 Summe:	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 361 2880, 7200,) First Over:	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30 110.25 110.25 110.25
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412 1.007 S413	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Cf 30 30 30 30 30 30 30 30 30 30 30 30 30	imate +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe: 30/120 Winte: 30/60 Winte: 30/15 Summe:	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 361 2880, 7200,) First Over:	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30 110.25 110.25 110.25
US/MH PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413 1.008 \$414	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Cf 30 30 30 30 30 30 30 30 30 30 30 30 30	imate +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe: 30/10 Winte: 30/60 Winte: 30/60 Winte: 30/15 Summe: First (X)	ON 120, 180, 3 1440, 2160 First (Y Flood	Summe: 240, 360 2880, 7200,) First Over: Pipe	r and Wir 0, 480, (4320, 5 ⁻ 8640, 10 : (Z) Ove	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30 110.25 110.25 110.25
US/MH PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413 1.008 \$414	Duration Curn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter	Profile(s n(s) (mins (s) (years Change (% Return Cl Period Cf 30 30 30 30 30 30 30 30 30 30 30 30 30	<pre>imate imate onumber imate</pre>	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summe: 30/15 Summe: 30/10 Winte: 30/60 Winte: 30/60 Winte: 30/15 Summe: First (X) Surcharge 30/15 Summe: 30/15 Summe: 10/10 Winte: 30/15 Summe: 30/15 Summe: 30	ON 120, 180, : 1440, 2160, First (Y Flood r r r r r r r r r r r r r r r r r r	Summe: 240, 360 2880, 7200,) First Over: Pipe Flow	r and Wir 0, 480, 0 4320, 5 8640, 10 : (Z) Ove flow A Status	600, 760, 0080 30 0 water orflow Level Act. (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.30 110.25 110.25 110.25

Barratt Homes Manchester		Page 2
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:17	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 4

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
2.000	S404	0.038	0.000	1.07			41.5	SURCHARGED	
1.002	S405	-0.223	0.000	0.34			106.2	OK	
3.000	S407	-0.183	0.000	0.08			4.2	OK	
3.001	S408	-0.048	0.000	0.97			53.9	OK	
1.003	S409	-0.191	0.000	0.47			188.0	OK	
1.004	S410	0.061	0.000	1.56			204.4	SURCHARGED	
1.005	S411	0.060	0.000	0.03			78.3	SURCHARGED	
1.006	S412	0.138	0.000	0.02			52.2	SURCHARGED	
1.007	S413	0.201	0.000	0.02			34.9	SURCHARGED	
1.008	S414	1.511	0.000	0.74			22.7	SURCHARGED	

STORM SEWER DESIGN

Rainfall Simulation

1:30 year event with Surcharged Outfall

Barratt Ho	mes Ma	anchest	ter							E	age 0
4 Brindley	Road										-
City Park,		hester									
-	M169H										
		~			<u> </u>			_			
Date 28/09	/2021	10:22			-	ned by				2	466 A 1666
File CHIPP	ING LA	ANE 21	.09.21	.MDX	Checke	ed by			-		<u>na ne seg</u>
Innovyze					Netwo:	rk 202	0.1.3				
		urcharg Outfall .pe Numb	. Out	fall C.			el 1 I.),L W	I	
		1.0		S415 1 um (m)	.08.700 108.370	108.4 Offset		0.000 ;) 0	0	0	
Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)
-	1 000		1 000		1 000	101	1 000		1 000		1 000
	1.000		1.000		1.000		1.000		1.000		1.000 1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000	1	1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000	50	1.000	91	1.000		1.000		1.000	214	1.000
10	1.000	51	1.000	92	1.000	133	1.000	174	1.000	215	1.000
11	1.000	52	1.000	93	1.000	134	1.000	175	1.000	216	1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000 1.000		1.000		1.000		1.000 1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000	1	1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000	1	1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000 1.000		1.000 1.000		1.000 1.000		1.000		1.000		1.000 1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
34	1.000	75	1.000		1.000	157	1.000	198	1.000	239	1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000	1	1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000 1.000		1.000
4⊥	1.000	82	1.000	123	1.000	104	1.000	205	T.000	246	1.000
				@198	2-2020		7.170				

Barratt Ho	mes Ma	anchest	ter							E	Page 1
4 Brindley	Road										
City Park,	Mancl	nester									
Cheshire	м169но	2									
Date 28/09					Desig	ned by					
File CHIPP			09 21	MDY	Check	-					
	ING II		.09.21	MDA			0 1 2			15	
Innovyze					Netwo	rk 202	0.1.3				
	<u>Sı</u>	ircharg	ged Ou	itfall	Detai	ls for	Surf	<u>ace Ne</u>	twork	4	
Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth	Time	Depth
(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	-
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
254	1.000		1.000		1.000		1.000		1.000		1.000
	1.000		1.000		1.000		1.000		1.000		1.000
256	1.000	275	1.000	294	1.000	313	1.000	332	1.000	351	1.000
	1.000	276	1.000	295	1.000	314	1.000	333	1.000	352	1.000
258	1.000	277	1.000	296	1.000	315	1.000		1.000		1.000
259	1.000	278	1.000	297	1.000	316	1.000	335	1.000	354	1.000
260	1.000	279	1.000	298	1.000	317	1.000	336	1.000	355	1.000
261	1.000	280	1.000	299	1.000	318	1.000	337	1.000	356	1.000
262	1.000	281	1.000	300	1.000	319	1.000	338	1.000	357	1.000
263	1.000	282	1.000	301	1.000	320	1.000	339	1.000	358	1.000
264	1.000		1.000		1.000	321	1.000	340	1.000		1.000
265	1.000	284	1.000	303	1.000	322	1.000	341	1.000	1	1.000
		<u>Simu</u>	latio	n Crit	eria 1	for Su	face	Netwoi	<u>ck 4</u>		
		etric R						ow - %			
	Area	l Reduc				MAI	DD Fact	or * 10		-	
			tart (0		_			iecient	
		t Start				low per	Person	-		_ ·	
		oss Coe	•				•			(mins)	60
FOUL	Sewage	per he	ctare	(1/S) U	.000		00	tput In	terval	(mins)	1
	Num	per of 1	Input H	lvdrogra	aphs 0	Number	of Sto	rage St:	ructure	es 1	
		umber of									
	Nur	mber of	Offlin	e Conti	rols 0	Number	of Real	l Time (Control	.s 0	
			<u>Sy</u>	nthet:	ic Rai	nfall	Detai	<u>ls</u>			
	1	Rainfall	l Model			FSR		Profi	le Tvpe	summe:	r
R		Period				2			Summer)		
			-	. Engla:	nd and				Winter)		
		м5-е	50 (mm)	-		8.800 S	torm D	-			
			Ratio F			0.281	_			-	

Barratt Ho								Page 2
l Brindley								
City Park,	Mancheste	r						
Cheshire	~ ~							
Date 28/09	/2021 10:2	2	I	Designed by				
File CHIPP	ING LANE 2	1.09.21	.MDX C	Checked by				- 1 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Innovyze			Ν	Network 202	0.1.3		•	
Manhold	Areal Redu Hot Hot Star Headloss Co Sewage per 1 Number of Number o	Start (m Start (m rt Level Deff (Glo Dectare (Input Hy of Online f Offline f all Mode	Simu ctor 1. ins) (mm) bal) 0. l/s) 0. l/s) 0. gdrograp contro contro Synthet: el	0 500 Flow per	ria onal Flow DD Factor In Person per of Storage of Time/Ar of Real Ti etails Ratic	- % of To * 10m³/ha hlet Coei r Day (1, s Structu ea Diagr me Contr R 0.281	otal Flow a Storage ffiecient /per/day) res 1 ams 0 ols 0	0.000 2.000 0.800
	Margin f	or Flood	Risk Wa	arning (mm) 3	00.0 E	VD Statu		
Re	Duration	Profile(: a(s) (min:	s) s) 1 s)	Ls Timestep DTS Status 15, 30, 60, 1 720, 960, 1	ON 20, 180, 2	Summer 40, 360, 2880, 4	and Winte 480, 600 320, 5760 640, 1008),),
Re US/ME PN Name	Duration eturn Period Climate	Profile(: a(s) (min: (s) (year:	s) s) 1 %) 21imate	DTS Status	ON 20, 180, 2	Summer 40, 360, 2880, 4 7200, 8	and Winte 480, 600 320, 5760 640, 1008 3 2) Overf),), 30 30 0 Water 10w Level
US/M	Duration eturn Period Climate I Storm	Profile(s) (mins (s) (years Change (s Return C	s) s) 1 %) 21imate	DTS Status 15, 30, 60, 1 720, 960, 1 First (X)	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf),), 30 30 0 Water Low Level
US/ME PN Name 1.000 S401 1.001 S402	Duration eturn Period Climate I Storm 15 Winter 15 Winter	Profile(s) (s) (mins (s) (years Change (s) Return C Period (30 30	s) s) 1 s) timate Change +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	0, 30 30 0 Water 10w Level . (m) 116.84 115.97
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter	Profile(s) (s) (mins Change (s) Return C Period (30 30 30 30	s) s) 1 s) timate Change +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X)	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	0, 30 30 0 Water 10w Level . (m) 116.84 115.97 114.96
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter	Profile(s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30	s) s) 1 s) timate Change +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	0, 30 30 0 Water low Leve . (m) 116.84 115.97 114.96 114.37
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(s) (s) (mins Change (s) Return C Period (30 30 30 30	s) s) 1 s) timate Change +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	0, 30 30 0 Water low Leve - (m) 116.84 115.97 114.96 114.37 112.90
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409	Duration eturn Period Climate 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile (s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, 30 30 0 Water low Level . (m) 116.84 115.97 114.96 114.37 112.90 112.74
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S408 1.003 S408	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile (s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) : *) *) *) *) *) *) *) *) *) *) *) *) *)	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, D, BO BO Water Iow Level . (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.90
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 18 Winter	Profile (s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, D, BO BO C Water Low Level . (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.90 110.89
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 18 Winter 180 Winter	Profile (s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter 30/60 Summer	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, D, BO BO C Water Low Level . (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.90 110.89 110.89 110.89
US/ME PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 18 Winter	Profile (s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, D, 30 0 Water low Level - (m) 116.84
US/ME PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412 1.007 S413	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 180 Winter	Profile (s) (mins (s) (years Change (s) Return C Period C 30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter 30/60 Summer	ON 20, 180, 2 440, 2160, First (Y)	Summer 40, 360, 2880, 4 7200, 8 First (and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, D, BO BO C Water Low Level (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.90 110.89 110.89 110.89 110.89
US/ME PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$408 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413 1.008 \$414	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 180 Winter 180 Winter 180 Winter	Profile (s) (mins (s) (years Change (s) Return C Period C 30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter 30/60 Summer 30/15 Summer 30/15 Summer H	ON 20, 180, 2 440, 2160, First (Y) Flood	Summer 40, 360, 2880, 4 7200, 8 First (Overflc	and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, D, BO BO C Water Low Level (m) 116.84 115.97 114.96 114.37 112.90 112.74 112.28 110.90 110.89 110.89 110.89 110.89
US/ME PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$406 1.003 \$406 1.003 \$406 1.003 \$410 1.005 \$411 1.006 \$412 1.007 \$413 1.008 \$414 US/	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 180 Winter 180 Winter 180 Winter 180 Winter	Profile (s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter 30/60 Summer 30/15 Summer H / Overflow	ON 20, 180, 2 440, 2160, First (Y) Flood alf Drain Time	Summer 40, 360, 2880, 4 7200, 8 First (Overflo Pipe Flow	and Winte 480, 600 320, 5760 640, 1008 2 Z) Overf w Act	D, D, BO BO C C C C C C C C C C C C C
US/ME PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$408 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413 1.008 \$414	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 180 Winter 180 Winter 180 Winter 180 Winter	Profile (s) (mins (s) (years Change (s) Return C Period C 30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter 30/60 Summer 30/15 Summer H / Overflow	ON 20, 180, 2 440, 2160, First (Y) Flood	Summer 40, 360, 2880, 4 7200, 8 First (Overflo Pipe Flow	and Winte 480, 600 320, 5760 640, 1008 3 2) Overf	D, D, BO BO C C C C C C C C C C C C C
US/ME PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413 1.008 \$414 US/ PN Name	Duration eturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 180 Winter 180 Winter 180 Winter 180 Winter 180 Winter	Profile (s) (mins (s) (years Change (s) Return C Period (30 30 30 30 30 30 30 30 30 30 30 30 30	s) s) s) 21imate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	DTS Status 15, 30, 60, 1 720, 960, 1 First (X) Surcharge 30/15 Summer 30/15 Summer 30/60 Winter 30/60 Summer 30/15 Summer H / Overflow (1/s)	ON 20, 180, 2 440, 2160, First (Y) Flood alf Drain Time	Summer 40, 360, 2880, 4 7200, 8 First (Overflo Pipe Flow	and Winte 480, 600 320, 5760 640, 1008 2 Z) Overf w Act	D, D, BO BO BO C C C C C C C C C C C C C

Barratt Homes Manchester		Page 3
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:22	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	·

Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 4

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
2.000	S404	0.038	0.000	1.07			41.5	SURCHARGED	
1.002	S405	-0.223	0.000	0.34			106.2	OK	
3.000	S407	-0.183	0.000	0.08			4.2	OK	
3.001	S408	-0.048	0.000	0.97			53.9	OK	
1.003	S409	-0.191	0.000	0.47			188.0	OK	
1.004	S410	0.658	0.000	0.45			58.6	SURCHARGED	
1.005	S411	0.703	0.000	0.03			60.6	SURCHARGED	
1.006	S412	0.781	0.000	0.02			48.7	SURCHARGED	
1.007	S413	0.844	0.000	0.03			50.8	SURCHARGED	
1.008	S414	2.153	0.000	0.74			22.7	FLOOD RISK	

STORM SEWER DESIGN

Rainfall Simulation

1:100 year event +30% Climate Change

Barratt Homes Manchester	Page 0
4 Brindley Road	
City Park, Manchester	
Cheshire M169HQ	_
Date 28/09/2021 10:24 Designed by	s a set i se Te Te i se
File CHIPPING LANE 21.09.21.MDX Checked by	
Innovyze Network 2020.1.3	
Simulation Criteria for Surface Net	work 4
Hot Start (mins) 0 Ir Hot Start Level (mm) 0 Flow per Person per Manhole Headloss Coeff (Global) 0.500	10m ³ /ha Storage 2.000 let Coeffiecient 0.800 Day (1/per/day) 0.000 Run Time (mins) 60 Interval (mins) 1 Structures 1 ea Diagrams 0
Number of Offitine Controls o Number of Real II.	
Synthetic Rainfall Details	
Return Period (years) 2 C	ofile Type Summer 7 (Summer) 0.750 7 (Winter) 0.840 Ion (mins) 30

Barratt Ho									E	-
Brindley										
City Park,		r								
Cheshire 1	м169нQ									
Date 28/09	/2021 10:2	4		Desigr	ned by					
File CHIPP	ING LANE 2	1.09.21	.MDX	Checke	ed by					<u> </u>
Innovyze]	Networ	ck 2020	0.1.3				
	Areal Red Hot Hot Sta Headloss C Sewage per Number of Number Number of Rair	uction Fa Start (m rt Level oeff (Glo hectare (Input Hy of Online of Offline fall Mode	Simu ctor 1. ins) (mm) bal) 0. l/s) 0. ydrograg e Contro e Contro Synthet el on Engl	ulation 0 0 .500 Fl .000 phs 0 1 ols 1 1 ols 0 1	Additio MAD .ow per Number o Number o Number o FSR d Wales	ia nal Flow D Factor I Person pe of Storage of Time/An of Real Ti etails	- % of * 10m ³ / nlet Co r Day (e Struc cea Dia .me Con o R 0.2 er) 0.7	Total Total Seffice (1/per, tures grams trols 81 50	Flow prage cient /day) 1 0	0.000 2.000 0.800
	Margin f			is Time		Fine Inert ON	ia Sta	tus ON	1	
Re	Duration turn Period	Profile(n(s) (min	Analys s) s) s)	is Time DTS St 15, 30,	estep H Latus	fine Inert	Summe: 40, 360 2880,	r and ¹ 0, 480	Winte , 600 5760 1008 10),), 30
Re US/MH PN Name	Duration turn Period	Profile(n(s) (min (s) (year	Analys s) s) %) limate	is Time DTS St 15, 30, 720, Firs	estep H Latus	Fine Inert ON 20, 180, 2	Summe: 40, 360 2880, 7200,	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10), 30 30 80 Water Tlow Leve
US/MH PN Name	Duration turn Period Climate Storm	Profile(n(s) (min (s) (year Change (Return C Period C	Analys s) s) %) limate change	is Time DTS St 15, 30, 720, Firs	estep H tatus , 60, 12 960, 14 t (X)	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3), 30 30 30 Water Low Leve (m)
US/MH PN Name 1.000 S401	Duration turn Period Climate	Profile(n(s) (min (s) (year Change (Return C	Analys s) s) %) limate	is Time DTS St 15, 30, 720, Firs	estep H tatus , 60, 12 960, 14 t (X)	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3), 30 30 30 Water 1ow Leve
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404	Duration turn Period Climate Storm 15 Winter	Profile(n(s) (min (s) (year Change (Return C Period C 100	Analys: s) s) *) limate thange +30% +30%	is Time DTS St 15, 30, 720, Firs Surc	estep H tatus , 60, 12 960, 14 t (X)	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3), 30 30 30 Water 10w Leve 4. (m) 116.86
US/MH PN Name .000 S401 .001 S402 .000 S404 .002 S405	Duration turn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100	Analys: s) s) *) limate thange +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surcl 100/15	<pre>step H tatus , 60, 12 960, 14 t (X) harge Summer</pre>	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 30 Water Clow Leve 5. (m) 116.86 116.02 115.57 114.42
US/MH PN Name .000 S401 .001 S402 .000 S404 .002 S405 5.000 S407	Duration turn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100	Analys: s) s) s) timate thange +30% +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surch 100/15 100/15	step H tatus , 60, 12 960, 14 t (X) harge Summer	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3), 30 30 Water Clow Leve 3. (m) 116.86 116.02 115.57 114.42 113.21
US/MH PN Name .000 S401 .001 S402 .000 S404 .002 S405 3.000 S407 3.001 S408	Duration turn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100	Analys: s) s) s) timate thange +30% +30% +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surch 100/15 100/15	<pre>step H tatus , 60, 12 960, 14 t (X) harge Summer</pre>	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 30 30 30 30 30 30 30 116.86 116.86 116.82 115.57 114.42 113.21 113.19
US/MH PN Name 000 S401 .001 S402 2.000 S404 .002 S405 3.000 S407 3.001 S408 003 S409	Duration turn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100	Analys: s) s) s) timate thange +30% +30% +30% +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/15 100/15	summer Summer	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 30 30 30 30 30 30 30 116.86 116.82 115.57 114.42 113.12 113.12 112.35
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410	Duration Duration Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100	Analys: s) s) s) timate thange +30% +30% +30% +30% +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/15 100/15	step H tatus , 60, 12 960, 14 t (X) harge Summer	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3), 30 30 Water Clow Leve (m) 116.86 116.02 115.57 114.42 113.21 113.19
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412	Duration Sturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100 100	Analys: s) s) s) timate thange +30% +30% +30% +30% +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/15 100/15 100/15	t (X) summer Summer Summer Summer	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 316 317 313 313 313 314 315 315 316 317 318 319 3110 3110 3111
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412 1.007 S413	Duration Duration Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100 100 100 10	Analys: s) s) s) end end s) end s) end s) end s) end end end end end end end end end end	is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/15 100/15 100/15 100/15 100/15	sstep H tatus , 60, 12 960, 14 t (X) harge Summer Summer Summer Summer Summer Summer	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 116.86 116.92 115.57 114.42 113.19 112.35 111.08 111.07 111.07 111.07
US/MH PN Name L.000 S401 L.001 S402 2.000 S404 L.002 S405 3.000 S407 3.001 S408 L.003 S409 L.003 S409 L.004 S410 L.005 S411 L.006 S412 L.007 S413	Duration Sturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100 100 100 10	Analys: s) s) s) end end s) end s) end s) end s) end end end end end end end end end end	is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/15 100/15 100/15 100/15 100/15	step H tatus , 60, 12 960, 14 t (X) harge Summer Summer Summer Summer Summer	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 116.86 116.92 115.57 114.42 113.19 113.19 112.35 111.06 111.07 111.07
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412 1.007 S413	Duration Aturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100 100 100 10	Analys: s) s) s) limate +30% +30% +30% +30% +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/15 100/15 100/15 100/15 100/15	sstep H tatus , 60, 12 960, 14 t (X) harge Summer Summer Summer Summer Summer Summer Summer	Fine Inert ON 20, 180, 2 140, 2160, First (Y)	Summe: 40, 360 2880, 7200, First Over:	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 116.86 116.92 115.57 114.42 113.19 112.35 111.08 111.07 111.07 111.07
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412 1.007 S413	Duration Aturn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter 120 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100 100 100 10	Analys: s) s) s) limate +30% +30% +30% +30% +30% +30% +30% +30%	is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/15 100/15 100/15 100/15 100/15	step H tatus , 60, 12 960, 14 t (X) harge Summer Summer Summer Summer Summer Summer Summer	Fine Inert ON 20, 180, 2 440, 2160, First (Y Flood	Summe: 40, 360 2880, 7200, First Over: Pipe Flow	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3	0, 30 116.86 116.92 115.57 114.42 113.19 112.35 111.08 111.07 111.07 111.07
US/MH PN Name 1.000 S401 1.001 S402 2.000 S404 1.002 S405 3.000 S407 3.001 S408 1.003 S409 1.004 S410 1.005 S411 1.006 S412 1.007 S413 1.008 S414	Duration turn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter 120 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100 100 100 10	Analys: s) s) s) end end s) end s) end s) end s) end s) end s) end s) end s) end s) end s) end s) end s) end s) end s) end end s) end end end end end end end end end end	<pre>is Time DTS St 15, 30, 720, Firs Surcl 100/15 100/</pre>	step H tatus , 60, 12 960, 14 t (X) harge Summer Summer Summer Summer Summer Summer Summer	Fine Inert ON 20, 180, 2 440, 2160, First (Y Flood	Summe: 40, 360 2880, 7200, First Over: Pipe	r and 1 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3 Dverf Act	0, 30 116.86 116.92 113.12 113.12 113.12 113.12 111.07 111.07 111.07 111.07
US/MH PN Name 1.000 \$401 1.001 \$402 2.000 \$404 1.002 \$405 3.000 \$407 3.001 \$408 1.003 \$409 1.004 \$410 1.005 \$411 1.006 \$412 1.007 \$413 1.008 \$414	Duration turn Period Climate Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 10 Winter 120 Winter	Profile(n(s) (min (s) (year Change (Return C: Period C 100 100 100 100 100 100 100 100 100 10	Analys: s) s) s) limate +30% +	is Time DTS St 15, 30, 720, Firs Surch 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15 100/15	sstep H tatus , 60, 12 960, 14 t (X) harge Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Fine Inert ON 20, 180, 2 40, 2160, First (Y Flood Flood Time	Summe: 40, 360 2880, 7200, First Over: Pipe Flow	r and 7 0, 480 4320, 8640,	Winte , 600 5760 1008 10 3),), 30 30 Water Clow Leve (m) 116.86 116.02 115.57 114.42 113.19 112.35 111.08 111.07 111.07 111.07 111.07

Barratt Homes Manchester		Page 2
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:24	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Surface Network 4

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
2.000	S404	0.642	0.000	1.66			64.5	SURCHARGED	
1.002	S405	-0.174	0.000	0.54			170.2	OK	
3.000	S407	0.121	0.000	0.19			10.5	SURCHARGED	
3.001	S408	0.404	0.000	1.49			82.7	SURCHARGED	
1.003	S409	-0.128	0.000	0.75			302.6	OK	
1.004	S410	0.838	0.000	0.96			125.3	SURCHARGED	
1.005	S411	0.881	0.000	0.06			134.1	SURCHARGED	
1.006	S412	0.958	0.000	0.06			142.5	SURCHARGED	
1.007	S413	1.020	0.000	0.10			154.1	SURCHARGED	
1.008	S414	2.330	0.000	0.86			26.4	FLOOD RISK	

Phase 1 - Foul Water Network 1

Barratt Homes Manchester	Page 0	
4 Brindley Road	Chipping Lane	ii
City Park	Longridge	
Manchester M16 9HQ		1
Date 10.10.16	Designed by CD	
File FW Network 1, Rev D.mdx	Checked by SG	ii
Micro Drainage	Network 2014.1.1	

Network Design Table for FW1 - PDS Export.FWS

« - Indicates pipe capacity < flow</p>

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Auto Design
	• •	•••	• • •				• •		• •	
1.000	21.577	0.755	28.6	0.000	6	0.0	1.500	0	150	8
1.001	10.136	0.507	20.0	0.000	0	0.0	1.500	0	150	ð
1.002	9.531	0.071	135.0	0.000	6	0.0	1.500	0	150	ð
1.003	36.247	0.324	111.9	0.000	0	0.0	1.500	0	150	ð
1.004	36.094	0.690	52.3	0.000	0	0.0	1.500	o	150	ð
1.005	9.292	0.069	135.0	0.000	3	0.0	1.500	0	150	ð
1.006	7.293	0.054	135.0	0.000	0	0.0	1.500	0	150	ð
1.007	29.244	0.491	59.6	0.000	0	0.0	1.500	0	150	ð
1.008	9.888	0.482	20.5	0.000	8	0.0	1.500	0	150	ð
										Ŭ
2.000	46.275	1.361	34.0	0.000	200	0.0	1.500	0	150	0
2.001	35.226	1.761	20.0	0.000	5	0.0	1.500	0	150	ക്
2.002	10.901	0.081	134.6	0.000	5	0.0	1.500	0	150	ക്
2.003	23.107	0.098	235.8	0.000	195	0.0	1.500	0	225	ð
2.004	25.222	1.264	20.0	0.000	0	0.0	1.500	0	225	ы С
										0
1.009	27.745	0.118	235.1	0.000	0	0.0	1.500	0	225	ന്
										_

<u>Network Results Table</u>

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
1.000	107.117	0.000	0.0	6	0.0	11	0.50	1.64	29.0	0.3
1.001	106.362	0.000	0.0	6	0.0	10	0.57	1.97	34.7	0.3
1.002	105.855	0.000	0.0	12	0.0	21	0.37	0.75	13.3	0.6
1.003	105.784	0.000	0.0	12	0.0	20	0.39	0.83	14.6	0.6
1.004	105.460	0.000	0.0	12	0.0	17	0.51	1.21	21.4	0.6
1.005	104.770	0.000	0.0	15	0.0	24	0.39	0.75	13.3	0.7
1.006	104.702	0.000	0.0	15	0.0	24	0.39	0.75	13.3	0.7
1.007	104.648	0.000	0.0	15	0.0	19	0.52	1.14	20.1	0.7
1.008	104.157	0.000	0.0	23	0.0	18	0.86	1.94	34.3	1.1
2.000	108.240	0.000	0.0	200	0.0	62	1.37	1.51	26.6	9.4
2.001	106.879	0.000	0.0	205	0.0	54	1.68	1.96	34.7	9.6
2.002	105.118	0.000	0.0	210	0.0	96	0.83	0.75	13.3	9.8
2.003	104.962	0.000	0.0	405	0.0	131	0.79	0.75	29.7	19.0
2.004	104.864	0.000	0.0	405	0.0	66	1.97	2.58	102.4	19.0
1.009	103.600	0.000	0.0	428	0.0	136	0.80	0.75	29.7	20.1
©1982-2014 XP Solutions										

Barratt Homes Manchester		Page 1
4 Brindley Road	Chipping Lane	ii
City Park	Longridge	
Manchester M16 9HQ		1 ····
Date 10.10.16	Designed by CD	
File FW Network 1, Rev D.mdx	Checked by SG	ii
Micro Drainage	Network 2014.1.1	

Network Design Table for FW1 - PDS Export.FWS

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Auto Design
1.010	21.277	0.091	235.0	0.000	3	0.0	1.500	0	225	ീ
1.011	9.211		235.0	0.000	7		1.500	õ	225	U U
1.012	16.634	0.071	235.0	0.000	0		1.500	0	225	ď
1.013	34.291	1.593	21.5	0.000	2	0.0	1.500	o	225	ð
3 000	28.025	0 208	135 0	0.000	2	0.0	1.500	o	150	9
3.001	23.238		70.0	0.000	2		1.500	0	150	8
	12.851		20.0	0.000	4		1.500	0	150	ď
3.002			19.9	0.000	4 7		1.500	0	150	ජ ජ
5.005	20.555	1.400	17.5	0.000	,	0.0	1.000	Ŭ	100	U
4.000	35.578	0.404	88.1	0.000	7	0.0	1.500	o	150	8
4.001	13.249	0.103	128.9	0.000	4	0.0	1.500	0	150	ð
3 004	13.280	0 099	134 0	0 000	4	0.0	1.500	0	150	ർ
5.001	13.200	0.000	101.0	0.000	-	0.0	1.000	Ŭ	100	U
5.000	32.509	1.086	29.9	0.000	4	0.0	1.500	o	150	8
5.001	13.165	0.663	19.9	0.000	0	0.0	1.500	0	150	ð

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.010	103.482	0.000	0.0	431	0.0	136	0.80	0.75	29.7	20.2
1.011	103.391	0.000	0.0	438	0.0	138	0.81	0.75	29.7	20.5
1.012	103.352	0.000	0.0	438	0.0	138	0.81	0.75	29.7	20.5
1.013	103.281	0.000	0.0	440	0.0	70	1.96	2.48	98.6	20.6
3.000	104.652	0.000	0.0	2	0.0	9	0.21	0.75	13.3	0.1
3.001	104.444	0.000	0.0	2	0.0	8	0.26	1.05	18.5	0.1
3.002	104.112	0.000	0.0	6	0.0	10	0.57	1.96	34.7	0.3
3.003	103.470	0.000	0.0	13	0.0	14	0.73	1.97	34.8	0.6
4.000	102.524	0.000	0.0	7	0.0	15	0.36	0.93	16.5	0.3
4.001	102.120	0.000	0.0	11	0.0	20	0.36	0.77	13.6	0.5
3.004	102.017	0.000	0.0	28	0.0	32	0.48	0.76	13.4	1.3
5.000	103.667	0.000	0.0	4	0.0	9	0.43	1.61	28.4	0.2
5.001	102.581	0.000	0.0	4	0.0	8	0.49	1.97	34.8	0.2
©1982-2014 XP Solutions										

Barratt Homes Manchester		Page 2
4 Brindley Road	Chipping Lane	i
City Park	Longridge	lite II
Manchester M16 9HQ		1 ° - ° - 7 - 1
Date 10.10.16	Designed by CD	
File FW Network 1, Rev D.mdx	Checked by SG	
Micro Drainage	Network 2014.1.1	

Network Design Table for FW1 - PDS Export.FWS

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Auto Design
3.005	20.894	0.155	134.8	0.000	0	0.0	1.500	o	150	ď
1.014 1.015	17.155 13.743		235.0 235.0		0 2		1.500 1.500	0 0	225 225	ල් ල්
1.016 1.017	21.770 11.274	0.093 0.162	235.0 69.6	0.000	0 8		1.500 1.500	0 0	225 225	e C
6.000	34.974	0.259	135.0	0.000	5	0.0	1.500	o	150	ð
7.000	13.792	0.521	26.5	0.000	8	0.0	1.500	0	150	8
6.001	51.228	0.379	135.0	0.000	0	0.0	1.500	о	150	ർ
6.002	27.732	0.590	47.0	0.000	13	0.0	1.500	0	150	ð
6.003	10.422	0.077	135.0	0.000	5	0.0	1.500	0	150	ð
6.004	56.806	0.421	135.0	0.000	0	0.0	1.500	0	750	ē
1.018	3.254	0.024	135.0	0.000	0	0.0	1.500	0	150	۵
1.019	185.986	-4.482	-41.5	0.000	0	0.0	1.500	0	300	ē

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
3.005	101.918	0.000	0.0	32	0.0	34	0.50	0.75	13.3	1.5	
	101.688	0.000	0.0	472	0.0	145	0.82	0.75	29.7	22.1	
	101.615	0.000	0.0	474	0.0	145	0.82	0.75	29.7	22.2	
	101.557	0.000	0.0	474	0.0	145	0.82	0.75	29.7	22.2	
1.017	101.464	0.000	0.0	482	0.0	101	1.31	1.38	54.8	22.6	
6.000	103.029	0.000	0.0	5	0.0	14	0.28	0.75	13.3	0.2	
7.000	103.291	0.000	0.0	8	0.0	12	0.56	1.71	30.2	0.4	
6.001	102.770	0.000	0.0	13	0.0	22	0.38	0.75	13.3	0.6	
6.002	102.390	0.000	0.0	26	0.0	24	0.67	1.28	22.6	1.2	
6.003	101.800	0.000	0.0	31	0.0	34	0.49	0.75	13.3	1.5	
6.004	101.723	0.000	0.0	31	0.0	22	0.39	2.15	950.7	1.5	
1.018	101.302	0.000	0.0	513	0.0	150	0.75	0.75	13.3«	24.0	
1.019	101.278	0.000	0.0	513	0.0	300	0.14		9.6«	24.0	
			©1982-	-2014	XP Solut	ions					

Barratt Homes Manchester		Page 3
4 Brindley Road	Chipping Lane	ii
City Park	Longridge	
Manchester M16 9HQ		1
Date 10.10.16	Designed by CD	
File FW Network 1, Rev D.mdx	Checked by SG	ii
Micro Drainage	Network 2014.1.1	1

Network Design Table for FW1 - PDS Export.FWS

PN	Length	Fall	Slope	Area	Houses	Ba	lse	k	HYD	DIA	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(l/s)	(mm)	SECT	(mm)	Design

1.020 7.073 0.021 340.0 0.000 0 0.0 1.500 o 300

<u>Network Results Table</u>

PN	US/IL	Σ Area	Σ Base	Σ Hse	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow
	(m)	(ha)	Flow (1/s)		(l/s)	(1111)	(m/s)	(m/s)	(l/s)	(1/s)
1.020	105.760	0.000	0.0	513	0.0	142	0.73	0.75	53.0	24.0

©1982-2014 XP Solutions

Barratt Homes Manchester		Page 4
4 Brindley Road	Chipping Lane	ii
City Park	Longridge	liter II
Manchester M16 9HQ		1 · · · · · · · · · · · · · · · · · · ·
Date 10.10.16	Designed by CD	
File FW Network 1, Rev D.mdx	Checked by SG	i
Micro Drainage	Network 2014.1.1	

Manhole Schedules for FW1 - PDS Export.FWS

MH Name	MH CL (m)	MH Depth (m)		MH Nection	MH Diam.,L*W (mm)	PN	Pipe C Inver Level	:t	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdror (mm)
1	108.762	1.645	Open	Manhole	1350	1.000	107.	117	150				
2	108.164	1.802	Open	Manhole	1200	1.001	106.	362	150	1.000	106.362	150	
3	107.960	2.105	Open	Manhole	1350	1.002	105.	855	150	1.001	105.855	150	
4	107.858	2.074	Open	Manhole	1200	1.003	105.	784	150	1.002	105.784	150	
5	107.505	2.045	Open	Manhole	1200	1.004	105.	460	150	1.003	105.460	150	
6	107.578	2.808	Open	Manhole	1200	1.005	104.	770	150	1.004	104.770	150	
7	107.447	2.745	Open	Manhole	1200	1.006	104.	702	150	1.005	104.702	150	
8	107.337	2.689	Open	Manhole	1200	1.007	104.	648	150	1.006	104.648	150	
9	106.880	2.723	Open	Manhole	1200	1.008	104.	157	150	1.007	104.157	150	
20	109.898	1.658	Open	Manhole	1200	2.000	108.3	240	150				
21	108.550	1.671	Open	Manhole	1200	2.001	106.	879	150	2.000	106.879	150	
22	107.328	2.210	Open	Manhole	1350	2.002	105.	118	150	2.001	105.118	150	
23	106.952	1.990	Open	Manhole	1200	2.003	104.	962	225	2.002	105.037	150	
24	106.615	1.751	Open	Manhole	1200	2.004	104.	864	225	2.003	104.864	225	
10	106.852	3.252	Open	Manhole	1200	1.009	103.	600	225	1.008	103.675	150	
										2.004	103.600	225	
11	106.898	3.416	Open	Manhole	1200	1.010	103.	482	225	1.009	103.482	225	
12	106.549	3.158	Open	Manhole	1200	1.011	103.	391	225	1.010	103.391	225	
13	106.397	3.045	Open	Manhole	1200	1.012	103.	352	225	1.011	103,352	225	
14	106.160	2.879	Open	Manhole	1350	1.013	103.3	281	225	1.012	103.281	225	
25	106.302	1.650	Open	Manhole	1200	3.000	104.	652	150				
26	106.321	1.877	Open	Manhole	1200	3.001	104.	444	150	3.000	104.444	150	
27	105.875	1.763	Open	Manhole	1200	3.002	104.	112	150	3.001	104.112	150	
28	105.655	2.185	Open	Manhole	1200	3.003	103.	470	150	3.002	103.470	150	
31	105.283	2.759	Open	Manhole	1200	4.000	102.	524	150				
32	105.918	3.798	Open	Manhole	1200	4.001	102.	120	150	4.000	102.120	150	
29	105.942	3.925	Open	Manhole	1200	3.004	102.	017	150	3.003	102.017	150	
										4.001	102.017	150	
33	105.617	1.950	Open	Manhole	1200	5.000	103.	667	150				
34	105.795	3.214	Open	Manhole	1200	5.001	102.	581	150	5.000	102.581	150	
30	105.781	3.863	Open	Manhole	1200	3.005	101.	918	150	3.004	101.918	150	
										5.001	101.918	150	
15	105.682	3.994	Open	Manhole	1350	1.014	101.	688	225	1.013	101.688	225	
										3.005	101.763	150	
					©1982-20	14 XF	Solut	:io	ns				-

Barratt Homes Manchester		Page 5
4 Brindley Road	Chipping Lane	ii
City Park	Longridge	lite da ll
Manchester M16 9HQ		1
Date 10.10.16	Designed by CD	
File FW Network 1, Rev D.mdx	Checked by SG	ii
Micro Drainage	Network 2014.1.1	

Manhole Schedules for FW1 - PDS Export.FWS

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
16	105.764	4.149	Open	Manhole	1350	1.015	101.615	225	1.014	101.615	225	
17	105.885	4.328	Open	Manhole	1200	1.016	101.557	225	1.015	101.557	225	
18	105.724	4.260	Open	Manhole	1500	1.017	101.464	225	1.016	101.464	225	
36	105.595	2.566	Open	Manhole	1200	6.000	103.029	150				
41	105.841	2.550	Open	Manhole	1200	7.000	103.291	150				
37	106.021	3.251	Open	Manhole	1200	6.001	102.770	150	6.000	102.770	150	
									7.000	102.770	150	
38	105.301	2.911	Open	Manhole	1350	6.002	102.390	150	6.001	102.390	150	
39	104.996	3.196	Open	Manhole	1200	6.003	101.800	150	6.002	101.800	150	
43	105.000	3.277	Open	Manhole	2100	6.004	101.723	750	6.003	101.723	150	
19	105.800	4.498	Open	Manhole	2400	1.018	101.302	150	1.017	101.302	225	
									6.004	101.302	750	
42	105.800	4.522	Open	Manhole	1200	1.019	101.278	300	1.018	101.278	150	
44	108.350	2.590	Open	Manhole	1200	1.020	105.760	300	1.019	105.760	300	
UU1802	108.570	2.831	Open	Manhole	0		OUTFALL		1.020	105.739	300	

©1982-2014 XP Solutions

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park		
Manchester M16 9HQ		
Date 15/10/2019 16:28	Designed by doyleco	
File Chipping Lane 06.09.19.MDX	Checked by	•••••••••••••••••
Micro Drainage	Network 2018.1.1	
	<u>, SEWERAGE DESIGN</u> eria for Foul Network <u>3</u>	
Pipe Sizes STA	ANDARD Manhole Sizes STANDARD	
	.00 Add Flow / Climate Change (%	
Industrial Peak Flow Factor 0.		-
Flow Per Person (1/per/day) 222.	.00 Maximum Backdrop Height (m .00 Min Design Depth for Optimisation (m	-
Domestic (1/s/ha) 0.		
Domestic Peak Flow Factor 6.	3 1 1	
Design	ed with Level Soffits	
Design		,

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	lse (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	60.334	0.603	100.1	0.000	6	0.0	1.500	o	150	Pipe/Conduit	0
2.000	56.779	2.969	19.1	0.000	5	0.0	1.500	0	150	Pipe/Conduit	8
1.001	75.976	2.250	33.8	0.000	11	0.0	1.500	0	150	Pipe/Conduit	ď
3.000	28.239	0.466	60.6	0.000	11	0.0	1.500	o	150	Pipe/Conduit	8
1.002	46.479	1.343	34.6	0.000	5	0.0	1.500	0	150	Pipe/Conduit	ð
1.003	24.445	0.707	34.6	0.000	5	0.0	1.500	0	150	Pipe/Conduit	ĕ
1.004	31.403	0.908	34.6	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ĕ
1.005	32.574	0.937	34.8	0.000	7	0.0	1.500	o	150	Pipe/Conduit	ĕ
1.006	17.710	0.131	135.0	0.000	2	0.0	1.500	0	150	Pipe/Conduit	ĕ
1.007	26.316	0.195	135.0	0.000	6	0.0	1.500	0	150	Pipe/Conduit	ĕ

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)		Cap (1/s)	Flow (1/s)
1.000	114.507	0.000	0.0	6	0.0	14	0.32	0.88	15.5	0.3
2.000	116.873	0.000	0.0	5	0.0	9	0.54	2.01	35.5	0.2
1.001	113.904	0.000	0.0	22	0.0	20	0.71	1.51	26.7	1.0
3.000	112.120	0.000	0.0	11	0.0	17	0.47	1.13	19.9	0.5
1.002	111.654	0.000	0.0	38	0.0	26	0.84	1.49	26.4	1.8
1.003	110.311	0.000	0.0	43	0.0	28	0.87	1.49	26.4	2.0
1.004	109.604	0.000	0.0	43	0.0	28	0.87	1.49	26.4	2.0
1.005	108.696	0.000	0.0	50	0.0	30	0.91	1.49	26.3	2.3
1.006	107.759	0.000	0.0	52	0.0	43	0.57	0.75	13.3	2.4
1.007	107.628	0.000	0.0	58	0.0	46	0.59	0.75	13.3	2.7
			©198	2-201	8 Innovy	ze				

Barratt Homes Manchester		Page 1
4 Brindley Road		
City Park		
Manchester M16 9HQ		
Date 15/10/2019 16:28	Designed by doyleco	
File Chipping Lane 06.09.19.MDX	Checked by	
Micro Drainage	Network 2018.1.1	

Network Design Table for Foul Network 3

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	lse (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	28.432 14.716			0.000	0 8		1.500 1.500	0 0		Pipe/Conduit Pipe/Conduit	6 6
4.000	22.656	2.248	10.1	0.000	11	0.0	1.500	0	150	Pipe/Conduit	ð
1.010	9.126	0.091	100.3	0.000	0	0.0	1.500	o	150	Pipe/Conduit	ď
0.000	29.446 23.998	0.200	110.0		8 8		1.500 1.500	0 0		Pipe/Conduit Pipe/Conduit	එ ඒ
1.013	57.766 25.668 25.667 26.249	0.190 0.145	135.0 177.0	0.000	0 0 3 3	0.0	1.500 1.500 1.500 1.500	0 0 0	150 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	666

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.008	107.433	0.000	0.0	58	0.0	46	0.59	0.75	13.3	2.7
1.009	107.223	0.000	0.0	66	0.0	45	0.69	0.90	15.8	3.1
4.000	109.317	0.000	0.0	11	0.0	11	0.87	2.77	49.0	0.5
1.010	107.069	0.000	0.0	77	0.0	49	0.71	0.87	15.5	3.6
5.000	107.450	0.000	0.0	8	0.0	17	0.34	0.82	14.5	0.4
5.001	107.190	0.000	0.0	16	0.0	23	0.42	0.82	14.5	0.7
1.011	106.978	0.000	0.0	93	0.0	42	1.04	1.39	24.6	4.3
1.012	105.521	0.000	0.0	93	0.0	59	0.67	0.75	13.3	4.3
1.013	105.256	0.000	0.0	96	0.0	55	0.59	0.86	34.3	4.4
1.014	105.111	0.000	0.0	99	0.0	56	0.59	0.84	33.4	4.6

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park		
Manchester M16 9HQ		
Date 15/10/2019 16:29	Designed by doyleco	
File Chipping Lane 06.09.19.MDX	Checked by	
Micro Drainage	Network 2018.1.1	

Manhole Schedules for Foul Network 3

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
F301	116.135	1.628	Open	Manhole	1350	1.000	114.507	150				
F302	118.523	1.650	Open	Manhole	1200	2.000	116.873	150				
F303	116.560	2.656	Open	Manhole	1800	1.001	113.904	150	1.000	113.904	150	
									2.000	113.904	150	
F305	114.158	2.038	Open	Manhole	1200	3.000	112.120	150				
F306	113.928	2.274	Open	Manhole	1350	1.002	111.654	150	1.001	111.654	150	
									3.000	111.654	150	
F307	112.317	2.006	Open	Manhole	1200	1.003	110.311	150	1.002	110.311	150	
F308	111.461	1.857	Open	Manhole	1350	1.004	109.604	150	1.003	109.604	150	
F309	111.705	3.009	Open	Manhole	1200	1.005	108.696	150	1.004	108.696	150	
F310	111.341	3.582	Open	Manhole	1200	1.006	107.759	150	1.005	107.759	150	
F311	111.072	3.444	Open	Manhole	1350	1.007	107.628	150	1.006	107.628	150	
F312	110.592	3.159	Open	Manhole	1200	1.008	107.433	150	1.007	107.433	150	
F313	110.160	2.937	Open	Manhole	1200	1.009	107.223	150	1.008	107.223	150	
F314	110.967	1.650	Open	Manhole	1200	4.000	109.317	150				
F315	109.998	2.929	Open	Manhole	1200	1.010	107.069	150	1.009	107.069	150	
									4.000	107.069	150	
F316	109.019	1.569	Open	Manhole	1350	5.000	107.450	150				
F317	109.714	2.524	Open	Manhole	1350	5.001	107.190	150	5.000	107.190	150	
F318	109.577	2.599	Open	Manhole	1350	1.011	106.978	150	1.010	106.978	150	
									5.001	106.978	150	
F319	107.205	1.684	Open	Manhole	1200	1.012	105.521	150	1.011	105.521	150	
F320	107.189	1.933	Open	Manhole	1350	1.013	105.256	225	1.012	105.331	150	
F321	106.834	1.723	Open	Manhole	1200	1.014	105.111	225	1.013	105.111	225	
F23	106.952	1.982	Open	Manhole	1200		OUTFALL		1.014	104.970	225	

Phase 2 - Foul Water Network 1

Barratt Homes Man	chester						Page	e 0
1 Brindley Road								
City Park, Manche	ster							
Cheshire M169HQ								
Date 28/09/2021 1	0:26	Desi	gned by doyl	eco				
File CHIPPING LAN	E 21.09.21		ked by					ر مع وبا ا
Innovyze			ork 2020.1.3	3				
		FOUL SEWE	RAGE DESIGN					
	<u>Design</u>	Criteria	for Foul Net	twork	1			
	Pipe Size	s STANDARD	Manhole Sizes	STANDA	RD			
Industrial H	[low (l/s/ha)	0.00	Add Flow	/ Clim	ate (Change (%)		0
Industrial Peak						Height (m)		-
Flow Per Person	n (l/per/day)	222.00	Maximur	n Backd	lrop I	Height (m)	1.5	00
Perso	ons per House	e 3.00 Mir	n Design Depth	for Op	timi	sation (m)	1.2	00
							-	
	stic (l/s/ha)		Min Vel for A		-			00
Domes Domestic Pea			Min Vel for An Min Slope fo		-			00 00
	K Flow Factor	6.00	Min Slope fo	or Opti	-			
	K Flow Factor	6.00		or Opti	-			
	c Flow Factor	esigned wit	Min Slope fo	or Opti s	.misat	tion (1:X)		
	c Flow Factor	esigned wit	Min Slope fo	or Opti s	.misat	tion (1:X)		
Domestic Pea) PN Length Fall	K Flow Factor D <u>Network D</u> Slope Area	esigned wit esign Tab: Houses	Min Slope fo h Level Soffit le for Foul Base k	or Opti s <u>Netwo:</u> HYD	misat rk 1 DIA	tion (1:X)	5 уре	Auto
Domestic Pea)	K Flow Factor D <u>Network D</u>	esigned wit esign Tab: Houses	Min Slope fo h Level Soffit le for Foul	or Opti s <u>Netwo:</u> HYD	misat	tion (1:X)	5 уре	00
Domestic Pea) PN Length Fall	Network D Slope Area (1:X) (ha)	esigned wit esign Tabi Houses Flo	Min Slope fo h Level Soffit le for Foul Base k	or Opti s <u>Netwo:</u> HYD	misat rk 1 DIA (mm)	tion (1:X)	5 ype 1	Auto Design
Domestic Pea) PN Length Fall (m) (m)	Network D Slope Area (1:X) (ha) 88.9 0.000	esigned wit esign Tabi Houses Flo	Min Slope for h Level Soffit le for Foul Base k ow (1/s) (mm)	or Opti s <u>Netwo:</u> HYD SECT o	misat r <u>k 1</u> DIA (mm) 150	Section T	ype juit	Auto
Domestic Pea) PN Length Fall (m) (m) 1.000 22.412 0.252 1.001 30.458 0.459 1.002 6.126 0.086	x Flow Factor D Network D Slope Area (1:X) (ha) 88.9 0.000 66.4 0.000 71.2 0.000	<pre> 6.00 esigned wit esign Tab:</pre>	Min Slope for h Level Soffit le for Foul Base k ow (1/s) (mm) 0.0 1.500 0.0 1.500 0.0 1.500	n Opti s <u>Netwo:</u> HYD SECT o o o o	misat rk 1 DIA (mm) 150 150 150	Section T Pipe/Cond Pipe/Cond Pipe/Cond	ype uit uit uit	00 Auto Design ຫຼື ຫຼື
Domestic Peal PN Length (m) Fall (m) 1.000 22.412 0.252 1.001 30.458 0.459 1.002 6.126 0.086 1.003 27.937 1.473	Sector Network D Slope Area (1:X) (ha) 88.9 0.000 66.4 0.000 71.2 0.000 19.0 0.000	esigned wit esign Tabi Houses Flo 0 4 0 0 0 4 0 0 0 0	Min Slope for h Level Soffit le for Foul Base k ow (1/s) (mm) 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500	Netwo: HYD SECT 0 0 0 0	misat <u>rk 1</u> DIA (mm) 150 150 150 150	Section T Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond	ype uit uit uit uit	00 Auto Design ປີ ປີ
Domestic Peal PN Length (m) Fall (m) 1.000 22.412 0.252 1.001 30.458 0.459 1.002 6.126 0.086 1.003 27.937 1.473 1.004 22.606 0.167	Sector Network D Slope Area (1:X) (ha) 88.9 0.000 66.4 0.000 71.2 0.000 19.0 0.000 135.0 0.000	esigned wit esign Tabi Houses Flo 0 4 0 4 0 4 0 4 0 4 0 0 0 4 0 0 0 0	Min Slope for h Level Soffit le for Foul Base k ow (1/s) (mm) 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500	Netwo: HYD SECT 0 0 0 0 0 0	misat rk 1 DIA (mm) 150 150 150 150 150	Section T Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond	ype uit uit uit uit uit	00 Auto Design ປີ ປີ ປີ
PN Length (m) Fall (m) 1.000 22.412 0.252 1.001 30.458 0.459 1.002 6.126 0.086 1.003 27.937 1.473 1.004 22.606 0.167 1.005 26.382 1.437	Sector Network D Slope Area (1:X) (ha) 88.9 0.000 66.4 0.000 71.2 0.000 135.0 0.000 18.4 0.000	esigned wit esign Tabi Houses Flo 0 4 0 4 0 4 0 4 0 4 0 0 0 4 0 0 0 0 0 0	Min Slope for h Level Soffit le for Foul Base k ow (1/s) (mm) 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500	Netwo: HYD SECT 0 0 0 0 0 0 0 0 0 0	misat rk 1 DIA (mm) 150 150 150 150 150 150	Section T Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond	ype 1 uit uit uit uit uit uit	Auto Design ປີ ປີ ປີ
Domestic Peal PN Length (m) Fall (m) 1.000 22.412 0.252 1.001 30.458 0.459 1.002 6.126 0.086 1.003 27.937 1.473 1.004 22.606 0.167	Sector Network D Slope Area (1:X) (ha) 88.9 0.000 66.4 0.000 71.2 0.000 135.0 0.000 18.4 0.000	esigned wit esign Tabi Houses Flo 0 4 0 4 0 4 0 4 0 4 0 0 0 4 0 0 0 0 0 0	Min Slope for h Level Soffit le for Foul Base k ow (1/s) (mm) 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500	Netwo: HYD SECT 0 0 0 0 0 0 0 0 0 0	misat rk 1 DIA (mm) 150 150 150 150 150 150	Section T Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond	ype 1 uit uit uit uit uit uit	00 Auto Design ປີ ປີ ປີ
PN Length (m) Fall (m) 1.000 22.412 0.252 1.001 30.458 0.459 1.002 6.126 0.086 1.003 27.937 1.473 1.004 22.606 0.167 1.005 26.382 1.437	Network D Slope Area (1:X) (ha) 88.9 0.000 66.4 0.000 71.2 0.000 19.0 0.000 135.0 0.000 84.3 0.000	<pre> 6.00 essigned wit essign Tab: Houses Flo</pre>	Min Slope for h Level Soffit le for Foul Base k ow (1/s) (mm) 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500	Netwo: HYD SECT 0 0 0 0 0 0 0 0 0	misat rk 1 DIA (mm) 150 150 150 150 150 150	Section T Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond	ype 1 uit uit uit uit uit uit	Auto Design ປີ ປີ ປີ
PN Length (m) Fall (m) 1.000 22.412 0.252 1.001 30.458 0.459 1.002 6.126 0.086 1.003 27.937 1.473 1.004 22.606 0.167 1.005 26.382 1.437 1.006 7.840 0.093	K Flow Factor D Network D Slope Area (1:X) (ha) 88.9 0.000 66.4 0.000 71.2 0.000 135.0 0.000 18.4 0.000 84.3 0.000	esigned wit esign Tab: Houses Flo 0 4 0 0 0 4 0 0 0 4 0 0 0 12 Network Ro	Min Slope for h Level Soffit le for Foul Base k ow (l/s) (mm) 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500 0.0 1.500	Netwo: HYD SECT 0 0 0 0 0 0 0	misat rk 1 DIA (mm) 150 150 150 150 150 150	Section T Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond Pipe/Cond	ype uit uit uit uit uit uit	Auto Design ອື ອື ອື ອື

	(m)	(ha)	Flow	(1/s)		(1/s)	(mm)	(m/s)	(m/s)	(l/s)	(1/s)	
1.000	109.907	0.000		0.0	4	0.0	12	0.30	0.93	16.4	0.2	
1.001	109.655	0.000		0.0	4	0.0	11	0.33	1.08	19.0	0.2	
1.002	109.196	0.000		0.0	8	0.0	15	0.40	1.04	18.4	0.4	
1.003	109.110	0.000		0.0	8	0.0	11	0.63	2.02	35.7	0.4	
1.004	107.637	0.000		0.0	8	0.0	17	0.32	0.75	13.3	0.4	
1.005	107.470	0.000		0.0	8	0.0	11	0.64	2.05	36.2	0.4	
1.006	106.033	0.000		0.0	20	0.0	24	0.50	0.95	16.9	0.9	

Phase 2 - Foul Water Network 2

			cheste	r								I	Page	0
	iley R													
-	ark, M		ster											
	re M1							_						
ate 28	3/09/2	021 10	0:29			Desigr	ned by	7				,		
ile CH	HIPPIN	G LANI	E 21.0	9.21.	MDX 0	Checke	ed by						- 11	يغصله
nnovyz	ze]	Networ	rk 202	20.1.3						
					FOUL	SEWERA	AGE DE	ESIGN						
			De	sign (Crite	ria fo	or Foi	ıl Net	work	2				
			Pipe	e Sizes	5 STAN	DARD Ma	anhole	Sizes	STAND	ARD				
	Trduc	Frial E	'low (1	/c/ba)	0.0	n	٦٩	i Flow	/ 014	mato	Change	- (B)		0
In			'low (l. : Flow 1	•	0.0			i riow Minimum			-		0.2	0 00
			1 (1/pe					laximun		-	-			
			ons per			0 Min I							1.2	00
			tic (1,					for Au		-	_		1.	
	Domest:	ic Peak	Flow 1	Factor	6.0	0	Min S.	lope fo	or Opt	imisa	tion	(1:X)	5	00
				De	signed	l with	Level	Soffit	s					
					-									
PN	-		Slope	Area	_		ase	k	HYD	DIA	Secti	on Ty	-	
	(m)	(m)	Slope (1:X)	Area (ha)	House	s Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Secti	_	I	esign
1.000	(m) 19.011	(m) 0.190	Slope (1:X) 100.1	Area (ha) 0.000	House	s Ba Flow 8	ase (l/s) 0.0	k (mm) 1.500	HYD SECT	DIA (mm) 150	Secti Pipe/	Condu	I I I I I I	Design
1.000 1.001	(m) 19.011 17.079	(m) 0.190 0.127	Slope (1:X) 100.1 134.5	Area (ha) 0.000 0.000	House	s Ba Flow	ase (1/s) 0.0 0.0	k (mm)	HYD SECT	DIA (mm) 150 150	Secti Pipe/ Pipe/	Condu Condu	I I I I I I I I I I I I I I I I I I I	Design Ö
1.000 1.001	(m) 19.011 17.079	(m) 0.190 0.127	Slope (1:X) 100.1	Area (ha) 0.000 0.000	House	s Ba Flow 8	ase (1/s) 0.0 0.0	k (mm) 1.500 1.500	HYD SECT o	DIA (mm) 150 150	Secti Pipe/	Condu Condu	I I I I I I I I I I I I I I I I I I I	Design
1.000 1.001 1.002 2.000	(m) 19.011 17.079 41.497 23.674	(m) 0.190 0.127 0.384 0.696	Slope (1:X) 100.1 134.5 108.1 34.0	Area (ha) 0.000 0.000 0.000	House	s B a Flow 8 0 5 3	ase (1/s) 0.0 0.0 0.0 0.0	k (mm) 1.500 1.500 1.500	HYD SECT o	DIA (mm) 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu	I I I I I I I I I I I I I I I I I I I	Design එ ඒ ඒ
1.000 1.001 1.002 2.000	(m) 19.011 17.079 41.497	(m) 0.190 0.127 0.384 0.696	Slope (1:X) 100.1 134.5 108.1 34.0	Area (ha) 0.000 0.000 0.000	House	s Ba Flow 8 0 5	ase (1/s) 0.0 0.0 0.0 0.0	k (mm) 1.500 1.500 1.500	HYD SECT 0 0	DIA (mm) 150 150 150	Secti Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu	I I I I I I I I I I I I I I I I I I I	Design D D D
1.000 1.001 1.002 2.000 2.001	(m) 19.011 17.079 41.497 23.674 30.655	(m) 0.190 0.127 0.384 0.696 1.482	Slope (1:X) 100.1 134.5 108.1 34.0 20.7	Area (ha) 0.000 0.000 0.000 0.000 0.000	Eouse	s Ba Flow 8 0 5 3 0	ase (1/s) 0.0 0.0 0.0 0.0 0.0	k (mm) 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0	DIA (mm) 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu	I I I I I I I I I I I I I I I I I I I	Design එ ඒ ඒ එ
1.000 1.001 1.002 2.000 2.001 1.003	(m) 19.011 17.079 41.497 23.674 30.655 33.461	(m) 0.190 0.127 0.384 0.696 1.482	Slope (1:X) 100.1 134.5 108.1 34.0 20.7 37.1	Area (ha) 0.000 0.000 0.000 0.000 0.000	House	s Ba Flow 8 0 5 3 0 5	ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	k (mm) 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0	DIA (mm) 150 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu	I I I I I I I I I I I I I I I I I I I	Design වී වී ඒ වී වී
1.000 1.001 1.002 2.000 2.001 1.003 1.004	(m) 19.011 17.079 41.497 23.674 30.655 33.461 18.393	(m) 0.190 0.127 0.384 0.696 1.482 0.903 0.136	Slope (1:X) 100.1 134.5 108.1 34.0 20.7	Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	House	s Ba Flow 8 0 5 3 0	ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	k (mm) 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0	DIA (mm) 150 150 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu Condu	I I I I I I I I I I I I I I I I I I I	Design වී වී වී වී වී වී
1.000 1.001 1.002 2.000 2.001 1.003 1.004 1.005	(m) 19.011 17.079 41.497 23.674 30.655 33.461 18.393 19.269	(m) 0.190 0.127 0.384 0.696 1.482 0.903 0.136 0.143	Slope (1:X) 100.1 134.5 108.1 34.0 20.7 37.1 135.2	Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Eouse	s Ba Flow 8 0 5 3 0 5 4	ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	k (mm) 1.500 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu Condu Condu	I I I I I I I I I I I I I I I I I I I	Design වී වී ඒ වී වී
1.000 1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006	(m) 19.011 17.079 41.497 23.674 30.655 33.461 18.393 19.269 25.847	(m) 0.190 0.127 0.384 0.696 1.482 0.903 0.136 0.143 0.897	Slope (1:X) 100.1 134.5 108.1 34.0 20.7 37.1 135.2 134.7	Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Eouse	s B a Flow 8 0 5 3 0 5 4 3 0	ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu Condu Condu Condu Condu	I IIT IIT IIT IIT IIT IIT	Design 6666 666 666 666 6666
1.000 1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006	(m) 19.011 17.079 41.497 23.674 30.655 33.461 18.393 19.269 25.847	(m) 0.190 0.127 0.384 0.696 1.482 0.903 0.136 0.143 0.897	Slope (1:X) 100.1 134.5 108.1 34.0 20.7 37.1 135.2 134.7 28.8	Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	House	s B a Flow 8 0 5 3 0 5 4 3 0	ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu Condu Condu Condu Condu	I IIT IIT IIT IIT IIT IIT	Design 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1.000 1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006 3.000	(m) 19.011 17.079 41.497 23.674 30.659 33.461 18.393 19.269 25.847 19.008	(m) 0.190 0.127 0.384 0.696 1.482 0.903 0.136 0.143 0.897 0.190	Slope (1:x) 100.1 134.5 108.1 34.0 20.7 37.1 135.2 134.7 28.8 100.0	Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	House 1 Ietwor	s Ba Flow 8 0 5 3 0 5 4 3 0 5 5 5 5 5 5 5 5	ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu Condu Condu Condu	I III IIII IIII IIII IIII IIII IIII II)esign (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
1.000 1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006 3.000	(m) 19.011 17.079 41.497 23.674 30.659 33.461 18.393 19.269 25.847 19.008	(m) 0.190 0.127 0.384 0.696 1.482 0.903 0.136 0.143 0.897 0.190	Slope (1:X) 100.1 134.5 108.1 34.0 20.7 37.1 135.2 134.7 28.8	Area (ha) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	House 1 Letwo	s B ; Flow 8 0 5 3 0 5 4 3 0 5 5	ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	k (mm) 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150 150	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condu Condu Condu Condu Condu Condu Condu Condu Condu	I I I I I I I I I I I I I I I I I I I)esign 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1,000	113.450	0.000	0.0	8	0.0	16	0.36	0.88	15.5	0.4
	113.260	0.000	0.0	8	0.0	17	0.32	0.75	13.3	0.4
1.002	113.133	0.000	0.0	13	0.0	21	0.40	0.84	14.9	0.6
2.000	114.927	0.000	0.0	3	0.0	8	0.37	1.51	26.6	0.1
2.001	114.231	0.000	0.0	3	0.0	7	0.44	1.93	34.1	0.1
1.003	112.749	0.000	0.0	21	0.0	20	0.68	1.44	25.5	1.0
1.004	111.846	0.000	0.0	25	0.0	30	0.46	0.75	13.3	1.2
1.005	111.710	0.000	0.0	28	0.0	32	0.47	0.75	13.3	1.3
1.006	111.567	0.000	0.0	28	0.0	22	0.81	1.64	28.9	1.3
2 000	110 000	0.000		1 -		~~	0.40	0 00	4 F F	~ -
3.000	110.860	0.000	0.0	15	0.0	22	0.43	0.88	15.5	0.7
			- 1							
			©1982-	2020 In	novyze					

arrat	t Ho	mes	Man	cheste	r									Page	1
Brind	dley	Ro	ad												
ity Pa	ark,	Ма	nche	ster											
heshi	re	M16	9HQ												
ate 28	3/09	/20	21 1	0:29			Desig	ned by	7						
ile CH	HIPP	ING	LAN	E 21.0	9.21.M	1DX	Check	ed by							لعطط
nnovy	ze						Netwo	rk 202	20.1.3						
				Netwo	ork Des	sign	Table	e for	Foul	Netv	vork	2			
PN	Lend	rth	Fall	Slope	Area :	House	s B	ase	k	HYD	DIA	Sec	tion T	vpe	Auto
	(п		(m)	(1:X)	(ha)			(1/s)	(mm)	SEC					esign
1.007	35.3	335	0.262	134.9	0.000		0	0.0	1.500		5 15) Pip	e/Cond	uit	æ
				13.6			6		1.500				e/Cond		ð
4,000	41.0	037	0.304	135.0	0.000		9	0.0	1.500	ć	o 15) Pip	e/Cond	uit	ð
												-			
1.009	47.4	405	0.627	75.6	0.000	1	.2	0.0	1.500	(5 15) Pip	e/Cond	uit	9
					Ne	<u>etwo</u>	rk Res	sults	Table						
	PN	US	S/IL	Σ Area	Σ Bas	20	∑ Hse	Add Flo	DW P.De	P OF	Vel	Vel	Сар	Flo	ur i
			(m)	(ha)	Flow (2	(1/s)		-		(m/s)	-		
			.670	0.000		0.0	43				.54	0.75			
1	.008	110	.408	0.000		0.0	49	0	.0 2	24 :	1.25	2.38	42.1	2.	3
4	.000	109	.171	0.000		0.0	9	0	.0 2	L8 (0.33	0.75	13.3	Ο.	4
1	.009	108	.867	0.000		0.0	70	0	.0 4	13 (.76	1.01	17.8	З.	2

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:30	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Manhole Schedules for Foul Network 2

MH Name	MH CL (m)	MH Depth (m)		MH Mection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrog (mm)
F201	116.004	2.554	Open	Manhole	1200	1.000	113.450	150				
F202	115.678	2.418	Open	Manhole	1200	1.001	113.260	150	1.000	113.260	150	
F203	115.449	2.316	Open	Manhole	1200	1.002	113.133	150	1.001	113.133	150	
F204	116.727	1.800	Open	Manhole	1200	2.000	114.927	150				
F205	116.037	1.806	Open	Manhole	1200	2.001	114.231	150	2.000	114.231	150	
F206	115.110	2.361	Open	Manhole	1350	1.003	112.749	150	1.002	112.749	150	
									2.001	112.749	150	
7207	114.027	2.181	Open	Manhole	1200	1.004	111.846	150	1.003	111.846	150	
7208	113.592	1.882	Open	Manhole	1350	1.005	111.710	150	1.004	111.710	150	
7209	113.271	1.704	Open	Manhole	1200	1.006	111.567	150	1.005	111.567	150	
210	113.209	2.349	Open	Manhole	1200	3.000	110.860	150				
211	112.960	2.290	Open	Manhole	1350	1.007	110.670	150	1.006	110.670	150	
									3.000	110.670	150	
7212	112.258	1.850	Open	Manhole	1200	1.008	110.408	150	1.007	110.408	150	
213	110.962	1.791	Open	Manhole	1200	4.000	109.171	150				
214	111.576	2.709	Open	Manhole	1350	1.009	108.867	150	1.008	108.867	150	
									4.000	108.867	150	
F20	109.898	1.658	Open	Manhole	1200		OUTFALL		1.009	108.240	150	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
F201	360511.445	437892.161	360511.445	437892.161	Required	
F202	360496.874	437879.950	360496.874	437879.950	Required	
F203	360487.094	437865.949	360487.094	437865.949	Required	
F204	360525.779	437821.377	360525.779	437821.377	Required	
F205	360502.279	437818.513	360502.279	437818.513	Required	
F206	360472.818	437826.985	360472.818	437826.985	Required	

Barratt H	iomes	Manchest	er				Page 1
4 Brindle	y Ro	bad					
City Park	-						
Cheshire							
Date 28/0				Designed by	37		
			09.21.MDX	Checked by			
	ETING	J DANE ZI.	09.21.HDX	Network 202			
Innovyze				Network 20.	20.1.3		
		Ma	nhole Sche	dules for F	oul Networ	<u>k 2</u>	
	MH	Manhole	Manhole I	Intersection :	Intersection	Manhole	Layout
1	Name	Easting	-	Easting	Northing	Access	(North)
		(m)	(m)	(m)	(m)		
1	F207	360440.629	437836.123	360440.629	437836.123	Required	
1	F208	360428.727	437850.145	360428.727	437850.145	Required	
						-	
]	F209	360424.604	437868.968	360424.604	437868.968	Required	
I	F210	360429.710	437904.575	360429.710	437904.575	Required	
1	F211	360414.742	437892.859	360414.742	437892.859	Required	
1	F212	360379.412	437893.476	360379.412	437893.476	Required	
1	F213	360339.489	437866.868	360339.489	437866.868	Required	
1	F214	360360.317	437902.228	360360.317	437902.228	Required	
	F20	360321.419	437929.324			No Entry	
			©198	32-2020 Inno	ovyze		

Phase 2 - Foul Water Network 3

arratt	Home	s Mano	cheste	r								I	Page	0
Brind	iley R	oad												
ity Pa	ark, M	anches	ster											
Cheshiı														
Date 28	3/09/2	021 10):32		I	Desig	ned by	7						
File CH	IPPIN	G LANE	E 21.0	9.21.	MDX C	Check	ed by							ر <u>د م</u> رام
Innovyz	ze				N	letwo	rk 202	20.1.3	3					
					FOUL S	SEWER	AGE DI	ESIGN						
			De	sian	Crite	ria f	or Foi	ıl Net	twork	3				
				-			anhole							
	Ta da at		-								Char			0
Tn	Indust idustria	rial F I Peak	•		0.00							ge (%) ht (m)	0.2	0 00
	.ow Per									-	_	ht (m)		
		Perso	ns per	House	3.00) Min	Design	-		-				
	Domesti		tic (1,	-	0.00		in Vel							00 00
	Domesti	LC Peak	FTOM	Factor	6.00	J	Min S.	tope i	or Opt	imisa	ation	(1:X)	5	00
				De	esigned	with	Level	Soffit	s					
			<u>Netwo</u>	ork De	esign	Table	e for	Foul	Netwo	ork 3	3			
PN	Length (m)	Fall (m)	Slope (1:X)		Houses		ase (l/s)	k (mm)	HYD SECT		Sect	tion Ty		Auto Design
1.000	60.334	0.603	100.1	0.000	7	7	0.0	1.500	o	150	Pipe	e/Condu	it	ð
2.000	56.779	2.969	19.1	0.000	e	5	0.0	1.500	0	150	Pipe	e/Condu	uit	θ
1.001	75.976	2.250	33.8	0.000	12	2	0.0	1.500	0	150	Pipe	e/Condı	uit	ď
3.000	28.239	0.466	60.6	0.000	13	3	0.0	1.500	0	150	Pipe	e/Condu	uit	ð
1.002	46.479	1.343		0.000	5	5	0.0	1.500				e/Condu		மீ
	24.445			0.000		5		1.500				e/Condu		ල්
	31.403				(1.500				e/Condu		ಲ್
	32.574				2			1.500			-	e/Condu		ę
	17.710 26.316					7 3		1.500 1.500			_	e/Condı e/Condı		ര് ന
					-	-			-			-,		0
				<u>1</u>	letwor	<u>k Res</u>	sults	Table	<u>L</u>					
	PN U		Σ Area	Σ Ba		Hse .	Add Flo		•			Cap	Flo	
		(m)	(ha)	Flow	(1/s)		(l/s)	(mn	1) (m/	/s) (1	m/s)	(1/s)	(l/s	5)
1	.000 11	4.507	0.000		0.0	7	0	.0 :	15 0.	.34	0.88	15.5	0.	3
2	.000 11	6.873	0.000		0.0	6	0.	.0 :	10 0.	.57	2.01	35.5	0.	3
1	.001 11	3.904	0.000		0.0	25	0.	.0 2	22 0.	.74	1.51	26.7	1.	2
3	.000 11	2.120	0.000		0.0	13	0.	.0 :	18 0.	.49	1.13	19.9	0.	6
1	.002 11	1.654	0.000		0.0	43	0.	.0 :	28 0.	87	1.49	26.4	2.	0
	.003 11		0.000		0.0	49	0.				1.49		2.	
	.004 10		0.000		0.0	49	0.				1.49	26.4	2.	
1	.005 10	8.696	0.000		0.0	51	0.	.0 :	31 0.	.92	1.49	26.3	2.	
		7.759			0.0	58						13.3		

0.0 58 0.0 0.0 0.0 61 ©1982-2020 Innovyze 2.7

2.8

46 0.59 0.75 13.3

47 0.60 0.75 13.3

1.006 107.759 0.000

1.007 107.628 0.000

Barratt Homes Manchester		Page 1
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:32	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Network Design Table for Foul Network 3

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Ba Flow		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	28.432 14.716			0.000	0 9			1.500 1.500	0 0		Pipe/Conduit Pipe/Conduit	ď ď
4.000	22.656	2.248	10.1	0.000	15		0.0	1.500	0	150	Pipe/Conduit	ð
1.010	9.126	0.091	100.3	0.000	0		0.0	1.500	o	150	Pipe/Conduit	ť
	29.446 23.998				8 8			1.500 1.500	0 0		Pipe/Conduit Pipe/Conduit	එ ඒ
1.012	57.766 25.668 25.667 26.249	0.190 0.145	135.1 177.0	0.000	0 0 3 4		0.0	1.500 1.500 1.500 1.500	0 0 0	150 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	6 6 6

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Base (1/s)	Σ	Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.008	107.433	0.000	0.0		61	0.0	47	0.60	0.75	13.3	2.8	
1.009	107.222	0.000	0.0		70	0.0	46	0.70	0.90	15.8	3.2	
4.000	109.317	0.000	0.0		15	0.0	13	0.96	2.77	49.0	0.7	
1.010	107.068	0.000	0.0		85	0.0	52	0.73	0.87	15.5	3.9	
5.000	107.450	0.000	0.0		8	0.0	17	0.34	0.82	14.5	0.4	
5.001	107.190	0.000	0.0		16	0.0	23	0.42	0.82	14.6	0.7	
1 011	100 000				1 . 1			1 0 -	1 00			
1.011	106.977	0.000	0.0		101	0.0	44	1.07	1.39	24.6	4.7	
1.012	105.520	0.000	0.0		101	0.0	61	0.69	0.75	13.3	4.7	
1.013	105.255	0.000	0.0		104	0.0	57	0.61	0.86	34.3	4.8	
1.014	105.110	0.000	0.0		108	0.0	59	0.60	0.84	33.4	5.0	

Barratt Homes Manchester		Page 0
4 Brindley Road		
City Park, Manchester		
Cheshire M169HQ		
Date 28/09/2021 10:33	Designed by	
File CHIPPING LANE 21.09.21.MDX	Checked by	
Innovyze	Network 2020.1.3	

Manhole Schedules for Foul Network 3

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diamete: (mm)	r Backdrop (mm)
F301	116.381	1.874	Open	Manhole	1350	1.000	114.507	150				
F302	118.700	1.827	Open	Manhole	1200	2.000	116.873	150				
F303	116.825	2.921	Open	Manhole	1800	1.001	113.904	150	1.000	113.904	15	
F305	114.524	2.404	Open	Manhole	1200	3.000	112.120	150	2.000	113.904	15	
F306	114.309	2.655	Open	Manhole	1350	1.002	111.654	150	1.001	111.654	15	D
									3.000	111.654	15	D
F307	112.576	2.265	Open	Manhole	1200	1.003	110.311	150	1.002	110.311	15	מ
F308	111.640	2.036	Open	Manhole	1350	1.004	109.604	150	1.003	109.604	15	0
F309	111.857	3.161	Open	Manhole	1200	1.005	108.696	150	1.004	108.696	15	כ
F310	111.492	3.733	Open	Manhole	1200	1.006	107.759	150	1.005	107.759	15	ן כ
F311	111.216	3.588	Open	Manhole	1350	1.007	107.628	150	1.006	107.628	15	מ
F312	110.710	3.277	Open	Manhole	1200	1.008	107.433	150	1.007	107.433	15	כ
F313	110.267	3.045	Open	Manhole	1200	1.009	107.222	150	1.008	107.222	15	D
F314	111.086	1.769	Open	Manhole	1200	4.000	109.317	150				
F315	110.112	3.044	Open	Manhole	1200	1.010	107.068	150	1.009	107.068	15	כ
									4.000	107.069	15	1
F316	109.169	1.719	Open	Manhole	1350	5.000	107.450	150				
F317	109.853	2.663	Open	Manhole	1350	5.001	107.190	150	5.000	107.190	15	ו
F318	109.682	2.705	Open	Manhole	1350	1.011	106.977	150	1.010	106.977	15	כ
									5.001	106.977	15	כ
F319	107.323	1.803	Open	Manhole	1200	1.012	105.520	150	1.011	105.520	15	כ
F320	107.336	2.081	Open	Manhole	1350	1.013	105.255	225	1.012	105.330	15	D
F321	106.984	1.874	Open	Manhole	1200	1.014	105.110	225	1.013	105.110	22	5
F23	106.952	1.983	Open	Manhole	1200		OUTFALL		1.014	104.969	22	5

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
F301	360534.166	437908.238	360534.166	437908.238	Required	
F302	360616.360	437898.323	360616.360	437898.323	Required	
F303	360582.715	437944.060	360582.715	437944.060	Required	

Barratt Home	s Manchest	er				Page 1
4 Brindley Ro						
City Park, Ma	anchester					
Cheshire M1	69HQ				_	
Date 28/09/20	021 10:33		Designed b	У		
File CHIPPIN	G LANE 21.	09.21.MDX	Checked by			
Innovyze			Network 20	20.1.3		
	Ma	nhole Sche	dules for F	oul Networ	<u>k 3</u>	
MH Name	Manhole Easting (m)		Intersection : Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
F305	360514.794	437988.492	360514.794	437988.492	Required	
F306	360537.578	438005.175	360537.578	438005.175	Required	
F307	360510.027	438042.608	360510.027	438042.608	Required	
F308	360495.925	438062.576	360495.925	438062.576	Required	
F309	360469.391	438045.780	360469.391	438045.780	Required	
F310	360441.868	438028.358	360441.868	438028.358	Required	
	360424.802		360424.802	438023.626	-	
	360399.443		360399.443	438016.594	-	
	360374.699		360374.699 360381.771	438002.590 437977.818	-	
	360364.270		360364.270	437992.207	-	
F316	360314.887	437966.073	360314.887	437966.073	Required	
F317	360339.658	437981.726	360339.658	437981.726	Required	
F318	360357.194	437997.970	360357.194	437997.970	Required	
F319	360319.984	438042.155	360319.984	438042.155	Required	
		©198	82-2020 Inno	ovyze		

Barratt	Home	s Manchest	er				Page 2
4 Brindl	ey Ro	oad					
City Par	:k, Ma	anchester					
Cheshire							
Date 28/	09/20	021 10:33		Designed by	y		
File CHI	PPIN	G LANE 21.	09.21.MDX	Checked by			
Innovyze				Network 20			
		Ma	nhole Sche	dules for F	oul Networ	<u>k 3</u>	
	MH			Intersection :			Layout
	Name	Easting (m)	Northing (m)	Easting (m)	Northing (m)	Access	(North)
	F320	360299.350	438026.888	360299.350	438026.888	Required	
	F321	360278.717	438011.621	360278.717	438011.621	Required	
	F23	360259.016	437994.275			No Entry	
			©198	82-2020 Inno	ovyze		